prev next front |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32 |33 |34 |35|36 |37 |38 |39 |40 |41 |42 |43 |44 |45 |46 |47 |48 |49 |50 |51|52 |53 |54 |55 |56 |57 |58 |59 |60 |61  |62 |63 |64 |65 |66 |67 |68 |review

Arvid Carlsson was awarded the Nobel Prize for his discovery of the neurotransmitter dopamine and its clinical relevance to a condition known as Parkinson’s disease.
The human nervous system is made of billions of receptors, neurons and effectors. The neuron is basically composed of three parts, the dendrites which receive the incoming information, the soma or the cell body which processes the received information and the axon which sends out the information to another neurons or effectors.

The information from one neuron is passed on to another neuron or to an effector through small special gaps or spaces called synapses.

A neuron can have thousands of such special gaps or synapses with other neurons. These gaps or synapses are bridged by chemicals known as neurotransmitters. These are chemicals that are synthesized in the neurons, stored in synaptic vesicles, released in the synapses; transfer the information by binding to its receptors in the other neuron to start a cascade of events leading to a specific response. The discovery regarding signal transduction in nervous system triggered a lot of researches that led to an understanding of the mechanisms involved in several neurological disorders and consequently helped in the development of new drugs and therapies for the treatment of these disorders. Researches targeting the cure of Parkinson’s disease and the loss of learning or memory are main results of this discovery. So far, there is no absolute cure for these diseases and any progress made in this area is a significant step forward towards the amelioration of human sufferings due to these neurological disorders.