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9.1 Definitions

Define f
(n)
ii = P{Xn = i, X1 6= i, . . . , Xn−1 6= i|X0 = i}

= Probability of first recurrence to i is at the nth step.

fi = fii =
∞
∑

n=1

f
(n)
ii = Prob. of recurrence to i.

Def. A state i is recurrent if fi = 1.

Def. A state i is transient if fi < 1.

Define Ti = Time for first visit to i given X0 = 1. This is the same as

Time to first visit to i given Xk = i. (Time homogeneous)

mi = E(Ti|X0 = i) =

∞
∑

n=1

nf
(n)
ii = mean time for recurrence

Note: f
(n)
ii = P{Ti = n|X0 = i}
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Similarly we can define

f
(n)
ij = P{Xn = j, X1 6= j, . . . , Xn−1 6= j|X0 = i}

= Prob. of reaching state j for first time in n steps starting from X0 = i.

fij =
∑

∞

n=1 f
(n)
ij = Prob. of ever reaching j starting from i.

Consider fii = fi = prob. of ever returning to i.

If fi < 1, 1 − fi = prob. of never returning to i.

i.e.

1 − fi = P{Ti = ∞|X0 = i}

fi = P{Ti < ∞|X0 = i}
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TH. If N is no. of visits to i|X0 = i ⇒ E(N |X0 = i) = 1/(1 − fi)

Proof: E(N |X0 = i) = E[N |Ti = ∞, X0 = i]P{Ti = ∞|X0 = i}
+E[N |Ti < ∞, X0 = i]P{Ti < ∞|X0 = i}

E(N |Xo = i) = 1 · (1 − fi) + fi[1 + E(N |X0 = i)]

If Ti = ∞ ⇒ except for n = 0 (X0 = i) , there will never be a visit to i-
i.e. E(N |Ti = ∞, X0 = i) = 1. If Ti < ∞, there is sure to be one visit,
say at Xk (Xk = i). But then
E(N |Ti < ∞, Xk = i) = E(N |Ti < ∞, X0 = i) by Markov property;
i.e.

E[N |Ti < ∞, X0 = i] = 1 + E[N |X0 = i]

.̇. E[N |X0 = i] = 1 · (1 − fi) + {1 + E[N |X0 = i]} · (fi)

⇒ E[N |X0 = i] = 1/(1 − fi)

Another expression for E[N |X0 = i] =

∞
∑

n=0

p
(n)
ii
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Relation to Geometric Distribution

Suppose i is transient (fi < 1) and Ni =no. of visits to i.

P{Ni = k + 1|X0 = i} =fk
i (1 − fi), k = 0, 1, . . .

E(Ni|X0 = i) =

∞
∑

k=0

(k + 1)fk
i (1 − fi) =

∞
∑

k=0

kfk
i (1 − fi) + 1

Since

(1 − fi)
−1 =

∞
∑

k=0

fk
i

(1 − fi)
−2 =

d

dfi
(1 − fi)

−1 =

∞
∑

k=0

kfk−1
i

E(Ni|Xo = i) = fi(1 − fi)(1 − fi)
−2 + 1

= fi(1 − fi)
−1 + 1 = 1/(1 − fi)
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TH. E[N |X0 = i] =

∞
∑

n=0

p
(n)
ii

Proof. Let Yn =











1 if Xn = i

0 otherwise

N =

∞
∑

n=0

Yn

Since P{Yn = 1|X0 = i} = P{Xn = i|X0 = i} = p
(n)
ii

E(N) =
∞
∑

n=0

E(Yn) =
∞
∑

n=0

p
(n)
ii

E(N) may be finite or infinite
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Def: A positive recurrent state is defined by fi = 1, mi < ∞.

A null recurrent state is defined by fi = 1, mi = ∞

Ex: f
(n)
ii =

1

n(n + 1)
=

1

n
− 1

n + 1

fi =

∞
∑

n=1

(

1

n
− 1

n + 1

)

= 1

But mi =
∞
∑

n=1

nf
(n)
ii =

∞
∑

1

n

(n + 1)n
=

∞
∑

n=1

1

n + 1
= ∞ as series does

not converge.
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Classification of States

fi mi

Positive recurrent state 1 < ∞
Null recurrent state 1 ∞
Transient < 1 < ∞

where mi = Expected no. of visits to i given X0 = i.

