Theorems you should be able to PROVE

1. The Fundamental Theorem of Invertible Matrices (you may be asked to prove the equivalence of any 2 of the 15 statements.)
2. Matrix transformation is linear.
3. Any linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
4. Formulate and prove 2 properties of linear transformations.
5. Kernel of a linear transformation $T: V \to W$ is a subspace of V.
6. Image of a linear transformation $T: V \to W$ is a subspace of W.
7. A linear transformation T is one-to-one if and only if $\text{Ker}(T) = \{0_V\}$.
8. A one-to-one linear transformation preserves linear independence of vectors.
10. Isomorphic finite-dimensional vector spaces have the same dimension.
11. An $n-$dimensional vector space is isomorphic to \mathbb{R}^n.
12. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one if and only if T is onto.
13. The composition of the linear transformations is linear.
14. If A_T is the matrix of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, and A_S is the matrix of a linear transformation $S: \mathbb{R}^m \to \mathbb{R}^l$, then the matrix $A_{S \circ T}$ of $S \circ T: \mathbb{R}^n \to \mathbb{R}^l$, is $A_{S \circ T} = A_S \cdot A_T$.
15. The inverse of the invertible linear transformation is unique.
16. A linear transformation $T: V \to W$ is invertible if and only if it is one-to-one onto.
17. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is invertible if and only if $\text{rk}(A_T) = n$, where A_T is the matrix of T.
18. If A_T is the matrix of the invertible transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, then the matrix of the inverse transformation T^{-1} is A_T^{-1}.
19. If the coordinates of the vector x in the old basis \mathcal{B} are $[x]_\mathcal{B}$, its in the new basis \mathcal{B}' are $[x]_\mathcal{B}'$, and P is the change of basis matrix, then $[x]_\mathcal{B} = P \cdot [x]_\mathcal{B}'$.
20. If A_T is the matrix of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, in the basis \mathcal{B}, and P is the change of basis matrix from the old basis \mathcal{B} to the new basis \mathcal{B}', then the matrix of T in the basis \mathcal{B}' is $P^{-1}A_T P$.
21. For any permutations $\sigma, \tau \in S_n$, $\text{sgn}(\tau \circ \sigma) = \text{sgn}(\tau) \cdot \text{sgn}(\sigma)$.
22. A transposition is an odd permutation.
23. Formulate and prove 7 properties of the determinants (you may be asked to prove any one of the properties).

24. For any \(n \times n \) matrices \(A \) and \(B \), \(\det(AB) = \det(A) \cdot \det(B) \).

25. If a matrix \(A \) is invertible, then \(\det(A^{-1}) = \frac{1}{\det(A)} \).

27. Formulate and prove the Cramer’s Rule.

28. State and prove the formula for the inverse of the matrix using the adjoint.

29. Eigenspace corresponding to an eigenvalue \(\lambda \) is a subspace of \(\mathbb{R}^n \).

30. If \(\lambda_1, \ldots, \lambda_k \) are distinct eigenvalues of \(A \), and \(v_1, \ldots, v_k \), are the corresponding eigenvectors, then \(v_1, \ldots, v_k \) are linearly independent.

31. An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) has \(n \) linearly independent eigenvectors.

32. If an \(n \times n \) matrix \(A \) has \(n \) distinct eigenvalues, then \(A \) is diagonalizable.