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Abstract

Relying on the stochastic analysis tools developed in Bayraktar and Yao (2011) [1], we solve the optimal
stopping problems for non-linear expectations.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

We build this paper on the results of [1] and analyze the optimal stopping problems for non-
linear expectations. The background, literature review and the motivation for these problems
are provided in the introduction section of [1]. The notation used in this paper is outlined in
Section 1.1 of [1].

The rest of the paper is organized as follows: In Section 2 we solve a multi-prior optimal
stopping problem for a collection & = {&;};c7 of non-linear expectations, in which Nature is
in collaboration with the Stopper, and find an optimal stopping time in terms of the &-upper
Snell envelope. On the other hand, in Section 3 we solve the robust or the minimax optimization
problem in terms of the &-lower Snell envelope. In Section 4, we give some interpretations and
remarks on our results. In Section 5, we consider the case when & is a certain collection of g-
expectations. We see that in this framework, our assumptions on each &;, the stability condition
and the uniform left/right-continuity conditions are naturally satisfied. We also determine an
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optimal prior i* € Z. Moreover, we show how the controller and stopper problem of [10] fits into
our g-expectations framework. This lets us extend their result from bounded rewards to rewards
satisfying linear growth. In this section, we also solve the optimal stopping problem for quadratic
g-expectations. The proofs of our results are presented in Section 6.

2. Optimal stopping with multiple priors

In this section, we will solve an optimal stopping problem in which the objective of the stopper
is to determine an optimal stopping time t* that satisfies

sup &Y, + H)] = sup & [Yer + HL], 2.1)
(i,0)€LxSo,r ieZ

where & = {&;};c7 is a stable class of F-expectations, Y is a primary reward process and H' is
a model-dependent cumulative reward process. (We will outline the assumptions on the reward
processes below.) To find an optimal stopping time, we shall build a so-called “&-upper Snell
envelope” Z° of the reward process Y . Namely, 70 is the smallest RCLL F-adapted process
dominating ¥ such that Z° + H' is an &;-supermartingale for any i € Z. We will show under
certain assumptions that the first time Z° meets Y is an optimal stopping time for (2.1).

We start by making some assumptions on the reward processes: Let & = {&;};c7 be a stable
class of F-expectations accompanied by a family 7 £ {H'}; .7 of right-continuous F-adapted
processes that satisfies:

(S1) Foranyi € Z, Hé =0, a.s. and

H) , £ H) — H, € Dom(&), Vv, p € Sor withv < p, as. (2.2)
Moreover, if no member of & satisfies (2.5) of [1], then there exists a j € Z such that
gf £ esssup HS];[ € Dom(&). 2.3)
s,t€Drp;s<t

(S82) There exists a Cy < 0 such that forany i € Z, essinfs’,EfDT;K,HS"), > Cpy, a.s.
(S3) For any v € Spr and i,j € Z, it holds forany 0 < s < ¢t < T that Hth =

HlfM,,,A, + HJW’UW, a.s., where k = k(i, j,v) € T is the index defined in Definition
3.2(2) of [1].

Remark 2.1. (1) Forany i € Z, (S2) and the right-continuity of H' imply that except on a null
set N (i)

HS"J >Cyg, forany0<s <t <T, thus
Hv"’p >Ch, Yv,peSorwithv <p,as. 2.4)

(2) If (2.3) is assumed for some j € Z, the right-continuity of H/ and (2.4) imply that except on
anull set N

CHSHS:’;,SH, forany0 <s <t <T, thus
Cnyl{;pS;j, Vv, p € So,r withv < p, ass.

Then Lemma 3.2 of [1] implies that (2.2) holds for j. Hence we see that (2.3) is a stronger
condition than (2.2).
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(3) Since H', H/ and H* are all right-continuous processes, (S3) is equivalent to the statement
that a.s.

Hsk,t = H\i/\s,vAt + HI{\/S,V\/Z’ VO<s<t=<T. 2.5)
Now we give an example of 7.

Lemma 2.1. Let {h'}jcr be a family of progressive processes satisfying the following
assumptions:

(hl) For any i € T and v,p € Sor withv < p, a.s., fvp h;dt € Dom(&). Moreover, if
no member of & satisfies (2.5) of [1], we assume that there exists a j € T such that
i 1k} 1dr € Dom(&).

(h2) There exists a ¢ < 0 such that for any i € T, hi > ¢, dt x dP-a.s.

(h3) Foranyv € So.1 andi, j € T, it holds foranyt € [0, T] that h* = 1;,<pyh! +1(, ki, dr x
dP-a.s., where k = k(i, Js v) € 71 is the index defined in Definition 3.2(2) of [1].

Then {Ht’ = fé hids, t € [0, T]}l. o7 is a family of right-continuous F-adapted processes
satisfying (S1)—(S3).

Standing assumptions on Y in this section. Let Y be a right-continuous F-adapted process that
satisfies:

(Y1) Forany v € Sp.7, Y, € Dom(&).
(Y2) SUp(; p)eTxSy 7 Ei[Yﬁi,] < 00, where Y £ (Y, + H,"},e[o,r]. Moreover, if no member of &
satisfies (2.5) of [1], then

ry & esssup  &[Y}|F] € Dom(&). (2.6)
@i,0,0)eL xSy, 7 xDr

(Y3) essinf;cp, Y; = Cy, a.s. for some Cy < 0.

Remark 2.2. (1) For any i € 7, (A4) and (2.8) of [1] imply that &; satisfies (2.5) of [1] if and
only if &; satisfies the following statement: Let {§,},cy C Dom(&’) be a sequence converging
a.s. to some £ € LO(Fr). If inf,en & > ¢, a.s. for some ¢ € R, then lim, , &il&] < o0

implies £ € Dom(&). The proof of this equivalence is similar to that of Corollary 2.2 of [1].
(2) Ttis clear that (2.6) implies sup(; ,\e7xS, ; & [Yi] < o0.

P
(3) In light of (Y3) and the right-continuity of Y, it holds except on a null set N that
Y, >Cy, Vtel0,T], thus Y,>Cy, YvedSyr. 2.7

Then for any i € Z, Remark 2.1(1) implies that except on a null set N (i)

Yi=Y,+H >C, 2Cy+Cy, YveSor. (2.8)

The following lemma states that the supremum or infimum over a stable class of F-
expectations can be approached by an increasing or decreasing sequence in the class.

Lemma 2.2. Let v € Sy, 7 and U be a non-empty subset of S, r such that

p1la+ palac €U, Vpi,pmeU, VA F,.
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Let {X(p)}pey C Dom(&) be a family of random variables, indexed by p, such that for any
v,0 € U, 11y=} X (v) = 1=} X (0), a.s., then for any stable subclass &' = {&}icz of &,
there exist two sequences {(in, pn)}neN and {(i), pi)IneN in ' x U such that

esssup  E[X(p) + Hi ,|F,] = lim 1t &, [X (o) + H, |5, as., (2.9)
(i,p)el’ xU n—00

essmf 5 [X(,o) + H |f ] = lim | g}/ [X(p,/l) + H‘i" , |f,,], a.s. (2.10)
(i,p)eT’ xU n— 00 n »Pn

Forany v € Sg.7 and i € Z, let us define

Z0w) 2 esssup  GlY, +H. |F]eF, and Z'(v) £ Z(v)+ H.
(i,0)€TxS) 1

Clearly, taking p = v above yields that
Y, <Z({), as. (2.11)

The following two lemmas give the bounds on Z(v), Z/(v), i € Z, and show that they all
belong to Dom(&’).

Lemma 2.3. Foranyv € So.r andi € T
Z()>Cy and Z'(v)>Cy+2Cy, a.s. (2.12)
Moreover, if no member of & satisfies (2.5) of [1], then we further have
ZWw) <ty —Cy and Z'(v) <ty —Cy+H!, as., (2.13)
where y — Cy and {y — Cy + H]f both belong to Dom(&).

Lemma 2.4. Foranyv € So,r and i € I, both Z(v) and Z!(v) belong to Dom(&).

In the next two propositions, we will see that the F- adapted process {Z(1)}ejo,r] has an
RCLL modification Z°, and that both {Z(1)} and ZM0 £ {Z0 + H} are &-

t€[0,T] t€[0,T]
supermartingales for any i € 7.

Proposition 2.1. For any v,o € So,r and y € S, 1, we have

Z(v)=Z(o), as.on{yv=o0c}, (2.14)
esssupg'i[Z(y) + H‘i J/|.7'-'V] = esssup 5 [Y, + H’ |.7-"U] <ZWw), a.s. (2.15)
iel ’ (i,0)€IxSy 1

Proposition 2.2. Giveni € Z, for any v, p € So.r withv < p, a.s., we have

EIZ' (DRI = Z' (), as. (2.16)
In particular, {Zi (t)}ze[O,T] is an g’,--supermartingale. Moreover, th? process {Z(t)}[e[0 T
admits an RCLL modification Z°. The process 70 £ {Z? + Ht’}te[0 T is also an &-

supermartingale.

We call Z° the “&-upper Snell envelope” of the reward process Y. From (2.11) and their
right-continuity, we see that Z° dominates Y in the following sense:
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Definition 2.1. We say that process X “dominates” process X' if P(X, > X}, Vt €0, T]) =

Remark 2.3. (1) If X dominates X', then X, > X/, a.s. forany v € Sp 7.
(2) Let X and X’ be two right-continuous F-adapted processes. If P(X; > X;) = 1 holds for all
t in a countable dense subset of [0, 7], then X dominates X'.

The following proposition demonstrates that 70 is the smallest RCLL F-adapted process

dominating Y such that Z"0 is an S -supermartingale for any i € 7.

Proposition 2.3. The process Z0 dominates the process Y. Moreover, for any v € So.r and
i €7, we have ZS, Zf;o € Dom(&) and
=Z(v), 70 = 7l ), as. (2.17)

Furthermore, if X is another RCLL F-adapted process dominating Y such that X L2 X+
H} },e[o T1is an 5 -supermartingale for any i € T, then X also dominates Z°.

As a consequence of Proposition 2.3 and (2.12), we have for any v € So,7 and i € Z that

7% > ¢, 70> Cy 42Cy, as. (2.18)
In what follows, we first give approximately optimal stopping times. This family of stopping
times will be crucial in finding an optimal stopping time for (2.1).
Definition 2.2. For any § € (0, 1) and v € Sp 7, we define
() inflt € v, T1: Y, > 8Z) + (1 = 8)(Cy +2Cw)} AT € Sur

and

Js(v) 2 esssup & [Zm(v) +H! Pyl
i€l

Remark 2.4. (1) For any 6 € (0, 1) and v € Sp,7, the right-continuity of ¥ and 70 implies that
{t5(t)}sef0,7) 18 also a right-continuous process. Moreover, since Z(% =Z(T) =Yr,as., we
can deduce from (Y3) that Y7 > & Z(} 4+ (1 — §)(Cy + 2CFg). Then the right-continuity of
processes ¥ and Z° implies that

Yesw) = 825y + (1= 8)(Cy +2Ch),  as.
(2) For any v € Sy, 1, we can deduce from (2.17) and (2.15) that
Js(v) = es'ssupg,-[ o) T H m(v)lf]

= esssup &; [Z(ts(v)) + H] HulF]=Zw) = a.s. (2.19)
iel

The following two results show that V§ € (0, 1), {Js(v)},es, ; possesses similar properties to
{ZW)}vesy r-

Lemma 2.5. Forany § € (0, 1) and v € Sp,1, we have Js(v) € Dom(&). And for any o € So,T,
Js(v) = Js(0), a.s. on{v =0c}.
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Proposition 2.4. Given § € (0, 1), the following statements hold:

(1) Foranyi € Z, {J; () £ Js(t) + H}},E[o,T] is an g,--supermartingale.