In addition the recurring and transient states may be characterized by

being periodic or aperiodic.

A state is ergodic if it is aperiodic and positive recurrent.
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9.2 Relations Between fi and p
(n)
ii

Consider p
(n)
ii . Starting from X0 = i, the first recurrence to i may be at

k = 1, 2, . . . , n. Consider the first visit is at time k and at Xn, Xn = i

another visit is made. This probability is f
(k)
ii p

(n−k)
ii . Summing over all k

results in

(∗) p
(n)
ii =

n
∑

k=1

f
(k)
ii p

(n−k)
ii

where p
(o)
ii = 1 = P{X0 = i|X0 = i}

Multiplying (∗) by sn and summing

∞
∑

n=1

p
(n)
ii sn =

∞
∑

n=1

n
∑

k=1

f
(k)
ii p

(n−k)
ii sn =

∞
∑

k=1

f
(k)
ii sk

∞
∑

n=k

p
(n−k)
ii sn−k
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∞
∑

n=1

p
(n)
ii sn =

∞
∑

n=1

n
∑

k=1

f
(k)
ii p

(n−k)
ii sn =

∞
∑

k=1

f
(k)
ii sk

∞
∑

n=k

p
(n−k)
ii sn−k

Pii(s) − 1 = Fii(s)Pii(s)

where Pii(s) =

∞
∑

n=0

p
(n)
ii sn, Fii(s) =

∞
∑

n=1

f
(n)
ii sn

Pii(s) =
1

1 − Fii(s)

Note:

lim
s→1

Fii(s) = Fii(1) =

∞
∑

n=1

f
(n)
ii = fi

lim
s→1

F ′

ii(s) = F ′

ii(1) =

∞
∑

n=1

nf
(n)
ii = mi
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Theorems

(a) If Pii(1) =

∞
∑

0

p
(n)
ii = ∞ ⇒ fi = 1.

Conversely if fi = 1, Pii(1) = ∞

(b) If Pii(1) =

∞
∑

0

p
(n)
ii < ∞ ⇒ fi < 1.

Conversely if fi < 1, Pii(1) < ∞
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9.3 Limiting Theorems for Generating Functions

Consider A(s) =

∞
∑

n=0

ansn, |s| ≤ 1 with an ≥ 0.

1. lim
n→∞

n
∑

k=0

ak = lim
s→1

A(s) where s → 1 means s → 1−.

2. Define

a∗(n) =
n
∑

k=0

ak/(n + 1)

lim
n→∞

a∗(n) = lim
s→1

(1 − s)A(s)

3. Cesaro Limit

The Cesaro limit is defined by lim
n→∞

a∗(n) If the sequence {an} has

a limit Π = lim
n→∞

an then lim
n→∞

a∗(n) = Π.

The Cesaro limit may exist without the existence of the ordinary limit.
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Ex. an : 0, 1, 0, 1, 0, 1, . . .

lim
n→∞

an does not exist.

However

a∗(n) =











1
2 if n even

1
2 (1 − 1

n ) if n is odd

lim
n→∞

a∗(n) =
1

2
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9.4 Application to Markov Chains

Consider p∗ii(n) =

n
∑

k=0

p
(k)
ii

n + 1

n
∑

k=0

p
(k)
ii is expected no. of visits to i starting from X0 = i (p0

ii = 1).

Dividing by (n + 1), p∗ii(n) is expected no. of visits per unit time.

Ex. n = 29 days, p∗ii(29) = 2/30; i.e. 2 visits per 30 days or 1 visit per

15 days. One would expect mean time between visits = 15 days.
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TH. lim
n→∞

n
∑

k=0

p
(k)
ii

n + 1
=

1

mi
, where mi = expected no. of visits and

fi = 1

Proof: Consider Pii(s) =
1

1 − Fii(s)

lim
s→1

(1 − s)Pii(s) = lim
n→∞

p∗ii(n) = lim
s→1

(1 − s)

1 − Fii(s)
.

