Lessons from conducting research in an American Indian community: The Pima Indians of Arizona

Peter H. Bennett, M.B., F.R.C.P.
Scientist Emeritus
National Institute of Diabetes and Digestive and Kidney Diseases,
Phoenix, Arizona, U.S.A.

Pittsburgh,
December 13th, 2007
What did we learn in 1963?

• RA (and AS) common in this population
 – We provided care and treatment for the affected
• Community willing to take part in research
• Diabetes appeared to be a very common problem
• Further assessment of diabetes and its complications is needed
1965 Diabetes survey

- 75g OGTT
- Anthropometry
- Height and weight
- Medical history (+ medical record review)
- Physical examination- B.P., ophthalmoscopy, (joints) etc.
- and in those age30+: Retinal photos, ECG,
- Plasma glucose, serum creatinine, cholesterol
- Urine glucose & protein (and if +ve, protein/creatinine ratio)
Prevalence of Diabetes

<table>
<thead>
<tr>
<th>Age</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-24</td>
<td>259</td>
<td>319</td>
</tr>
<tr>
<td>25-34</td>
<td>124</td>
<td>175</td>
</tr>
<tr>
<td>35-44</td>
<td>133</td>
<td>174</td>
</tr>
<tr>
<td>45-54</td>
<td>85</td>
<td>106</td>
</tr>
<tr>
<td>55-64</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>>=65</td>
<td>104</td>
<td>67</td>
</tr>
</tbody>
</table>
DISTRIBUTION OF PLASMA GLUCOSE LEVELS IN PIMA INDIANS BY DECADE

MALES

PERCENT

TWO HOUR PLASMA GLUCOSE (MG./100ML)
Retinopathy and 2hr Plasma Glucose Levels in Pima Indians Aged 15-74yrs
Outcome of 1,223 Pregnancies—
Normal, Prediabetic and Diabetic Pima Indians

- Nondiabetic
- Prediabetic
- Diabetic

Percent

Stillbirths

Neonatal Deaths

Perinatal Mortality
What did we learn in 1965?

- The Pima have the world’s highest reported prevalence of diabetes
 - Diabetes has a major impact on the community
- Plasma glucose levels show a bimodal distribution
 - Current criteria for diagnosis seem inappropriate
- Retinopathy and nephropathy are frequent complications
- Pregnancy in the diabetic is associated with considerable excess perinatal mortality
- Further assessment of determinants of diabetes and its complications is indicated
- A longitudinal study could elucidate risk factors for diabetes and its complications
 - Very little known about the development and course of the disease
• Addressing a problem that community perceived as important
• Discussed ideas for longitudinal study with community leaders
 – Ask for their suggestions
 – Become aware of local cultural sensitivities
• Obtain appropriate community approval and endorsement (beyond the IRB)
 – E.g. Tribal council
Initial Goals of Longitudinal Study

- Characterize clinical features of diabetes mellitus in Pima Indians
- Identify risk factors for diabetes mellitus
- Determine its pathogenesis
- Distribution and determinants of its complications
Establishing the Longitudinal Population-based Study

Detailed census of community including identification of parents, siblings and children

Examine all aged 5 years and over
Repeat examination at two-yearly intervals
 1. 75g OGTT
 2. Anthropometry-Height and weight
 3. Medical history (+ medical record review)
 4. Physical examination- B.P., ophthalmoscopy, etc.
 - and in those age15+: Retinal photos, ECG,
 5. Plasma glucose, serum creatinine, cholesterol
 6. Urine glucose & protein (and if +ve, protein/creatinine ratio)

Initiate Pregnancy study - Third trimester GTT and examination of newborn-birth weight and congenital anomalies
Risk Factors for Diabetes
Diabetes in Pima by Parental Diabetes

<table>
<thead>
<tr>
<th>Diabetes in Parents</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Father</td>
<td>20</td>
</tr>
<tr>
<td>Mother</td>
<td>40</td>
</tr>
<tr>
<td>Both</td>
<td>60</td>
</tr>
</tbody>
</table>
Incidence of Diabetes by BMI in Pima Indians

Five-year Incidence of Type 2 Diabetes in Pimas aged 25-44yrs by BMI

Adapted - Knowler AJEpid 1981;113:144-56.
Type 2 DM and Current Leisure Activity in Pima Indians, aged 37-46 years

Prevalence (%) vs. Physical Activity (Low, Medium, High) for MEN and WOMEN.
Pathogenesis
Five-year Incidence of Type 2 Diabetes in Pima Indians with Normal Glucose Tolerance by fasting insulin levels
Insulin concentrations during development of IGT and Type 2 diabetes in Pima Indians
Diabetes Incidence (cases/1000 p-yr) by Insulin Sensitivity and Secretion

- High Sensitivity
- Mid Sensitivity
- Low Sensitivity

- High Secretion
- Mid Secretion
- Low Secretion

Incidence vs. Sensitivity

- Incidence range from 0 to 100

High Incidence
Mid Incidence
Low Incidence
Complications
Incidence of Proteinuria by Duration of Diabetes

2h glucose (mg/dl)
- >450
- 250-449
- <250

Systolic BP (mm Hg)
- >160
- 140-159
- <140

Cases/1,000 Person-Years

Duration of Diabetes (years)

Kidney Int 35:681-687, 1989
Incidence of End-Stage Renal Disease in Diabetic Patients, 1984-93