2) {J{;(Z)}[e[o,T] admits an RCLL modification J%0 such that the process J%0 £ {J;S’0 +

H}}ier0,17 is an E;-supermartingale for each i € T.
(3) Foranyv € ST, ]3,0 € Dom(&) and ]3’0 = Js(v), a.s.

Fix v € Sy.7. The right-continuity of Z° and (2.18) imply that the stopping times z5(v) are
increasing in §. Therefore, we can define the limiting stopping time

T() 2 (%I/I'r{ 75 (V). (2.20)

To show that T(0) € So.r is an optimal stopping time for (2.1), we need the family of
processes {Y'}; <7 to be uniformly continuous from the left over the stable class &.

Definition 2.3. The family {Y'};c7 is called “&-uniformly-left-continuous” if for any v, p €
So,r with v < p, a.s. and for any sequence {p,},cN C S,,7 increasing a.s. to p, we can find a
subsequence {n}ren of N such that

lim esssup
k=00 o7

=0, a.s. (2.21)

& [nk Yy, + H), m] —&[ri1F)]

The next theorem shows that T(v) is not only the first time when process Z° meets the process
Y after v, but it is also an optimal stopping time after v. The assumption that the elements of the
stable class & are convex (see (3.1) of [1]) becomes crucial in the proof of this result.

Theorem 2.1. Assume that {Y'};c7 is “&-uniformly-left-continuous”. Then for each v € Sy r,
the stopping time T (v) defined by (2.20) satisfies

ZW) = esssupg'i [Yz) + H\i,?(u) 7] = esssupg,- [ZE W) + H‘i’?(v)lf,,]
i€l i€l

= esssup&[Z(p) + H) |F)].  as. (2.22)
iel
forany p € Sy and T(v) = 11(v) Zinf{r € [v, T]: Z) =V, }, as.

Taking v = 0 in (2.22), one can deduce from (2.8) of [1] that T(0) = inf{t e[0,T]: Z? =
Y, } satisfies

sup &Y, +Hil= sup &Y, +H.]
(i,0)eIxSo,r (i,0)€IxSy,r

= Z(0) = sup & Yr() + Hi ()] = sup &[ Yo + Hi (g )-
iel iel

Therefore, we see that T(0), the first time the Snell envelope Z° meets the process Y after time
t = 0, is an optimal stopping time for (2.1).
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3. Robust optimal stopping

In this section we analyze the robust optimal stopping problem in which the stopper aims to
find an optimal stopping time 7, that satisfies

sup inf &; [Y 1= 1nf1nf€ [Y 1, 3.1

peSo 1 [€

where & = {&;};c7 is a stable class of F-expectations and Y/ = Y + H',i € Z, is the model-
dependent reward process introduced in (3.1). (We will modify the assumptions on the reward
processes shortly.) In order to find an optimal stopping time we construct the lower and the upper
values of the optimal stopping problem at any stopping time v € Sp 7, i.e.,

V) & esssup(essmfé’ [Y, + H] IJ’:U]),
€Sy T i€l

V) & essmf(esssupf,‘ [Y, + Hl I ])
iel PES T

With the so-called “&’-uniform-right-continuity” condition on {Y'};c7, we can show that at any
v € So,r, V(v) and V (v) coincide with each other (see Theorem 3.1). We denote the common
value, the value of the robust optimal stopping problem, as V (v) at v. We will show that up to a
stopping time 7(0) (see Lemma 3.2), at which we have V (z(0)) = Y7(q), a.s., the stopped value
process {V(L ) A t) } 1€[0.7] admits an RCLL modification V°. The main result in this section,
Theorem 3.2, shows that the first time V" meets Y is an optimal stopping time for (3.1).
Standing assumptions on 7 and Y in this section. Let us introduce
Ri(v) & esssupéN','[Y,O + H,f pl}",,], foranyi € Zandv € Sp 7.
pESU.T '
To adapt the results that we obtained for the family {Z(v)},es, , to each family (R} MeSyrs
i € I, we assume that 5 = {H'};c7 is a family of right-continuous F-adapted processes
satisfying (S2), (S3) and,
(S1") Forany i € Z, Hé = 0, a.s. and (2.2) holds. If & does not satisfy (2.5) of [1], then we
assume that ¢ = esssups’tEDT;K,HfJ € Dom(&).
On the other hand, we assume that Y is a right-continuous F-adapted process that satisfies (Y1),
(Y3) and
(Y2') For any i € Z, suppes0 ’ 8 [Yi] < oo. If & does not satisfy (2.5) of [1], then
essSuP(, e, TXDTE [Y |71 € Dom(&).

We also assume that for any i € Z, Y’ is “quasi-left-continuous” under Ez for any v, p € So.r
with v < p, a.s. and for any sequence {p,},en C Sy 7 increasing a.s. to p, we can find a

subsequence {n; = n,(j)}kEN of N such that

lim 5[

n—oo

p— s Yo, + H |]-'U] —&§[YiIF)]. as. (3.2)

Remark 3.1. (S1’) and (Y2') are analogous to (S1) and (Y?2) respectively while the quasi-left-
continuity (3.2) is the counterpart of the &-uniform-left-continuity (2.21). It is obvious that (S1)
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implies (S1) and that (2.21) gives rise to (3.2). Moreover, (2.6) implies (Y2'): In fact, for any
i € Z, one can deduce from (2.8) that

Cy <  esssup E[Y;Ifz]i esssup g}[Y;l]—',], a.s.
(p,)eSo. T xDr @i,p,1)€L xSy, 1 xDr

Then Lemma 3.2 of [1] implies that esSsuUpP(, 1yeS, TXDTE’;[Y;;LE] € Dom(&), and it follows
that sup ., , & [Y)] <oo. O

Fixi € 7. Applying Lemma 2.4, (2.7), (2.4), (2.15), Propositions 2.2 and 2.3 and Theorem 2.1
to the family {R' (v)},es, ;» We obtain:

Proposition 3.1. (1) For any v € So 7, R (v) belongs to Dom(&) and satisfies

Cy <Y, < esssupgi[Yp + H,i’p|.7-'v] = Ri(v), a.s., thus Cy < Y‘f, a.s. 3.3)
pesu,T

(2) Foranyv,o € So,r and y € S,, 1, we have

R'(v) = R'(0), as.on{v=o0}, 3.4
GIR (y) + H} JF] = esssup &Y, + H |F,1 < R'(v), as (3.5)
PESVT

(3) The process {Ri (t)}telo T admits an RCLL modification R"°, called the “&; Snell envelope”,
such that {R; 04 H!}ier0,77 is an 5 -supermartingale and that for any v € So. 1
i,0 _
R;” = R(v), a.s. 3.6)

(4) For any v € So.7s ti(v) & inf{t € [v,T] : R;"O = Y;} is an optimal stopping time with
respect to & after time v, i.e., foranyy € S

R(v)_é‘[ ,(v)+H

v,Ti (V)

[Fu]l = [R (r' (V)) + H‘l) [Fv]

i (v)
=& [R'(y) + HV’},|]—'V], a.s. 3.7)

v,7i (V)

Corollary 3.1. For any v € So r, both V (v) and V (v) belong to Dom(&).
Proof. Fix (I, p) € Z x S,.r; forany i € Z, (2.7), (2.4) and Proposition 2.7(5) of [1] imply that
&Y, + H. IF)] = E[Cy + CHlF)) = Ci. ass.
Taking the essential infimum over i € Z on the left-hand side yields that

Cy < essmfé’ [ + HV PPl = esssup(essmf€ [Y + H’ plj’-}])
PES, T

=V@W) <V = essizrlfRi(v) < R'(v), as.
1S

Since R'(v) € Dom(&) by Proposition 3.1(1), a simple application of Lemma 3.2 of [1]
proves the corollary. [

As we will see in the next lemma, since the stable class & is closed under pasting (see
Definition 3.2(2) of [1]), V(v) can be approximated by a decreasing sequence that belongs to
the family {R' (v)};c7.
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Lemma 3.1. For any v € So.1, there exists a sequence {in},eN C L such that

V() =essinf R'(v) = lim | R"(v), a.s. (3.8)
iEI n—>0o0

Thanks again to the stability of & under pasting, the infimum of the family {t/(v)};cz of
optimal stopping times can be approached by a decreasing sequence in the family. As a result the
infimum is also a stopping time.

Lemma 3.2. For any v € Sp. 1, there exists a sequence {in},eN C I such that

T(v) 2essinfr'(v) = lim | t"(v), as., thust(v) € Sy 7.
iel n—oo

The family of stopping times {z(v)},es, , Will play a critical role in this section. The next
lemma basically shows that if £ and & behave in the same way after some stopping time v, then
R7-9 and R%0 are identical after v:

Lemma 3.3. Foranyi,j € Zand v € So.1, let k = k(i, j,v) € T as in Definition 3.2 of [1].
Forany o € S, 1, we have RZ;’O = RK(6) = R/(0) = R(J,’O, a.s.
Proof. For any p € S, 7, applying Proposition 2.7(5) of [1] to 5,-, we can deduce from (2.5) and
(3.3) of [1] that
ELY, + HE )| Fo) = &Y, + HL |7, ] = &,[Y, + HY 1 F5]
= &[&i[Y, + HL | Fove |1 Fo
EEY, + H | F )\ Fo] = Yo + H I Fo ] as.
Then (3.6) implies that
R(’;*O = R¥(o) = esssupgk[Yp + H(],‘)pl}"g] = esssupgj[Yp + H({’pl]-'a]
peS(ny PES(T,T
= Rj(a) = R(];"O, a.s.,
which proves the lemma. [
We now introduce the notion of the uniform-right-continuity of the family {Y’};c7 over

the stable class &. With this assumption on the reward processes, we can show that at any
v e So.1, V(v) = V(v), a.s.; thus the robust optimal stopping problem has a value V (v) at v.

Definition 3.1. The family {Y'};c7 is called “&-uniformly-right-continuous” if for any v € Sp, 7
and for any sequence {v,},en C S, 1 decreasing a.s. to v, we can find a subsequence of {v,}heN
(we still denote it by {v,},en) such that lim,_, o esssup; 7 ‘Ei[an |Ful — Yﬁ] =0, a.s.

Theorem 3.1. Suppose that {Y'};c7 is “&-uniformly-right-continuous”. Then for any v € Sy r,
we have
V) = essiIrlfg}[YL(U) +H WA=V 2 Y, as (3.9)
IAS] -
We will denote the common value by V (v)(=V (v) = V(v)). Observe that 7(0) is optimal for the
robust optimal stopping problem in (3.1).

Standing assumption on Y for the rest of this section. We assume that the family of processes
{Y'}; e is “&-uniformly-right-continuous”.
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Proposition 3.2. For any v € So 1, we have V(2 (v)) = Yz, a.s.

Note that T(v) may not be the first time after v when the value of the robust optimal stopping
problem is equal to the primary reward. Actually, since the process {V (¢)};c[0,7] 1S not neces-
sarily right-continuous, inf{t € [v, T] | V(¢) = Y;} may not even be a stopping time. We will
address this issue in the next two results.

Proposition 3.3. Giveni € Z, for any v, p € So. 7 withv < p, a.s., we have

eisglf@[vk(p>|fu1 <Viw), as., (3.10)
€

where Vi(v) £ V(v) + H‘i € Dom(&). Moreover if p < t(v), a.s., then

EVI(PIFI= VW), as (3.11)
In particular, the stopped process {Vi (1(0) A t) }telo T is an g—submartingale.

Now we show that the stopped value process {V(g ) A t)} 1€[0.7] admits an RCLL modifi-

cation V0. As a result, the first time when the process V? meets the process Y after time = 0 is
an optimal stopping time of the robust optimal stopping problem.