Since Fii(1) = fi, if fi = 1, the r.h.s. is indeterminate. Using
L’Hopital’s rule

lim
n→∞

p∗ii(n) =
1

F ′

ii(1)
=

1

mi

Recall a positive recurrent state has mi < ∞ ⇒ lim
n→∞

p∗ii(n) > 0

A null recurrent state has mi = ∞
⇒ lim

n→∞

p∗ii(n) = 0 or lim
n→∞

p
(n)
ii = 0
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9.5 Relations Between fij and p
(n)
ij (i 6= j)

f
(n)
ij = P{Xn = j, Xr 6= j, r = 1, 2, . . . , n − 1|X0 = i}

= Prob. of starting from i and reaching j for first time at nth step.

fij =

∞
∑

n=1

f
(n)
ij i 6= j

Proceeding as before (i 6= j)

p
(n)
ij = f

(1)
ij p

(n−1)
jj + f

(2)
ij p

(n−1)
jj + . . . + f

(n)
ij

=

n
∑

k=1

f
(k)
ij p

(n−k)
jj (p

(0)
jj = 1)

Multiplying by sn and summing over n

∞
∑

n=1

p
(n)
ij sn =

∞
∑

n=1

n
∑

k=1

f
(k)
ij p

(n−k)
jj sn
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Pij(s) =

∞
∑

k=1

f
(k)
ij sk

∞
∑

n=k

p
(n−k)
jj sn−k

Pij(s) = Fij(s)Pjj(s) i 6= j

lim
s→1

(1 − s)Pjj(s) = lim
n→∞

p∗jj(n) = lim
s→1

(1 − s)Pij(s)/Fij(1)

lim
n→∞

p∗jj(n) = lim
n→∞

p∗ij(n)

Fij(1)
=

1

mi
or lim

n→∞

p∗ij(n) =
Fij(1)

mi

Also Pij(1) =
∞
∑

n=1

p
(n)
ij = Fij(1)

∞
∑

n=0

p
(n)
jj .

Hence if
∞
∑

n=0

p
(n)
jj = ∞ ⇒

∞
∑

n=0

p
(n)
ij = ∞ (p

(0)
ij = 0).

Similarly if
∞
∑

n=0

p
(n)
jj < ∞ ⇒

∞
∑

n=0

p
(n)
ij < ∞
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Summary

Transient
∞
∑

n=0

p
(n)
ii < ∞, fi < 1, mi = 1/(1 − fi)

lim
n→∞

p
(n)
ii = 0,

∞
∑

n=1

p
(n)
ij < ∞, lim

n→∞

p
(n)
ij = 0

Positive Recurrent
∞
∑

n=0

p
(n)
ii = ∞, fi = 1, mi < ∞

lim
n→∞

p∗ii(n) > 0 (= 1/mi)

lim
n→∞

p∗ij(n) > 0 (= Fij(1)/mi)

Negative Recurrent
∞
∑

n=0

p
(n)
ii = ∞, fi = 1, mi = ∞

lim
n→∞

p∗ii(n) = 0, lim
n→∞

p
(n)
ii = 0
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9.6 Periodic Processes

Suppose transition probabilities have period d.

Then

p
(n)
ij = 0, p

(n)
ii = 0 if n 6= rd r = 1, 2, . . .

p
(n)
ij ≥ 0, p

(n)
ii ≥ 0 if n = rd

Pii(s) =

∞
∑

r=0

p
(rd)
ii srd =

∞
∑

r=0

p
(rd)
ii zr, z = sd

Fii(s) =
∞
∑

r=1

f
(rd)
ii srd =

∞
∑

r=1

f
(rd)
ii zr
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We now have a power series in z

lim
z→1

Pii(Z) =

∞
∑

r=0

p
(rd)
ii

lim
z→1

(1 − z)Pii(z) =
∑

n→∞

n
∑

r=0

p
(rd)
ii

n + 1

Note: E(N |X0 = i) =

∞
∑

1

nf
(n)
ii = d

∞
∑

r=1

rf
(rd)
ii = mi

However F ′

ii(1) =

∞
∑

r=1

f
(rd)
ii r = mi/d

Since Pii(Z) = 1/[1 − Fii(z)]

lim
n→∞

p∗ii(n) = d/mi or lim
n→∞

p
(nd)
ii = d/mi
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9.7 Closed Sets

Def. A set of states C is closed if no state outside C can be reached from

any state in C; i.e., pij = 0 if i ∈ C and j /∈ C.