Relative Incidence
- Whites 1.0
- Blacks 2.1x
- Pima 9.2x

Age-sex-adjusted

Cases per 100,000/year

Whites
Blacks
Pima Indians
Pregnancy study

- Perinatal mortality
- Congenital defects
- Long-term effects of diabetic pregnancy on offspring
- Type 2 diabetes in childhood and adolescence
Prevalence of Diabetes in Children if Mother had Diabetes while Pregnant

Mother's Diabetes
- Prediabetic
- Diabetic

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-14</td>
<td></td>
</tr>
<tr>
<td>15-19</td>
<td></td>
</tr>
<tr>
<td>20-24</td>
<td>30</td>
</tr>
<tr>
<td>25-29</td>
<td>70</td>
</tr>
</tbody>
</table>
Diabetes Prevalence in Pima Indian Children

1965-1969

1998-2002

% with Diabetes

Age (years)
Risk Factors
for Diabetes in Children and Adolescents
Ten-year cumulative incidence of diabetes in Pima Indians aged 5-19 years by Parental diabetes

McCance DR et al, Diabetologia 37; 617-23, 1994
Prevalence of Diabetes by Exposure to Diabetes in Utero

Sib Pairs Discordant for Diabetes and Intrauterine Exposure to Diabetes

<table>
<thead>
<tr>
<th>Born Before</th>
<th>Born After</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>

OR = 3.0, p < 0.01
Percent of Offspring exposed to Diabetes in utero in three time intervals

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967-76</td>
<td>2</td>
</tr>
<tr>
<td>'77-86</td>
<td>4</td>
</tr>
<tr>
<td>'87-96</td>
<td>8</td>
</tr>
</tbody>
</table>
Prevalence of Type 2 Diabetes in Pima Indians aged 20-39yrs by Birth Weight

Age-Adjusted Birth Weight (g)

Prevalence of diabetes (%)

<2500: 30%
-3000: 20%
-3500: 15%
-4000: 10%
-4500: 15%
>4500: 30%
Parental Risk of Diabetes according to birth weight of children

Lindsay, RS et al, Diabetes 49:445-449, 2000
Prevalence of Type 2 Diabetes and Infant Feeding

* Adjusted for age, sex, birth date, obesity, birth weight, parental diabetes and maternal diabetes in pregnancy

Breast Fed
- > 2 months
- Never

Odds Ratio = 0.42
(95% CI = 0.18-0.96)
Prevalence of Diabetes in 5-19 year old Pima Children by Relative Weight
Cumulative Incidence of Nephropathy by Age at Diagnosis and Attained Age

Incidence (%) vs. Attained Age (years)

Age at Diagnosis
- 15-24
- 25-34
- 35-44
Death rates in Pima Indians with onset of diabetes <20 years

- Deaths/1000 pyrs
- Age (years)

- Diabetes
- No diabetes
Consequences of youth-onset type 2 diabetes

- Pregnancies are likely to be diabetic pregnancies
- Children will develop diabetes at an early age
- High likelihood of vascular complications by 30-40 years of age
- Likely to develop ESRD in the 40 year age range
- Premature mortality
Prevention
Diabetes Incidence Rates by Ethnicity (DPP)

Cases per 100 person-yr

- **Lifestyle**
- **Metformin**
- **Placebo**

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Cases per 100 person-yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian (n=1768)</td>
<td>8.0</td>
</tr>
<tr>
<td>African American (n=645)</td>
<td>8.0</td>
</tr>
<tr>
<td>Hispanic (n=508)</td>
<td>12.0</td>
</tr>
<tr>
<td>American Indian (n=171)</td>
<td>12.0</td>
</tr>
<tr>
<td>Asian (n=142)</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Ongoing Intervention studies

• DPPOS
• Look AHEAD
• Early intervention in prevention of renal disease
Some Achievements from the Pima Indian Study

- Identified phenotypic (and etiologic) differences in Type 1 (IDDM) and Type 2 diabetes mellitus

- Established criteria for definition and diagnosis of diabetes mellitus (Now the International Criteria)
Some Achievements from the Pima Indian Study

- Established obesity as a major risk factor for type 2 diabetes
- Established importance of insulin resistance as a key feature of Type 2 diabetes
- Demonstrated that blood pressure predicts development and progression of diabetic retinopathy and nephropathy
Some Achievements from the Pima Indian Study

- Demonstrated that intrauterine environment programs the development of obesity and diabetes in offspring
- Established nature of relationships of diabetes to low and high birth-weight
- Established that infant feeding practice is an important determinant of diabetes risk
- Established that type 2 diabetes can be prevented or delayed by lifestyle intervention or metformin
- Identified several genetic loci that confer genetic susceptibility to diabetes
Pima Indians of the Gila River Indian Community have contributed enormously to knowledge and understanding of the causes of Type 2 diabetes and its complications, ways in which the disease is now treated, and possible ways by which it may be prevented.
Guidelines for successful community-based programs

- Address a problem that community perceives as important
- Discuss ideas with community leaders
 - Ask for their suggestions
 - Become aware of local cultural sensitivities
- Obtain appropriate community approval and endorsement beyond the IRB
 - E.g. Tribal council
Guidelines for successful community-based programs

• Engage local community members in the work to the greatest extent possible
• Start slowly (and simply) to build confidence
• Explain the goals and procedures to participants in simple understandable language—best done by a local community member
• Try to provide a “service” to the community that is not readily available
• Provide feedback to participants and the community—never enough
Guidelines for successful community-based programs

• Be prepared for delays in approval process
• Can the work be done in conjunction with or as a component of other ongoing activities?
Thank you