Theorem 3.2. Assume that for some i’ € T,¢" = eSSSUPs,zeDT;Kszi:t € Dom(&) and that
there exists a concave F-expectation £ (not necessarily in &) satisfying (HO) and (H1) such that

Dom(E") D {—& : &€ e Dom(&)} and  for every g’;-/-submartingale X,
— X is an £ -supermartingale. (3.12)
We also assume that for any p € So.r, there exists a j = j(p) € L such that esssupleDng
[Y}|F:] € Dom(&).

(1) Then the stopped value process { Vv (L(O) /\t) }16[0 T admits an RCLL modification V° (called
the “&-lower Snell envelope” of Y ) such that for any v € So. 1

VO=V(@0) Av), as. (3.13)
(2) Consequently,
ty 2inf{r € [0,7]: V) = Y,) (3.14)

is a stopping time. In fact, it is an optimal stopping time of (3.1).
4. Remarks on Sections 2 and 3

Remark 1. Let & = {&;};c7 be a stable class of F-expectations. For any § € Dom(&’) and
v € So.1, we define

E1E|1F)] 2 esssup E[€|F,] and  E[E|F,] 2 es,siInfEi[WUJ
iel i€

as the maximal and minimal expectation of £ over & at the stopping time v. It is worth pointing
out that & is not an F-expectation on Dom(&) simply because &[£|F;] may not belong to
Dom(&’) for some & € Dom(&) and ¢ € [0, T']. On the other hand, we will see in Example 4.1
that neither & nor & satisfies strict monotonicity. Moreover, as we shall see in the same example,
& does not satisfy (H2) while & does not satisfy (H1); thus we do not have a dominated
convergence theorem for either & or &. Note also that & may not even be convex.
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Our results in Sections 2 and 3 can be interpreted as a first step in extending the results for the
optimal stopping problem sup ¢, &ilY,], in which &; (i € Z) is an F-expectation satisfying
positive convexity and the assumptions (H1)—(H3), to optimal stopping problems for other non-
linear expectations, such as & and &, which may fail to satisfy these assumptions.

Example 4.1. Consider the probability space ([O, 00), #I0, 00), F = {F:}i>0, P) to be a filtered

probability space in which P is defined by P(A) £ f 4 €77dx, VA € £[0, 00). We assume that
the filtration F satisfies the usual hypothesis. Let P denote the set of all probability measures
equivalent to P. For any n € N, we define a P, € P by P,(A) 25 fA e ™dx,VA € A[0, x0).
As discussed in Example 3.1 of [1], & = {Eg}gep is a stable class. For any & > 0, one can
deduce that

1 = sup Eg[l] > g[l[o,h]] = sup Eg[1jo,n]

QeP QeP
> sup Ep, [Ljo.n1] = sup Py[0, ] = lim(1 —e™") = 1,
neN neN neN

where we used the fact that E o = Eg forany Q € P since Eg[&|F.] is an RCLL process for
any & € L! ([O, 00), A[0, 00), P). Hence, we have 3[1[0,;1]] = 1, Vh > 0, which implies that &
does not satisfy strict monotonicity.

Moreover, & does not satisfy (H2). For§ =0,p=1and A, = [O l] ,n € N, it follows that

‘n
lim | &6 + 14,01 = lim [l 1)1 =17 0= sup Egl[0] = £[0] = £T¢].
n—oo n—oo 'n QEP

On the other hand, it is simple to see that &[1[; o)] = 0 for any & > 0, which means that &
does not satisfy strict monotonicity either. Furthermore, & does not satisfy (H1). For £ = 1 and

A, = [}l, oo) ,n € N, we have that

Jim 1 £[14,81 = lim 6111 ) =0# 1= inf Eolll=&[11=&l5]. O

Although it does not satisfy strict monotonicity, & is almost an F-expectation on Dom(&’) as
we will see next.

Proposition 4.1. For any t € [0, T, &[-|F:] is an operator from Dom(&) to Dom,(&) =
Dom(&) N LO(F,)). Moreover, the Sfamily of operators {ﬁ[ol}}]} satisfies (A2)—(A4) as
well as

EE|F] < EF:]l, as. forany&, n € Dom(&) withé < n, a.s. “.1)

t€0,T]

Remark 2. We have found that the first time 7(0) when the Snell envelope Z° meets the process
Y is an optimal stopping time for (2.1) while the first time 7y when the process V? meets the
process Y is an optimal stopping time for (3.1). It is natural to ask whether T(0) (resp. ty) is
the minimal optimal stopping time of (2.1) (resp. (3.1)). This answer is affirmative when & is a
singleton. Let £ be a positively-convex F-expectation satisfying (H1)—(H3) and let Y be a right-
continuous F-adapted process satisfying (Y1), (Y3) and the following:

sup & [Yp] < o00; if & does not satisfy (2.5) of [1], then
peSo,T

esssup g[Yp|.7-',] € Dom*(€).
(p,1)eSo,r xDr
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(Note that we have here merged the cumulative reward process H into the primary reward
process Y.) If t € Sp,r is an optimal stopping time for (2.1), i.e. SUPpes) ¢ ElY,] = ElYq],
Proposition 2.2 and (2.17) imply that

sup E[Y,] = sup E[Y,]=Z(0) > E[Z(v)] = E[2°] = £[2°] = &lY,]
peSo,T peSo,T

sup E[Y,],
peSo,T

and thus 5[29] = E[Y;]. The second part of (Al) then implies that Z(T) = Y., as. Hence
7(0) < 7, a.s., which means that 7(0) is the minimal stopping time for (2.1).

However, this is not the case in general. Let & = {&;};c7 be a stable class of F-expectations
and let Y be a right-continuous F-adapted process satisfying (Y1)—(Y3). We take H' = 0 for
any i € Z.If t € Spr is an optimal stopping time for (2.1), i.e. sup; pyezxs, , €il¥pl =
sup;e7 &i[Yr], (2.15) and (2.17) then imply that

sup  E[Y, )= sup  E[Y,]=Z(0) = sup&[Z(1)] = sup & [Z(2)]
(i,0)eIxSy.1 (i,p)ELxSo.T ieZ i€l
= sup 5,-[2?] > sup&i[Y:] = sup &ElY,l,
ieZ iel (i,p)eLxSo.

and thus E[Z(T)] = sup;7 &i [Z?] = sup;7 &ilY:] = E[YT]. However, this may not imply that
Z? = Y, a.s. since & does not satisfy strict monotonicity as we have seen in Example 4.1.

Now we further assume that Y satisfies (Y2'); if ' € So.r is an optimal stopping time for
(3.1), i.e. SUP Sy 1 infiez &[Y,] = infjez & [Yr], (3.10) and Theorem 3.1 imply that

sup inf &[Y,] = sup inf&[Y,] = V(0) = V(0) > inf &[V ()] = inf &[V ()]
peSor 1€ p€So.r i€ iel iel

inf &[Yo]= sup Inf &Y, ],

l1E

peSo,r 1€

v

and thus &[V (/)] = inf;e7 &V (t/)] = infiez & [Y/] = E[Y./]. However, this may not imply
that V() = Y., a.s. since & does not satisfy strict monotonicity, which we have also seen in
Example 4.1. (If V (z') were a.s. equal to Y, for any i € Z, applying (2.14) to singleton {&;}, we
would deduce from (3.13) and Lemma 3.3 of [1] that

VTO,MV =VGE' Aty)=V(E Aty)

= essinf R'(z/ A Ty) = essinf(l{tqu}R"(t’) + l{r/>,V}Ri(rv))
i€l ieZ -
= 1j7/<¢y) essinf R (th + 1/~ essinf R! (ty)
- ieZ ieZ
= I{T’STV}V(T/) + 1{r’>rv}v(fv)
= l{f/ffV}V(T/) + 1pony)Viy) = l{r’SrV}V(T/) + l{r/>rv}V0

12
= l{r’frv}Yr’ + 1{r’>rV}Yrv =Yrney, as,

which would further imply that Ty = t’ A 7y, a.s., and thus ty < 7/, a.s.)
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5. Applications

In this section, we take a d-dimensional Brownian motion B on the probability space
(£2, F, P) and consider the Brownian filtration generated by it:

F:{ftéo<a(3‘q;s€[0,t])UN>} ,
1€[0,T]
where A collects all P-null sets in F. .1

We also let &2 denote the predictable o -algebra with respect to F.
5.1. Lipschitz g-expectations

Suppose that a “generator” function g = g(t, w, z) : [0, T] x £2 x R? > R satisfies

(1) gt,w,0) =0, dr xdP-as.
(ii) g is Lipschitz in z for some K, > 0 : it holds df x dP-a.s. that 5.2)
lg(t, w,21) — g(t, @, 22)| < Kglz1i — 221, Vz1,20 € RY.

For any & € L%(Fr), it is well-known from [12] that the backward stochastic differential
equation (BSDE)

T T
I =¢ +/ g(s, Oy)ds —/ O,dB;, t€[0,T] (5.3)
t t

admits a unique solution (I'5:8, ©5:8) e C([0, T1) x Hz([0, T1; R?) (for convenience, we
will denote (5.3) by BSDE(§, g) in the sequel), based on which [13] introduced the so-called
“g-expectation” of £ by

EJEIFIE TS, 1[0, T]. (5.4)

To show that the g-expectation &, is an F-expectation with domain Dom(&g) = L*(Fr),
we first note that L2(Fr) € éT. The (strict) Comparison Theorem for BSDEs (see e.g.
[13, Theorem 35.3]) then shows that (A1) holds for the family of operators {5g[-|j’-}]
L*(Fr) — L*(F) },e[0 7)» While the uniqueness of the solution (I'¢-8, ©%:8) to the BSDE(E, g)
implies that the family {Eg[-|5’-}]}te[0ﬂ satisfies (A2)—(A4) (see e.g. [13, Lemma 36.6] and [5,
Lemma 2.1]). Therefore, &, is an F-expectation with domain Dom(&,) = L2(Fr).

Moreover, the generator g characterizes &, in the following ways:

(1) Theorem 3.2 of [8] (see also Proposition 10 of [16]) shows that & [-|F;] is a convex (resp.
concave) operator on L*(Fr) for any t € [0, T] if and only if the generator g is convex (resp.
concave) in z, i.e., it holds df x dP-a.s. that

g, Az1 + (1 — A)z2) < (resp. >)Ag(t,z1) + (1 —A)g(t, z2),
Vi € (0,1), Vz1, 22 € RY. (5.5)

(2) Let g be another generator satisfying (5.2). If it holds df x dP-a.s. that g(¢,z) > g(t, z)
for any z € RY, then the Comparison Theorem for BSDEs (see e.g. [6]) shows that for any
£ € L*(Fr)andt €[0,T]

El&1Fi] = E5l€1 ), as. (5.6)
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In light of Theorem 4.1 of [3], the reverse statement also holds given that almost surely, the
mapping ¢ — g(t, z) is continuous for any z € R<.

B) g tw,z) & —gt,w,—2), t,w,z) € [0,T] x 2 x R? also satisfies (5.2). Its
corresponding g-expectation &,- relates to &, in that for any & € L*(Fr)andt € [0, T]

E-[E1F] = =& -1 F],  as. (5.7)

(In fact, multiplying both sides of BSDE(—£, g) by —1 makes (—I'""5:8, —©7%:8) solve the
BSDE(, ¢7).)

To show that the g-expectation &, satisfies (HO)—(H3), we need two basic inequalities that it
satisfies.

Lemma 5.1. Let g be a generator satisfying (5.2).