Absorbing state: Closed set consisting of a single state.

Irreducible Chain: If only closed set is the set of all states. (Every state

can be reached from any other state).

This means that we can study the behavior of states in C by omitting all

other states.
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Th. i ↔ j, i is recurrent ⇒ j recurrent

i ↔ j, i is transient ⇒ j transient
∞
∑

r=0

p
(r)
jj ≥

∞
∑

r=0

p
(r+n+m)
jj =

∞
∑

r=0

∑

k∈S

p
(m)
jk p

(r)
kk p

(n)
kj

≥
∞
∑

r=0

p
(m)
ji p

(n)
ii p

(n)
ij = p

(m)
ji p

(n)
ij

∞
∑

r=0

p
(r)
ii

Thus if
∞
∑

r=0

p
(r)
ii = ∞,

∞
∑

r=0

p
(r)
jj = ∞

Suppose i is transient, i ↔ j and assume j is recurrent. By theorem

just proved i then must be recurrent. However this is a contradiction

⇒ j is transient.
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Summary (Aperiodic, irreducible)

1. If i ↔ j and j is positive recurrent ⇒ i is positive recurrent

lim
n→∞

p
(n)
ij = lim

n→∞

p
(n)
jj = Πj = 1/mj .

2. If i ↔ j and j is null recurrent ⇒ i is null recurrent

lim
n→∞

p
(n)
jj = 0, lim

n→∞

p
(n)
ij = 0

or P (∞) = lim
n→∞

P (n) = lim
n→∞

Pn = 0.

3. If i ↔ j and j is transient ⇒ i is transient

lim
n→∞

p
(n)
jj = 0, lim

n→∞

p
(n)
ij = 0
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9.8 Decomposition Theorem

(a) The states of a Markov Chain may be divided into two sets (one of

which may be empty). One set is composed of all the recurring states, the

other of all the transient states.

(b) The recurrent states may be decomposed uniquely into two closed

sets. Within each closed set all states inter-communicate and they are all

of the same type and period. Between any two closed sets no

communication is possible.
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Ex. Decomposition of a Finite Chain

P =

C0 C1 C2 C3

C0

1 0
... 0 · · · 0

... 0 · · · 0
... 0 · · · 0

0 0
... 0 · · · 0

... 0 · · · 0
... 0 · · · 0

C1 O
... P1

... O
... O

C2 O
... O

... P1

... O

C3 A
... B

... C
... D

C0: Consists of two absorbing states
C1: Consists of closed recurrent states
C2: Consists of closed recurrent states
C3: Consists of transient states

A: Transitions C3 → C0 B: Transitions C3 → C1

C: Transitions C3 → C2 D: Transitions C3 → C3
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9.9 Remarks on Finite Chains

1. A finite chain cannot consist only of transient states.

If i, j are transient lim
n→∞

p
(n)
ij = 0,

However
∑

j∈S

p
(n)
ij = 1

leading to a contradiction as n → ∞.

2. A finite chain cannot have any null recurrent states.

The one step transition probabilities within a closed set of null

recurrent states form a stochastic matrix P such that

Pn → 0 as n → ∞. This is impossible as
∑

j∈S

p
(n)
ij = 1.
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9.10 Perron-Frobenius Theorem

Earlier we had seen that if P has a characteristic root (eigenvalue) = 1 of

multiplicity 1, and all other |λi| < 1, then

P (∞) = E1.

The conditions under which this is true are proved by the

Perron-Frobenius Theorem. The necessary and sufficient conditions are:

P : aperiodic

P : positive recurrent (mi < ∞).