(1) For any &€ € L*(Fr), we have

K, +KHT
KAKIT g 207, )

sup |Egl€1F1|
te[0,T]

e
L2(Fr)
where C is a universal constant independent of & and g.
(2) Forany u > Kg and &, 1 € L?(Fr), it holds a.s. that

|E[E1F] — EgInF]| < &g, [1E — 1 F]. Ve e[0,T],

(0.7);R) = €€

where the generator g, is defined by g,,(z) 2 pulzl, z e R4

Proof. A simple application of [3, Proposition 2.2] yields (1). On the other hand, (2) is a mere
generalization of [14, Proposition 3.7, inequality (60)] obtained by taking into account the con-
tinuity of processes & [§|F.] and &, [§|F.] for any & € L*(Fr). O

Proposition 5.1. Let g be a generator satisfying (5.2). Then &, satisfies (H0)—(H3).

Remark 5.1. Since &[£]F.] is a continuous process for any & € L2(Fr), we see from (2.6)
of [1] that &[-|F,] is just a restriction of &g[-|F,] to L>(Fr) 2 (€ € L*(Fr) : & > ¢,
a.s. for some ¢ = ¢(§) € R} forany v € Sp 7.

Thanks to Proposition 5.1, all results on F-expectations £ and £ in Section 2 of [1] are
applicable to g-expectations. In the following example we deliver the promise that we made
in Remark 2.7 of [1]. This example indicates that for some g-expectations, lim,,_, . &, [&,] < o0
is not a sufficient condition for lim,_, « & € Dom™* (&) = L>*(Fr) £ (& € L*(Fr) : £ >
0, a.s.} given that {£,},cN is an a.s. convergent sequence in D0m+(5g).

Example 5.1. Consider a probability space ([0, 1], #[0, 1], 1), where X is the Lebesgue measure

on [0, 1]. We define a generator 3(z) £ —|z|,z € R?. For any n € N, it is clear that the random
1 1

variable {&,(0) £ w~ 2ti2 }we[0 5 € L>*(Fr) = Dom™(g). Proposition 2.2(2) of [1] then

implies that ’

T - T -
|6§”’g|ds—/ ;"4 dB;

0 = &I[0] < &l&.] = I;"% =&, —f A

0

T -
=< %.n _/ stn,gst.
0
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Taking the expected value of the above inequality yields that

T 1
G 1
0=&s) < E[s - [ effan] = Eigi= [ o H e = - <2.68)
0 0 2 T
Since {£,}, N is an increasing sequence, we can deduce from (A1) and (5.8) that 0 < lim,— 1
Egl€a]l < 2. However, limyo 1 & = {072 , does not belong to L>t(Fr) =

Dom™(g). O

}wE[O,l

Like in Proposition 3.1 of [1], pasting two g-expectations at any stopping time generates
another g-expectation.

Proposition 5.2. Let g1, g2 be two generators satisfying (5.2) with Lipschitz coefficients K| and
K> respectively. For any v € So 1, we define the pasting of &g, Eg, at v to be the following
continuous ¥-adapted process

Eay o EIF] £ L&, [EIF] + L& [E, [EIFIF ], Vi €0, T] (5.9)
forany & € L*(Fr). Then &y, g, is exactly the g-expectation Egv with

g (t, w,2) = L)< &2, @, 2) + Luw)=n81(t, w, 2),
(t,w,2) €[0,T] x 2 x RY, (5.10)

which is a generator satisfying (5.2) with the Lipschitz coefficient K1 V K>.

Fix M > 0; we denote by ¢, the collection of all convex generators g satisfying (5.2) with
Lipschitz coefficient K, < M. Proposition 5.2 shows that the family of convex g-expectations
Ey = {E}g @), 1s closed under the pasting (5.9). To wit, &) is a stable class of g-expectations
in the sense of Definition 3.2 of [1]. In what follows we let ¢’ be a non-empty subset of %y
such that & £ {Eq} g ey’ 1s closed under pasting. Now we make the following assumptions on
the reward processes:

Standing assumptions on the reward processes in this subsection. Let Y be a continuous F-
adapted process with

+
¢ 2 <esssup Y,) e LX(Fr) (5.11)
IGDT

and satisfying (Y3). Moreover, for any g € ¢’, the model-dependent cumulative reward process
is in the form of

t
H,géf héds, Vtel0,T],
0

where {h$,t € [0, T]} P is a family of predictable processes that satisfy:

(h1) There exists a ¢’ < 0 such that for any g€ 4’ hf > ¢/, dt x dP-as.
(h2) The random variable @ > fOT W' (t,w)dr belongs to L2(Fr) with h'(f,w) =

(esssup o Eg/htg (w))+ (the essential supremum is taken with respect to the product measure
space ([0, T] x £2, &, A x P), where A denotes the Lebesgue measure on [0, T]).
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(fl3) Forany v € Sp.7 and g1, g2 € ¢¥', with g defined in (5.10), it holds forany 0 <s <t < T
that

v

/’lf = l{vft}hfz + 1{v>,}hf] , dt xdP-as.

Then the triple (67, " £ {H8},cy, Y) satisfies all the conditions stated in Sections 2
and 3. Thus we can carry through the optimal stopping theory developed for F-expectations
to (&', #,Y) as we will see next.

Theorem 5.1. The stable class &' satisfies (3.12), the family of processes 7’ satisfies (S1')
(and thus (S1); see Remark 3.1), (S2) and (S3), while the process Y satisfies (Y1), (2.6) (and
thus (Y2'), again by Remark 3.1) and (Y3). Moreover, the family of processes {Y,g L2y +
HE,t € [0, T]}g g Is both “&'-uniformly-left-continuous” (and thus satisfies (3.2); see also
Remark 3.1) and “&’-uniformly-right-continuous”.

5.2. Existence of an optimal prior in (2.1) for g-expectations

For certain collections of g-expectations, we can even determine an optimal generator g in
the following sense:

Equl Y30  =sup E[YEo ] = sup  &lY§],
geg (g.0)€G xS0, T

where the optimal stopping time T(0) is defined as in Theorem 2.1.

Let S be a separable metric space with metric | - | such that S is a countable union of non-
empty compact subsets. We denote by S the Borel o-algebra of S and take H%([O, T1; S) as the
space of admissible control strategies. For any U € H%([O, T1; S), we define the generator

gut,w,2) £ g°(t, w, z, U (w)), (5.12)
where the function g°(¢, w, z,u) : [0, T] x {2 x RY x S > R satisfies:

(°1) g%is Z ® BRY) @ &/ A(R)-measurable.
(g°2) Tt holds df x dP-a.s. that g°(¢, w, 0, u) = 0 for any u € S.
(g°3) g? is Lipschitz in z: For some K, > 0, it holds d¢ x d P-a.s. that

8%t w, z1,u) — g°(t, w, 22, u)| < Kolz1 — 22, Vzr,z2 € RY, Vu € S.
(g°4) g°is convex in z: It holds dr x dP-a.s. that
gt w, hz1 + (1 = M)z2, u) < A%t w, z1,u) + (1 = g’ (t, w, 22, u),
Vi e (0,1), Vz1,220 e RY, Vu e S.
Now fix a non-empty subset { of H%([O, T1]; S) that preserves “pasting”, i.e., forany v € So. 17
and U, U? € 4,
U (@) 2 L)< U @) + Lp=n Ul (@),  (t,0) €10, T] x £, (5.13)

also belongs to &l. Then it is easy to check that {&,, }yey C £k, forms a stable class of g-
expectations.

Let Y still be a continuous F-adapted process satisfying (5.11) and (Y3). For any U € 4,
assume that the model-dependent reward process has a density which is given by

htU(a)) 2 h(t, 0w, Uy(w), (t,w)el0,T]x 1,
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where h(t, w,u) 1 [0,T] x 2 x S+ Risa & Q@ 6/ZA(R)-measurable function satisfying the
following assumptions:

(ﬁl) For some ¢ < 0, it holds dt x dP-a.s. that h(¢, w, u) > c forany u € S.

(h2) The random variable w > fOT h(t, w)dt belongs to L2(Fr) with h(t, w) £ (esssupy g hY
(a)))Jr (the essential supremum is taken with respect to the product measure space ([0, T'] x
2, P, x P), where A denotes the Lebesgue measure on [0, T']).

It is easy to see that {hV,¢ € [0, T]}yey is a family of predictable processes satisfying
(h1)—(h3). Hence, we can apply the optimal stopping theory developed for F-expectations to
the triple ({SgU}Ueu, (hY} ey, Y) thanks to Theorem 5.1. Now let us construct a so-called
Hamiltonian function

H(t,w,z,u) £ g°(t,w, z,u) + h(t,w,u), (t,w,z,u) €[0,T]x 2 x R x S.
We assume that for any (¢, w, z) € [0, T] x {2 x R4, there exists a u = u*(z, w, z) € S such that

sup H(t, w, z, u) = H(t,a),z,u*(t,a),z)). (5.14)
ues
(This is valid, for example, when the metric space S is compact and the mapping u >
H(t, w, z, u) is continuous.) Then it can be shown (see [2, Lemma 1] or [7, Lemma 16.34])
that the mapping u* : [0, T] x £2 x R? > S can be selected to be & @ Z(R?)/&-measurable.
The following theorem is the main result of this subsection.

Theorem 5.2. There exists a U* € U such that supy; ) cqxsyr Eau[YE ] = Eqye [Y0) ], where
the stopping time T(0) is as in Theorem 2.1.

5.3. The cooperative game of Karatzas and Zamfirescu [2006] revisited

In this subsection, we apply results of the last subsection to extend those of [10]. Let us first
recall their setting:

e Consider the canonical space (2, F) = (C([0, T]; RY), Z(C([0, T1; R?))) endowed with
Wiener measure P, under which the coordinate mapping process B(t, w) = w(t),t € [0, T]
becomes a standard d-dimensional Brownian motion. We still take the filtration F generated
by the Brownian motion B (see (5.1)) and let & denote the predictable o -algebra with respect
to F.

o It is well-known (see e.g. [7, Theorem 14.6]) that given a x € R?, there exists a pathwise
unique, strong solution X () of the stochastic equation

t
X(t)=x+/ o(s, X)dBs, te[0,T],
0

where the diffusion term o (¢, w) is a R?*¢-valued predictable process satisfying:
(1) [ |o(,0)]2dt < 0o and o (1, ®) is non-singular for any (1, ) € [0, T] x £2.
(02) There exists a K > 0 such that for any w, @ € 2 and ¢ € [0, T]
lo™'t. )| <K and |oj;(t, @) — 0i;(t, ®)| < Ko — 3|},
vVl <i,j<n, (5.15)
where [lo|} £ supyeo. l@(5)]-
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o Let f(t,w,u):[0,T]x 2 xS+ Rbea P ®S/AB(R?)-measurable function such that:
(f1) For any u € S, the mapping (¢, w) — f(t, w, u) is predictable (i.e. &-measurable).
(f2) With the same K as in (5.15), |f(t,w,u)| < K(l + ||a)||f) for any (1, w,u) €

[0,T] x 2 xS.

Forany U € g2 'H%([O, T1; S), [10, page 166] shows that

—p — CXp / (o7 @, X)f(, X, Ut)»dBt>__/ lo™ (2, X) f(t, X, Up)|“de

defines a probability measure Py. The objective of [10] is to find an optimal stopping time
t* € So,r and an optimal control strategy U* € 4 that maximizes the expected reward
Eyle(X(p)) + J§ h(s. X, Uy)ds] over (p,U) € Sor x 4. Here ¢ : R? > R is a bounded
continuous function, and A(t, w,u) : [0,T] x 2 x § — Risa &£ Q 6/%A(R)-measurable
function such that |h(t, w, u)| < K for any (¢, w,u) € [0, T] x 2 x S (with the same K as
appears in (5.15)).