Then P
(∞)
1 = P∞ = E1 = 1y′

where y′P = y′ and 1 =
(

1 1 · · · 1
)′

Def. A state is ergodic if it is aperiodic and positive recurrent.
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9.11 Determining Recurrence and Transience
when Number of States is Infinite

Compute fi = P{Ti < ∞|X0 = i} in a closed communicating class.
⇒ All states are recurrent if fi = 1; All states are transient if fi < 1.

Ex. S = {0, 1, 2, . . . }, pi,0 = qi pi,i+1 = pi,

Xn+1 =







0 with qi

Xn + 1 with pi

P{T0 > n|X0 = 0} = P{X1 = 1, X2 = 1, . . . , Xn = n|X0 = 0}

=

n−1
∏

i=0

pi

P{T0 < ∞|X0 = 0} = 1 − lim
n→∞

P{T0 > n|x0 = 0} = 1 −
∞
∏

i=0

pi

.̇. State 0 (and all states in closed class) are recurrent iff
∏

∞

i=0 pi = 0
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Ex. Random Walk on Integers

S = {0,±1,±2, . . . }

pi,i+1 = p, pi,i−1 = q, p + q = 1

p
(2n+1)
00 = 0, n ≥ 0 (Go from 0 to 0 in odd number of transitions)

p
(2n)
00 =

(

2n

n

)

pnqn

Consider
∞
∑

n=1

p
(n)
00 =

∞
∑

n=1

p
(2n)
00 =

∞
∑

n=1

(2n)!

n!n!
pnqn
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Note: Ratio Test: If A =

∞
∑

n=0

an and

an+1

an
< 1 series converges as n → ∞

an+1

an
> 1 series diverges as n → ∞

p2n+2
00

p2n
00

=
(2n + 1)(2n + 2)

(n + 1)(n + 1)
pq → 4pq as n → ∞

If p 6= q 4pq < 1.

If p = q = 1/2 4pq = 1 and test is inconclusive.
(

2n

s

)

psq2n−s ∼ N(2np, 2npq) = N(n, n/2) if p = 1/2

∼ e−(s−n)2/n

/
√

2π
n

2
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Since p
(2n)
00 ∼ 1√

πn

∞
∑

n=1

p
(2n)
00

∼=
∞
∑

n=1

1√
πn

series diverges

.̇. State 0 is recurrent.

Th. An irreducible Markov Chain with S = {0, 1, 2, . . . } and Transition

Prob. {pij} is transient iff

yi =

∞
∑

j=1

pijyj i = 1, 2, . . .

has a non-zero bounded solution

Proof: P.88
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Ex. Random walk on S = {0, 1, 2, . . . }

pi,i+1 = pi, pi,i−1 = qi pi,i = ri, q0 = 0 (pi + qi + ri = 1)

Equations:

y1 = p11y1 + p12y2 = r1y1 + p1y2 ⇒ y2 =

(

1 +
q1

p1

)

y1

y2 = p21y1 + p22y2 + p23y3 = q2y1 + r2y2 + p2y3

⇒ y3 =

(

1 +
q1

p1
+

q1q2

p1p2

)

y1
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In general,

yn =

[

1 +

n−1
∑

k=1

q1q2 . . . qk

p1p2 . . . pk

]

y1, n ≥ 1

yn =

(

n−1
∑

k=0

αk

)

y1, αk =
q1q2 . . . qk

p1p2 . . . pk
, α0 = 1

Thus the solution is bounded if
∞
∑

k=0

αk < ∞
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9.12 Revisiting Statistical Equilibrium

Assume the Markov Chain has all states which are irreducible positive

recurrent aperiodic. (Called Ergodic Chain).

Earlier we had shown

lim
n→∞

p
(n)
ij = lim

n→∞

p
(n)
jj = 1/mj = Πj

⇒ Πj is given by the solution

Πj =
∑

i∈S

Πipij where
∑

j∈S

Πj = 1

or in matrix notation we can write the linear equations as

Π = PΠ where Π : k × 1, P : k × k.