Corollary 8 of [10] shows that under (f2), the process

~ 14
Z(t) 2  esssup EU|:(p(X(p))+f h(s,X,Us)ds|.7-}:|, tel0,T]
(U.p)elxS, 1 !

admits an RCLL modification Z°, and that the first time that processes Z° and {‘/’(X(t))}re[o 7]
meet with each other, i.e. 7(0) £ inf{ tel0,T]] 2? = (p(X (t)) }, is an optimal stopping time.

That is,

o
sip  Ey [@(X(p)) + / hs, X, U»ds}
0

(U,p)elixSy 1

T(0)
= sup Ey [ga(X(?(O))) +/ h(s, X, Us)ds}. (5.16)
Uell 0

Moreover, if there is a function u™* : [0, T] x {2 x R? — § such that for any (f,w,z) €
[0,T] x 2 x R4

sup H(t, w,z,u) = H(t, 0, z, u*(t, , 2)) (5.17)
uesS
with H(t, w,z,u) 2 (o7, @) f(t,w,u),2) + h(t,w,u) (u* can be chosen to be ¥ @

A(R?)/S-measurable), then there exists an optimal control strategy U* € o (see Section 8
of [10]) such that

P
sup EU[¢(X(p))+/ h(s, X, Us)ds}
0

(U.p)elixSy 1

7(0)
= Ey- [¢(X(?(O)))+ f h(s, X, U;ﬁ)ds] (5.18)
0

In the main result of this subsection, we will show that the assumption of [10] that ¢ and &
are bounded from above by constants can be relaxed and replaced by linear-growth conditions.
This comes, however, at the cost of strengthening the assumption stated in (f2).
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Proposition 5.3. With the same K as in (5.15), we assume that

~K <) <Klx|, VxeR? (5.19)
and that for a.e. t € [0, T
| f(t,o,u)] <K and —K <h(t,o,u)<K|oll}, V(w,u)exS. (5.20)

Then {Z (t)} 1e[0.7] has an RCLL modification Z° such that the first time T(0) when processes
70 and { (X (t))}re 0.7 meet is an optimal stopping time; i.e., T(0) satisfies (5.16). Moreover,
if there exists a measurable mapping u* : [0, T] x £ x R? > S satisfying (5.17), then there is
an optimal control strategy U* € 3 such that (5.18) holds.
5.4. Quadratic g-expectations
Now we consider a quadratic generator § = g(t, w, z) : [0, T] x 2 x RY > R that satisfies
(i) g(t,w,0) =0, dr xdP-as.
(i1) For some « > 0, it holds d¢ x dP-a.s. that

cRY.
(iii) ng convex inzin the sense of (5.5).

a—(t w,2)| <k(l+]z]),

(5.21)

Note that under (ii), (i) is equivalent to the following statement: It holds d# x d P-a.s. that

N 1
1§t »,2)| < K(IZI + §|Z|2>, Vz e RY. (5.22)

In fact, it is clear that (5.22) implies (i). Conversely, for df x dP-a.s.(t, w) € [0, T] x {2, one
can deduce that for any z € R, |3(t, 0, 2)| = |8(t, ®,2) — §(t, 0, 0)| = ‘fol g—i(r,kz)zdk‘ <

Kfol(l + MzDlzldh = k(|z] + 31z/).

For any & € L¢(Fr), [4, Corollary 6] (where we take f = g, and thus a(t) = % and
(B,y) = (0, 2k)) shows that the quadratic BSDE(&, ¢) admits a unique solution (Fg'é, 95’5’)
e CR(0,T]) x Mp([0,T]; Rd). Hence we can correspondingly define the “quadratic” g-
expectation of & by &[£F,1 2 7%, Ve € [0, T].

To show that the quadratic g-expectation & is an F-expectation with domain Dom(&;) =
L¢(Fr), we first note that L¢(Fr) € @T (clearly, L¢(Fr) satisfies (D1) and (D3) and R C
L¢(Fr). For any £,n € L¢(Fr), A € Fr and A > 0, we have E[e*14¢]] < E[e*¢]] < oo
and E[e*stn] < E[etlerl] < %E[emg'] + %E[em”‘] < o0, and thus (D2) also
holds for L¢(Fr)). Like for the Lipschitz g-expectation case, the uniqueness of the solution
(Ff%é s Qg’é) to the quadratic BSDE(£, g) implies that the family of operators {Eg,[-l}",]
L¢(Fr) — Le(f’)}te[o,r] satisfies (A2)—(A4) (cf. [13, Lemma 36.6] and [5, Lemma 2.1]),
while a comparison theorem for quadratic BSDEs (see e.g. [4, Theorem 5]) and the following
proposition show that (A1) also holds for the family {5§[~|}}]}

t€l0,T]"
Proposition 5.4. Let § satisfy (5.21). For any €', > € L¢(Fy), if €' > €2, a.s., then it holds
a.s. that
révd > r2é oy e o, 1. (5.23)

Moreover, if Fél 8 FEZ 8 a.s. for some v € Sy r, then 51 52, a.s.
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Therefore, the quadratic g-expectation & is an F-expectation with domain Dom(&;) =
L¢(Fr). Like for the Lipschitz g-expectation case, the convexity (5.21)(iii) of & as well as
Theorem 5 of [4] determine that 8§[~|}",] is a convex operator on L¢(Fr) for any ¢t € [0, T].
Hence, Eg satisfies (HO) thanks to Lemma 3.1 of [1]. To see Eg also satisfying (H1)—(H3), we
need the following stability result.

Lemma 5.2. If &, — &, a.s., and E[e**!] + sup, .y E[e*é!] < oo for any ) > 0, then

lim E[ up_ |E5Enl 7] — 5§[§|}}]}] =0. (5.24)

=00 Lrefo,1
Proof. Taking f,, = g and f = g in Proposition 7 of [4] yields that

lim E[exp{p sup \eg[snm]—sg[aft]\}}:o, vp = 1.
n—00 t€[0,T]

Then (5.24) follows since E[sup, (o, 7] |€a[En|Fi] — E[E1F:1I] < Elexp{sup,cjo. 11 1€516n|Fe] —
& &I F ]} foranyn e N, [

Proposition 5.5. Let g satisfy (5.21). Then the quadratic g-expectation E; satisfies (HO)—(H3).

Like for Remark 5.1, since £;[§|F.] is a continuous process for any & € L¢(Fr), we see from
(2.6) of [1] that é‘;[.m] is just a restriction of &[-|F,] to L“*(Fr) £ (€ € L¢(Fr) : £ >
¢, as. for some ¢ € R} for any v € Sp 7. Therefore, all results on F-expectations £ and g in
Section 2 of [1] work for quadratic g-expectations.

The next result, which shows the existence of an optimal stopping time for a quadratic g-
expectation, is the main result of this subsection.

L

Theorem 5.3. Ler g satisfy (5.21). For any right-continuous F-adapted process Y with ¢, =

(esssupteDT Y,)+ € L°(Fr) and satisfying (Y3), we have sup s, . €Yol = E3[Yz(0)], where
T(0) is as in Theorem 2.1.

6. Proofs

Proof of Lemma 2.1. For any i € Z, it is clear that Hé = 0 and that (2.2) directly follows from
(hl). For any s, t € D with s < ¢, we can deduce from (h2) that

t t
H;, =/ hy.dr > c/ ds > cT, as., (6.1)
S N

which implies that essinf ;ep, .5« HY’t > ¢T, a.s. Thus (S2) holds with Cy = ¢T.

If no member of & satisfies (2.5) of [1], then fOT |h{| dt € Dom(&) for some j € 7 is assumed.
For any s, t € Dr with s < ¢, we can deduce from (6.1) and (h2) that Cy < HS];, < f; |h{|dr <
fOT \h!|dr, a.s., which implies that Cy < esssupx,,epwdHf;, < fOT \h{|dr a.s. Then Lemma

3.2 of [1] shows that esssups’,GDT;K,H{;t € Dom(&), i.e. (2.3). Moreover, we can derive (S3)
directly from (h3). O
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Proof of Lemma 2.2. For any i, j € Z’ and p1, p2 € U, we consider the event
A2 {E[X (o0 + H | B = E[X(02) + H] | R]} € 7,

and define stopping times p 2 polg + pilac € U and v(A) 2 vy + Tlye € Sy7.
Since &' = {&;};ez is a stable subclass of &, Definition 3.2 of [1] assures the existence of

k = k(i, j, v(A)) € T’ such that & = 5‘55’4) We can deduce from Proposition 2.7(5) of [1] and
(3.3) of [1] that for any & € Dom(&)

ElE1F] = &'VIEIF] = G181 FuallF] = E[1aE[E1 7] + 1aeE; €1 Fr1| F)]
=5i[1Af:,-[5|fv]+1Ac5|fv]=1A6,-[5|fv]+1Ac5,-[5|fu], as. (6.2)

Moreover, (2.5) implies that HY , = Hl, 0 4 HY oo = 1aeH o+ 14 H
a.s. Then applying Proposition 2.7(2) of [1], we see from (6.2) that
E[X () + HE JIF] = 1aE;[X (p) + HE I F] + 1acE[ X (0) + HY m]
= E[1aX (p2) + 1aH] ), | F,] + E[1ac X (p1) + 1ac HL
= 14&[X (p2) + H] |1 F)] + 1aeE[ X (o1) + HL | 7]

= &[X (o) + H) , |F ]V E[X(02) + H | F)], as. (63)

7]

Similarly, taking o’ £ p114 + p2lac and &’ = k(i, j, v(A©)), we obtain
Eo[X () + HE |F)) = &[X (1) + H IR AEi[X(p2) + H | 7], as.

Hence, the family { [X (p) + H |j’-",,]}(_ N is closed under pairwise maximization
i,p)el’ x
and pairwise minimization. Thanks to [11, Proposition VI-1-1], we can find two sequences

{(in» Pn)}nen and {(iy,, p})}, o in Z' x U such that (2.9) and (2.10) hold. [

Proof of Lemma 2.3. We fix v € SO 7. Forany (i, p) € T x S, 1, (2.7), (2.4) and Proposition
2.7(5) of [1] show that 5 [Y + H| |.7:] > &i[Cy + Cy|Fy] = Cy, as. Taking the essential
supremum over (i, p) € Z X Sy.1 glves

Z(v) = esssup 5[ + H! p|.7-'v] > Cy, as.
(@, p)EIXSv,T

Then for any i € Z, (2.4) implies that Z!(v) = Z(v) + H. > C, + Cy = Cy +2Cy, ass.

If no member of & satisfies (2.5) of [1] (and thus (2.6) is assumed), then for any (i, p) €
7 x Sy, 1, it holds a.s. that &; [Y;; |.7-",] < ¢y forany ¢t € Dr. Since &; [Y/’;|]-".] is an RCLL process,
it holds except on a null set N = N (i, p) that

GlYiIF] <tv. Vielo, Tl thus &[Y)IF] <y
Moreover, Proposition 2.7(3) of [1] and (2.4) imply that

&y = G[YIFR) =&Y, + H) |F]+ Hl > &Y, + H. JIF]+Ch,  as.
Taking the essential supremum over (i, p) € Z x S, 7 yields that

Z(v) = esssup 5[ + H’ p|j’-'v] <t¢y —Cpg, as.
(i,0)€IXS, T
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where {y — Ch € Dom(&) thanks to (2.6) and (D2). Hence, for any i € I,' we have Z/(v) <
¢y — Cg + H), a.s. And (2.2) together with (D2) implies that {y — Cg + H, € Dom(¢&). O

Proof of Lemma 2.4. If no member of & satisfies (2.5) of [1], then we see from Lemma 2.3 that
C. < Z(w) <¢y — Cpqg,as., and that y — Cyg € Dom(&). Hence Z(v) € Dom(&) thanks to
Lemma 3.2 of [1].