Proof aj(n) = P{Xn = j} and we will show that limn→∞ aj(n) = Πj

aj(n + m) =
∑

i∈S

Πip
(n)
ij
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Take m → ∞ Πj =
∑

i∈S

Πip
(n)
ij for any n

If n = 1 Πj =
∑

i∈S

Πipij

Allow n → ∞ Πj =

(

∑

i∈S

Πi

)

Πj

which is true if
∑

i∈s Πi = 1

In the above we made use of

lim
n→∞

p
(n)
ij = lim

n→∞

p
(n)
jj = Πj

which holds for ergodic chains.

If chain was transient or null recurrent

p
(n)
ij = p

(n)
jj → 0 as n → ∞ and Πj =

∑

i∈S

Πip
(n)
ij → 0 as n → ∞,

and result does not hold.
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Th: If a0(j) = P{X0 = j} = Πj then P{an = j} = Πj for all n.

This theorem states that if the initial probabilities correspond to the

limiting probabilities, then for any n p{Xn = j} = Πj .

Proof:

In general aj(n) =
∑

i∈S

a0(i)p
(n)
ij and in matrix notation we can

write an = Pna0

If ao = Π, an = PnΠ. But Π is defined

by Π = PΠ. ⇒ an = PΠ = Π

This is the reason why Π is sometimes referred to as the stationary

distribution.
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9.13 Appendix. Limit Theorems for Generating Functions

Definition: Let A(z) =
∞
∑

n=0

an
z denote a power series. In our application z

will always be real, however all the results also hold if z is a complex
number.

Theorem If {an} are bounded, say |an| ≤ B, then A(z) converges for at
least |z| < 1.

Proof : A(z) = |A(z)| ≤
∞
∑

n=0

|an|zn| ≤ B
∞
∑

n=0

|z|n = B/1−|z|

Definition: The number R is called the radius of convergence of the
power series A(z) if A(z) converges for |z| > R. Without loss of
generality the radius of convergence can be taken as R = 1. Note if R is

the radius of convergence of A(z) we can write A(z) =

∞
∑

0

bnyn and the

radius of convergence of y will be unity.
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Properties of A(z)

(i) If R is the radius of convergence

R−1 = lim
n→∞

sup(an)1/n

(ii) Within the interval of convergence (−R < z < R), A(z) has

derivatives of all orders which may be obtained by term-wise

differentiation. Similarly the integral
∫ b

a

A(z)dz is given by term-wise

integration for any (a, b) in (−R, R).

(iii) If A(z) and B(z) =

∞
∑

0

bnzn both converge and are equal for all

|z| < R, then an = bn.

(iv) No general statement can be made about the convergence of the

series on the boundary |z| = R; i.e.
∑

n

anRn may or may not be finite.
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Two important theorems on power series are:

Abel’s Theorem Suppose A(z) has a radius of convergence R = 1 and
∞
∑

0

an is convergent to s. Then

lim
z→1−

A(z) =

∞
∑

n=0

an

If the coefficients {an} are non-negative, the result continues to hold

whether or not the sum on the right is convergent.
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Note:

AN (z) =

N
∑

n=0

anzn =

N
∑

n=0

(sn − sn−1)z
n, sn =

n
∑

i=0

ai

=

N
∑

n=0

snzn − z

N−1
∑

n=0

snzn

= (1 − z)
N
∑

n=0

snzn + sNzN

lim
z→1−

An(z) = sN and taking the limit as N → ∞

lim
N→∞

sN = s
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Theorem: If the sequence {bn} converges to a limit b ( lim
n→∞

= b), then

lim
z→1−

(1 − z)

∞
∑

n=0

bnzn = b

Proof: (1 − z)

∞
∑

n=0

bnzn =

∞
∑

n=0

(bn − bn−1)z
n (b−1 = 0)

We can write
N
∑

n=0

(bn − bn−1)z
n = (1 − z)

N
∑

n=0

snzn + s)nzN

where

sn =

n
∑

i=0

(bi−bi−1) = b0 +(b1−b0)+(b2−b1)+ . . .+(bn−bn−1) = bn

Therefore (1 − z)

N
∑

n=0

bnan = (1 − z)

N
∑

n=0

snzn + bnzN

and lim
z→1−

(1 − z)

N
∑

n=0

bnzn = bn, so that as N → ∞, lim
N→∞

bN = b.
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