On the other hand, if &; satisfies (2.5) of [1] for some j € Z, letting (X, U= ¥,Z,8.1)
in Lemma 2.2, we can find a sequence {(i,,, pn)},en in Z X Sy, 7 such that

Zw)= esssup  &[Y, + H |F] = lim 1t & [¥,, +Hr, IF] as.
(.p)ETXSy 1 Yo + ol 100 i [V Vo[ Fv]

For any n € N, it follows from Definition 3.2 of [1] that there exists k, = k(J, i, v) € Z such
that &, = 5]‘.”1.”. Applying Proposition 2.7(3) of [1] to &, we can deduce from (2.4), (3.3) of [1]
and (2.5) that

gk"[Y/l){:’l] - CH = gk” [Y’D” + H‘])C»nﬂn + an - CH] = g’(n [an + H‘ﬁnpn]
= &3, [V, + 12,1 = B8 [Yp, + 1, 1 7.]]
= g] I:g;n [an + Hllj.tlpn |‘7:u]1|7
which together with (Y2) shows that

lim &; [g,n [Y,, + H,ij'pn|}",,]] <  sup g,[Y;)] —Cy < 0.
n—00 (i,0)€IxSo, 1

For any n € N, (2.7), (2.4) and Proposition 2.7(5) of [1] imply that gin[an + H,if‘pn|}‘v] >
&i, [C«|Fy] = Cy, as. Therefore, we can deduce from Remark 2.2(1) that
Z) = lim 1 &,[Y,, + H" |F,] € Dom(&).

For any i € Z, (2.2) and (D2) imply that Z'(v) = Z(v) + H! € Dom(&). O

Proof of Proposition 2.1. To see (2.14), we first note that the event A £ {v = o} belongs to
Foro thanks to [9, Lemma 1.2.16]. Forany i € Z and p € S, 7, we define p(A) L plg+ T1ye,
which clearly belongs to Sy, 7. Proposition 2.7(2)—(3) of [1] then implies that

L&Y, + H] IF] = 1A(5[Yp +HI|F,] - H;') - 1A(5[Yp + H|F,] - H;)
= 14&[Y, + H. | F5]
= &i[1a(Ypca) + Hé,p(A))|fa] EiYp(a) + Hé,p(A)u:f’]
1

= 1A
<14 esssup gi[Yy + Hé’y|.7-'g] =
(l‘,]/)EIXSa,T

AZ(o), as.

Taking the essential supremum of the left-hand side over (i, p) € Z x S, 7 and applying Lemma
3.3(2) of [1], we obtain

14Z(v) =14 esssup 5,-[Yp + H,ipl]-",,]
(i,p)ELXSy,T ’

= esssup IAE;[YP + H]f’p|.7-',,]) <14Z(0), as.
(i,0)€ZXSy,1

Reversing the roles of v and o, we obtain (2.14).



234 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 121 (2011) 212-264

As regards (2.15), since S, 7 C S, T, it is clear that

esssup E[ + H’ |.7-",,] < esssup g}[Yp + Hlf’p|.7-'u] =Z({), as.
i,0)€IxS, 1 (i,0)eELXS). 1

Letting (X, v,Z",U) = (Y,y,Z,S,,7) in Lemma 2.2, we can find a sequence {(in, p”)}neN in
Z x 8y, such that

Z(y)= esssup &Y, + H! |F, | = lim 1 5,1 Y, + Hi |F,], as.

oy i[Yo vl Fr] T c [ . on 1 ]
Now fix j € Z. For any n e N, it follows from Definition 3.2 of [1] that there exists a k, =
k(j,in,y) € T such that Sk = Sy . Applying Proposition 2.7(3) of [1] to S,n, we can deduce
from (3.3) of [1], (2.5) that

esssup &Y, + Hi |F)] = &, [Yp, + HE |F)] = 7 Yo + HE VR
(i,0)€IxS, T
= &[&,[Y,, + HE 1717
= &[&, Yo, + Hk)pnufy] + HE | F)

= [5 [¥,, + Hi, 1F,]+ Hv{ym], as. (64
For any n € N, Proposition 2.7(5) of [1], (2.7) and (2.4) show that
Cy +2Cy = &,[ClF) ]+ Cn < &,[Y,, + HIr | F) |+ H), < Z(y) + H] . as.,

where Z(y) + HJ,)/ € Dom(&’) due to Lemma 2.4, (2.2) and (D2). Then Proposition 2.9 of [1]
and (6.4) imply that

Elzw) + Hi, 7] = lim & [5 [¥,, + Hir, |F,] + H |fv]

n—oo

IA

esssup 5[ +H, ,|F]. as
(l‘,p)EIXS%T

Taking the essential supremum of the left-hand side over j € Z, we obtain
esssupg'j[Z(y) + H,{y|]-",)] < esssup 6~’,-[Yp +H! JF] as. (6.5)
jeT ’ (i,0)ETXS,y 1 ’
On the other hand, for any i € 7 and p € S, 7, Corollary 2.3 of [1] and Proposition 2.7(3) of [1]
imply that
&Y, + Hy \B) = E[E[Y, + Hy 17, + H 1 7)]
< &zZy)+H, |F] <esssup &[Z(y) + H, | F],  as.

i€l
Taking the essential supremum of the left-hand side over (i, p) € Z x S, r yields that

esssup & [Y, + H,, JF] < esssupf,’ [Z(y) + 5y|.7-"v], a.s.,
(i,0)€IxS, 1 ’

which together with (6.5) proves (2.15). [
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Proof of Proposition 2.2. Forany i € Z,v € Sor and y € S, r, Proposition 2.7(3) of [1],
(2.15) imply that

GlZ' IR = & Z(p) + HE | F)] + HE < esssup&[Z(p) + H} | F)] + H}
i€l
< Z()+ H]f = Zi(v), a.s.,
which implies that {Zi (t)} 1€[0.T] is an g}-supermartingale. Proposition 2.6 of [1], Theorem 2.3
of [1] and (2.12) then show that {zf~+ 2 fim, 7 (q;f(r))}

Moreover, (2.12) implies that

- defines an RCLL process.

t€l0,

essinf Z' (1) > Cy +2Cy, a.s. (6.6)
tel0,T]

If £; satisfies (2.5) of [1] for some j € Z, Corollary 2.2 of [1] and (6.6) imply that

ZJ+ € Dom*(£;) = Dom(&), Vv € Sor, (6.7)
and that Z/** is an RCLL a-supermartingale such that for any

tel0, T,z <Zi@1), as. (6.8)

Otherwise, if no member of & satisfies (2.5) of [1], we suppose that (2.3) holds for some j € T.
Then Lemma '2.3 and (2.3) imply that for any r € Dr, Cy + 20y < Z/(t) = Z(t) + H/ <
Cy — Cg + ¢/, a.s. Taking the essential supremum of Z/(¢) over ¢t € Dy yields that
Cy +2Cpy < esssup Zj(t) <¢y—Cy+ g“j, a.s.,
teDr

where {y — Cpy + ;j € Dom(¢&) thanks to (2.6), (2.3) and (D2). Hence Lemma 3.2 of [1] implies
that esssup,.p, Z/(t) € Dom(&) = Dom*(& 7). Applying Corollary 2.2 of [1] and (6.6) again
yields (6.7) and (6.8).

To see that Z/'t is a modification of {Zj(t)}re[o 7p» it suffices to show that for any 7 €
[0, T, th,+ > ZJ(t), a.s. Fix t € [0, T]. For any (i,v) € T x S;.1, Definition 3.2 of [1] assures
that there exists a k = k(j, i, t) € Z such that & = 5;',1" (S1) and (2.5) imply that

Hf =HY,=H{,=H/, and Hf =H, as (6.9)

For any n € N, we sett, = ¢, (¢) and define v, & (v +27") AT € S;.7. Let m > n; it is clear
that t,, <t, < v,, a.s. Then Proposition 2.7(3) of [1] implies that
E[Y),1Fr, ] = &l Yo, + HY | Fi, | + Hy, < Z(tw) + Hy,
= Z/(tn) + H,]:n - H,{n, a.s.

As m — 00, (6.9) as well as the right-continuity of the processes gk[Y‘fn |7.], H* and H/ imply
that
&[YE 7] = tim &[5 |7, ] < lim Z/@n) + Hf — H}
" m—00 " m—00

lim Z/(ty) = Z/'", as.
m—0Q
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Since lim, 00 4 V4 = v, a.s., the right-continuity of the process Y* implies that an converges
a.s. to Yk, which belongs to Dom(&) due to assumption (Y1) and (2.2). Then (2.8) and
Theorem 2.1 of [1] imply that

G[i17] = tim &[] 17] < ZI't, s
n—
We can deduce from Proposition 2.7(5), (3) of [1] and (3.3) of [1] and (6.9) that
z" 2 &lvim] =& vm] = a7
= &[rhiF] = [YV +H R+ H . as (6.10)
Letting (7, v) run throughout Z x S; 7 yields that

Z,j’+ > esssup g','[Yv + H,ivlf,] + H,j =Z(t)+ Htj =Z/@1t), as.,
(i, V)EL XS 7 ’

which implies that Z/'* is an RCLL modification of {Z (t)} Correspondingly, Z° £

Jot J
{ZZ H }te[O T]
i,0 & 0
200 = AZ) + HY, o
supermartingale. [

1€[0,T1°
is an RCLL modification of {Z(¢)},c0,77. Moreover, for any i € Z,

defines an RCLL modification of {Z' (t)} thus it is an &;-

IEOT]’

Proof of Proposition 2.3. For any ¢+ € [0, T'], we know from (2.11) and Proposition 2.2 that
Y, < Z(@t) = Z?, a.s. Since the processes Y and 79 are both right-continuous, it follows from
Remark 2.3(2) that Z° dominates Y.

Ifve SO o takes values in a finite set {f; < --- < f,,}, forany o € {1 ---n}, we can deduce
from (2.14) that

1=} Z(v) = 1=} Z(ta) = 1{v=tu}Zg =1j=r) 20, as.
Summing the above expression over «, we obtain
70 =2Z©v), as. 6.11)

For general stopping time v € Sp 7, we let {v,},cn be a decreasing sequence ir.1 S({ 7 such that
lim,, 00 4 v, = v, a.s. Thus for any i € Z, the right-continuity of the process Z"*? shows that

zi%= lim zi°% as. (6.12)

n—oo

Forany n € N, (6.11) and (2.12) imply that

Z00=7'(v) = Cy +2CH,  as. (6.13)
If &; satisfies (2.5) of [1] for some j € Z, we can deduce from (2.16) and (Y2) that
[z =&z ] <2/ =20 = sup &Y, +H] <00
(i,p)eIxSo,1

and thus h_mn_mog [Zﬁno] < 00. Then Remark 2.2(1) implies that ZJ € Dom(&).

On the other hand, if no member of & satisfies (2.5) of [1], we suppose that (2.3) holds for
some j € 7. In light of Proposition 2.2 and Lemma 2.3, it holds a.s. that

Cy+20p <Z/° =2+ H =z0)+ H/ <ty —Cu+¢/, VieDr,
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where ¢y — Cy + ¢/ € Dom(&). Since Z/-0 is an RCLL process, it holds except on a null set
N that

Cy+2Cy <z’ <ty —Cy+¢/, Viel0,T], thus

, , (6.14)
Cy+2Cy < Z{" < ¢y —Cn +¢’.

Lemma 3.2 of [1] then implies that Zif’o € Dom(&). In both cases, we have seen that Z{,"O
€ Dom(&) for some j € Z.
Since Z/0 is an RCLL 5 -supermartingale by Proposition 2.2, (6.13) and Theorem 2.4 of [1]

imply that £ [le,n0|]-'un+]] <z’

mi1» as. for any n € N. Corollary 2.3 of [1] and Theorem 2.4
of [1] again show that

Ei[zI R =& &2 17, N\ R <[22 1R] < 210 as., (6.15)

which implies that lim;, 00 1 gj[Z,{,’lOLFv] < Zﬂ’ , a.8. On the other hand, using (6.12) and
(6.13), we can deduce from Proposition 2.7(5) of [1] and Theorem 2.1 of [1] that

210 =&z < lim 1 &[Z)1R] <200 as.
Then (6.11) and (2.16) imply that
0 _ 15 & ,0
2i0 = 1im 1 §[207]

lim 1 &[Z/ )R] < Z/(v), as, thus Z0 < Z(v) as. (6.16)
n—o0

For any (i, p) € Z x S, and n € N, we define p, £ p Vv, € Sy, 7. Proposition 2.7(3)
of [1] implies that
&y, |17,] = &Y, + H

Vn»Pn

|fvn] + H]in < Z(l)n) —+ Hli,, = Zi (1)”)’ a.s.

Taking g’,-[~|.7—',,] on both sides, we see from Corollary 2.3 of [1] that E[Y%’;’J}]] < g’,-[Z’
(vn) |.7-"U], a.s. Itis easy to see that lim, .~ | pn = p, a.s. Using the right-continuity of processes
Y and H', we can deduce from (2.8), Proposition 2.8 of [1] and (6.16) that

&GlYiF] < lim 5[ LA < lim 4 E[Z'nIFR] =20 as.

Then subtracting H‘i from both sides and taking the essential supremum over (i, p) € Z x Sy 1
yields that Z(v) < 28, a.s., which together with (6.16) shows that Zg = Z(v), a.s. Hence
79 € Dom(&) by Lemma 2.4. For any i € Z,

7O =720y H = Z) + H = Z'(v), as.,

and thus Zf;o € Dom(¢&); thanks to Lemma 2.4 once again, (2.17) is proved.

Now let X be another RCLL F-adapted process dominating ¥ such that X2 (X, +
H;i}te[O,T] is an &;-supermartingale forany i € Z. We fixt € [0, T']. Forany i € Zand v € & 1,
we let {v, },eN be a decreasing sequence in SfT such that lim,_, o, | v, = v,a.s. Foranyn € N,
since X' dominates Y?, Remark 2.3(1) shows that X f)n > Ylﬁn, a.s. Then (A4), Proposition 2.6
of [1] and Theorem 2.4 of [1] imply that

&GlY, + H, \F) =&Y |F] - H <&[X |F]-H <X —H =X, as.
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The right-continuity of the processes Y and H' shows that Y, + H/ , = lim, oo (Y,, + H, ).
a.s.; thus it follows from (2.7), (2.4) and Proposition 2.8 of [1] that
EYy+H |F] < lim &V, + H, IF] < X, as.
n—>oo
Taking the essential supremum of the left-hand side over (i, v) € Z x S; 7, we can deduce from
Proposition 2.2 that

70 =Z(t) = esssup ¢E~’,-[Y,, +H |F] <X, as.
(l‘,l))EIXSt,T

Since both Z° and X are RCLL processes, Remark 2.3(2) once again shows that X dominates
z°% O
Proof of Lemma 2.5. For any i € Z, (2.18), (2.4), as well as Proposition 2.7(5) of [1], imply
that

&[22 ) + HE )| F] = E[Cu+ CulF)] = Cy +2CH,  as.
Taking the essential supremum of the left-hand side over i € Z, we can deduce from (2.19) that

Cy +2Cy <esssup &[22 |+ Hi . |F]=Js(v) < Z(v), as. (6.17)
i€l

,Ts (v

Then Lemma 3.2 of [1] implies that Js(v) € Dom(&’). Let o be another stopping time in Sp, 7.
By (2.17) and (2.14),

Lrym)=u0) Zayw) = Lnm=n©)1 2@ 1)) = Lgw)=r0) Z(T50))

0
= lgw=n0) 2oy 2
0
T1%15(v)
= 1{"="}Z% (o)» @S- Forany i € Z, applying Proposition 2.7(2) of [1] and recalling how &;[-|F)]
and g, [-|Fo] are defined in (2.6) of [1], we obtain
<o , o ,
Lo=o)&i [Zfa(v) + Hliyfa(v)l}-”] = 1{U=U}gi[zrs(v) + Hé,ra(v)l}—“]
= 5i [1{‘):0}2?5(0) + 1{V=U}Hclr,r5(o)|‘7:0]
= l{U:a}Si[Z%(d) + H(;-’.[(S(O,)lfo'], a.s.,

Since {v = o} C {rs(v) = 15(0)}, multiplying by 1{,—,} on both sides yields that 1{,—;)Z

where we use the fact that {v = o} € F, o, thanks to [9, Lemma 1.2.16]. Taking the essential
supremum of both sides over i € Z, we can deduce from Lemma 3.3(2) of [1] that a.s.

1(y=51Js(v) = esssup I{U:U}E[Z%(U) + Hé,m(vﬂ]:v]
ieZ
= esssup l{vz(,}é[z%(a) + H(’;’TS(G)L?-}] = 1=} J5(0). O
ieZ
Proof of Proposition 2.4.
Proof of (1). We fixi € Z and v, p € Sp.r with v < p, a.s. Taking (v, Z’, U) = (p,I, {rg(p)})
and X (t5(p)) = Z3. ,, in Lemma 2.2, we can find a sequence {,}°2 | in Z such that

0
w5(p)

170 ' ; S 170 n
Is(p) = esgs;p EilZryo) + H;,Ta(p)m:ﬂ] - ,}L“;o T EinlZryo) + H;,ra(p)lfp]’ a:s.
Jj€
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Forany n € N, it follows from Definition 3.2 of [1] that there exists a k,, = k(i, ju, p) € Z such
that 5/<,, =& p - Applying Proposition 2.7(3) of [1] to 5 in» We can deduce from (3.3) of [1] and
(2.5) that

Ei (2 + Hyloy )| Fo] = E[E3,[ 2% + H:

v,75(p )|'7:P]|FV]

v, 75(0
5[5 (2] o) T H Ta(p)|f ]+ H, 7). as. (6.18)

Since v < p, a.s., we see that 75(v) < t5(p), a.s. Due to (2.17) and (2.15), we have that

gkn[ w5 T Hy, 5(v), rs(p)lffﬁ(W] = es;s;pg [Z(ws(0)) + H/ (1), r(;(p)|]:75(‘))]
je

IA

Z(t5(v)) = Q(v), a.s.
Then using Corollary 2.3 of [1] and applying Proposition 2.7(3) of [1], (1) of [1] to gkn’ we obtain

o 0 kn _ rl c kn
Eu[ 200y + Hiloyio)1 0] = G L8122 )+ Hil) ey Frs ] + Byl 0]

v,T5(V)
& 0 kn & 170 j
= 5kn[Zr5(U) +H, rg(v)lj:"] = esss;p 5j[Zr5(v) + Hlf,r,;(u)u:‘)]
JE
= Js(v), as. (6.19)
For any n € N, we see from (2.18), (2.4) and Proposition 2.7(5) of [1] that
0
ElZ8 )+ HI . 1 Fp]+ Hi = &, [Cy +2CH|F,]+ C = Cy +3Ch.  as.

Then Proposition 2.8 of [1], and (6.18) and (6.19) imply that a.s.
ElJs(o) + Hi | F)] < lim 1 &[E;,[20 ) + HI 1Fo]+ H I F]

00 p,75(p)

0 n
= lim 1 &, [Z0,) + HyleyplF0] = 500,

where we used the fact that Js(p) + H,i p € Dom(&’), established thanks to Lemma 2.5, (2.2) and

(D2). Also, Ji(p) £ Js(p) + H € Dom(&). A simple application of Proposition 2.7(3) of [1]
yields that

Gl OIF] = E[Is(o) + H) | F] + H < Js(v) + Hi = Ji(v), as. (6.20)
In particular, forany 0 < s < t < T,g[];(tﬂfs] < J;(s), a.s. Hence, {J (t)}tE 0.7] is an
&i-supermartingale.
Proof of (2). Proposition 2.6 of [1] and Theorem 2.3 of [1] then show that [ Joit & lim, , J 5’
(g,7 (D) }te[O,T] defines an RCLL process. For any i € Z and v € Sp.7, (6.17) and (2.4) imply
that

Jiw) = Js(v) + H! > Cy +3Cy,  as. (6.21)
which implies that essinf; (o, 7] Jsi (t) = Cy 4+ 3Cpy, a.s. Like in the discussion of (6.7) and (6.8),

one can show by means of two cases that for some j € Z, J‘S It e Dom(&) for any v € Sp.r,

and J%/F is an RCLL 5 -supermartingale such that for any ¢ € [0, T']

3, j,+

It <o), as. (6.22)
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To see the reverse of (6.22), we fix t € [O T]. For any i € Z, Definition 3.2 of [1] assures that
there exists a k = k(j, i,t) € Z such that Ek = S’ Moreover, (S1) and (2.5) imply that

Htl T5(1)°

Htk = Hé‘t = Hj = Ht'/, and Ht o) = a.s. (6.23)

For any n € N, we set t, & q, +(t). Let m > n; thus t,, < t,. Then (2.17), Corollary 2.3 of [1],
and Proposition 2.7(3) of [1] as well as (2.15) imply that

&z 1 Fi] = (28 (s F, ] = E[E[ 2 (05 )| Frytin || i ]
= 5([ [Z(Ta(tn)) + Hl]f&(lm) T&(fn)lfm(%)] + Hk Ta(fm)|‘7:tm] + Hk

lesssup E[Z(@s(t)) + HY) oo Fesn ]+ HE, oy Fon ] + HE,

IA

sk[zm (tm)) + HY 1 F ] + HE

eSlSSf;p gl [ZTB (tm) + Htm w5 (tm) |‘/Tfm] + HtI:n
€

Js(tw) + HY = JJ (tw) + HY — H] . as.

A

As m — 00, (6.23), as well as the right-continuity of the processes 5{[22?[”) |7.], H* and H/,
implies that

. il k,0 . j k j
gk[ m(, )|-7:l] = mh—>moo Ek[er(tn)|ftm] =< h_m Jgj (tm) + Ht - H;j

m— 00

: j 8,j,+
lim Jy (tn) = J; , as.

m—0o0
Since lim, 00 | T5(ty) = T5(¢) a.s., the right-continuity of process Z%0 (2.18) and Theorem
2.1 of [1] imply that

&z 7] < lim ek[ O IR] <3, as.

T5 (t

Then like for (6. 10) one can deduce from (3.3) of [1] and (6.23) that Ja’j’ > 5 [ ) T
tm(t)|.7-}] + H/, as. Takmg the essential supremum of the right-hand side over i € 7

yields that Jt et > 15 (1), a.s., which together with (6.22) implies that J° 8.J-% is an RCLL

modification of {Jaj (t)} 1e[0.TT" Then we can draw similar conclusions to those at the end of
proof of Proposition 2.2.

Proof of (3). Like for (6.11), we can deduce from Lemma 2.5 that for any v € S(f T
J30 = Jsv),  as. (6.24)

For a general stopping time v € Sp 7, we let {v,},ciy be a decreasing sequence in ‘S(f 7 such that
lim,, 00 4 v, = v, a.s. Thus for any i € Z, the right-continuity of the process /%9 shows that

= lim JoM0 s, (6.25)

In light of (6.24) and (6.21), it holds a.s. that J2"° = Ji(t) > Cy +3Cy, Vt € Dr. Since J*°
is an RCLL process, it holds except on a null set N that

IO > ¢y +3Cy, Vrel0,T], thus J20>Cy+3Cy, Vo eSyr. (6.26)
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Like in the discussion in Proof of Proposition 2.3, one can show by means of two cases that

f’j’o € Dom(&) for some j € Z. And like in the arguments used in (6.15) through (6.16)
(with (6.24)—(6.26) replacing (6.11)—(6.13) respectively, and with (6.20) replacing (2.16)), we
can deduce that

IO = lim 1t E[I0001F)]

n—00

= lim 1 gj[Jg(u,,)u-‘v] < Jaj(v), as. thus, J50 < J5(v), as. (6.27)
n—oo

The right-continuity of the process J%9 and (6.24) and (6.17) show that Jf’o = lim,_ o J‘fn’o =

lim,— o Js(v,) = Cy + 2Cpg, a.s. Lemma 2.5 and Lemma 3.2 of [1] thus imply that Jf’o €
Dom(&).

Foranyi € Zand n € N, since v < v, < t5(1,), a.s., Corollary 2.3 of [1], and (6.27) and
(6.20) imply that
&l ;iéf)lf ] E &[T 1 Fu]IF] < E[E[T ()17, ]I 7]

E[HoIF],  as.

It is easy to see that lim, oo | 75(v,) = Ts(v), a.s. Using the right-continuity of the process
J%1:9 we can deduce from (6.26), Proposition 2.8 of [1] and (6.27) that

g7 F,] < lim 5[ WIF] < lim 4 E[HenIF] = 1000, as.

T5(v) Ts5 (v

Then subtracting H! from both sides and taking the essential supremum over i € Z yields that

Js(v) = esssup&’ [/ (U) +H) ) F] <100 as.,

which together with (6.27) shows that Jf’o = Js(v),as. O
Proof of Theorem 2.1. We first show that for any § € (0, 1) and v € So. 1

Js(w) =2%=2Z(©v), as. (6.28)
Fix i € Z. Lemma 3.1 of [1] indicates that S is a convex F-expectation on Dom(&’). Since AR
and J%%9 are both 5 supermartmgales we can deduce that forany 0 <s <t < T,
G620+ (1 =)0 + HIF] = E[6Z:° + (1 = 81017
< 8& (21 R ]+ (A = E[I1 7]
<8Z0 4+ (1 =870 =520+ 1 -6)J3° + H!, as.,

which shows that [SZP +(1 - 8)],‘3’0 + H] } 0.7] is an RCLL &;-supermartingale.
tell),

Now we fix r € [0, T] and define A £ {r5(r) =t} € F;. Using Proposition 2.4(3), and
Lemma 3.3(2) of [1] as well as applying Proposition 2.7(2), (5) of [1] to each &;, we obtain
that a.s.

14070 = 1405(1) = 14 sesTp ElZy0 + Hiy | F1]
IASS
= es_ssIup & [1A( o T tra(t))u:t]
IAS]
= esssup & [14Z0 |5 ] = 14Z;.
iel
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Then (2.17) and (2.11) imply that

1A(BZ0 + (1 =) 720 = 1420 =14Z(1) = 1471, as. (6.29)
Moreover, we see from the definition of 75(¢) that for any w € A€

Ys(w) < 8Z2(w) + (1 = 8)(Cy +2Ch), Vs € [t, (1) (). (6.30)
Since both Z° and Y are right-continuous processes, (6.30) and (6.17) imply that

Y, <8Z% + (1= 8)(Cy +2Cx) <8Z° + (1 —58)J" as.on A°,

which in conjunction with (6.29) and Remark 2.3(2) shows that the RCLL process §Z0 + (1 —
8)J 8.0 dominates Y, and thus dominates Z° thanks to Proposition 2.3. It follows that J 4.0 also
dominates Z°. Then for any v € So.7, Proposition 2.4(3), Remark 2.3(1) and (2.17) imply that
Js() = J39 > 70 = Z(v), a.s. The reverse inequality comes from (2.19). This proves (6.28).

Next, we fix v € So.r and set 8" = — 1 ,n € N. It is clear that the sequence {‘L'gn (v)}nEN
increases a.s. to T(v). Since the family of processes {Y'};c7 is “&-uniformly-left-continuous”,
we can find a subsequence {§"* }; <y of {6"}, e such that

lim esssup a.s. (6.31)

k— 00 ieZ

For any i € 7 and k € N, Remark 2.4(1) implies that Yo, o) = 8"k Z%nk s (1 - S”k)(CY +
2Cp), a.s. Hence Proposition(3) of [1] shows that

~ nk
gi[nk 1 fa”k(”)_’_Hrnk(v)'f] [r(u)'j:]

Pl 1
&i [Zr g (V) + H, v, Ta"k (v)|~7:v] + m(CY +2Cq)

= 5 I: 1 Yta”k (v) +H ‘L' STk (v)|f‘)i|

ng —

_El:n —1 Ta"k(”)_’_Hrnk(v)lf] [ (v)|f:|+g|: T(U)_’_Hvr(v)lf]

o i glyi
< essup |Ei| - Vo 00+ Hyy ol | = & i 17

+& [Y?(v) + Hlfj(v) |~7:v]

Nk
= esises;p gi[nk—_lytsnk v) +H T”k (v)|]:v] - [ f(v)|~7:v]

+ esssup &; [ ) + H T(V)I]-'v], a.s. (6.32)
iel

Taking the esssup of the left-hand side over 7, we see from (6.28) that
o Hi AN
ll:nk——l T (v) T Tyng (v)|‘7:V:| - i[ ?(v)'f‘):l

+ esssup &i [ T + H, ?(v)'f”]

esssup
i€l

1 1
> Jyu(v) + ——(Cy +2Cp) = Z(v) + ——(Cy +2Cp), as..
np—1 np — 1
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As k — 00, (6.31), (2.11) and (2.15) imply that

Z(v)

A

esssup 5 [ T(v) + Hv r(v)|‘7:”]
i€l
esssup E[Z(TW) + H, 7)1 7] < Z(v),  as.,

i€l

IA

which shows that

Z(v) = esssup S [ ) + Hv t(v)|}' ] = esssup 5 [Z(r(v)) + H,ﬁ Tl Fv ] a.s. (6.33)

i€l i€l

Now we fix p € S, z(). Forany i € Z, Corollary 2.3 of [1] and (2.16) show that
E[Z'Go)IF] = EE[Z GoNF]IR] < E[Z PIF].  as.
Then Proposition 2.7(3) of [1] implies that
E[ZEW) + H) )| F] = E[Z' @)IF] - H] < &E[Z' (0)IF] - H
= g,-[Z(p) + H‘i,p|fv], a.s.
Taking the essential supremum of both sides over Z, we can deduce from (2.15) that
e;ss;p E[Z(?(V)) + H‘ﬂ T(V)I}"V] < esssup & [Z(p)+H |.7-'v] < Z(©), as.,
ic

which together with (6.33) proves (2.22).

Finally, we will prove that T(v) = t1(v). Forany i € Z and k € N, (2.17), (2.15), and
Proposition 2.7(3) of [1] as well as Corollary 2.3 of [1] imply that

g[ Tng v) +Hu Tsng (v)|‘7: ]
= E[ZGn ) + H] 1, ()| ]

- i .
> & [esjsesup £ [Z(T(V)) + H; T (), 7y [ F e (V)] + Hli,‘rank (v)|‘7:v]

= 51'[ i[Z(?(V)) + H‘f'snk (u),?(u)u:ryzk (V)] + H\i,l’snk (u)|7:\)]
= &[E[2EW) + H. 2| Frp  |F] = E[Z@ W) + H] 2|7, as.,

which together with (6.32) shows that

esssup + & [ v t Hv r(u)'JTV]

ieZ

> & [Z(t(v)) +H T(p)m] 4 —(cy +2Cy),  as.

gl[nk——l Tgng (V) + Tnk(v)|‘7:v] - |: r(v)|‘7:1’i|

As k — 00, (6.31) implies that
EilYrw) + Hi 2| F)] = E[2GW) + Hl 7| 7). as. (6.34)

The reverse inequality follows easily from (2.11); thus (6.34) is in fact an equality. Then the
second part of Proposition 2.7(1) of [1] and (2.17) imply that Yz,) = Z(T(v)) = ZT(V),
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a.s., which shows that inf{t € [v,T] : Z) = ¥;} < T(v), as. For any § € (0, 1), since
{tew,T1:20=Y,} c{te,.T1:Y, >8Z°+ (1 —8)(Cy +2Cpx)}. one can deduce that

T(v)

v

inf{r € [, T1: Z) = v, }
inf{t € (1, T1:Y, = 8Z) + (1 = 8)(Cy +2Cm)} AT =15(v), as.
Letting § — 1 yields that

T(v) >inflt e v, T1: 20 = Y,} > lim 5(v) = T(v), as.,

\%

which implies that T(v) = 1nf{t elv,T]: Z0 Y,} ([l
Definition 6.1. A family {§;};c7 C LO(Fr) is said to be directed downwards if for any i, j €Z,
there exists a k € Z such that & < & A§;, ass.

Proof of Lemma 3.1. In light of [11, Proposition VI-1-1], it suffices to show that the family
{R'(v)}iet is directed downwards. To see this, we define the event A £ {R'(v) > R/(v)} and
the stopping times

PETWIA+ T (WIac €Sy and v(A) 2 vlg+ Tlyge €S, 7.

By Definition 3.2 of [1], there exists a k = k(i, j, v(A)) € Z such that & = Siv’g.A). It follows
from (2.5) that

k i
H k) T o) av,v(A) ATk (v) + Hv(A)\/v v(A)vtk) v rk(u) + IAHu k)’

Like for (6.3) and (6.2), we can deduce from Proposmon 2.7(2) of [1] and (3.7) that a.s.
R*(v) = &Y, + HE IR = 14E;[ Vi + H Fo] 4+ Lac&i[ Vi) + H i)l F]
lARj(v) + 1ACR )
IAS [ k) T H rk(v)|]:‘1] + IA‘E [ k) t H) rk(v)|'7:“]
1.&[Y k(u)+H oyl Fo] + LacEiYory + HY ) 1F]
= &Yooy + H k(u)uﬂ = R'(v),
which shows that R*(v) = 14R/(v) + 14¢R'(v) = R'(v) A R/(v), a.s. In light of the basic

properties of the essential infimum (e.g., [11, Proposition VI-1-1]), we can find a sequence
{in}en in Z such that (3.8) holds. [

=14cH a.s.

v, rJ (v)

v

Proof of Lemma 3.2. As in the proof of Lemma 3.1, it suffices to show that the family
{t/ (v)}je7 is directed downwards. To see this, we define the stopping time o £ 7/ (v) A T/ (v) €
Sy.1, and the event A £ {Rf;o > R({’O} € F, as well as the stopping time o (A) £ 014+ T1y e €
So.7- By Definition 3.2 of [1], there exists a k = k(i, j, o(A)) € Z such that & = 5;7}*‘). Fix
t € [0, T, it follows from (2.5) that for any P € Soui.T

k
Hy p Htlr(A)/\(avt) c(Mnp T H! (A (ov).o(Ayvp = LacH ovi,p T 1aH vt oo QS
Like for (6.2), one can deduce from Proposition 2.7(2) of [1] that
g"kI:Y,O a'\/tp|f0’\/t:| = lAg[Yp gvtp|-7:£r\/t]+1A”5 [Y +Hg\/1p|\7:0'\/t]
= 5 [IAY +14H, v[ pl}—a\/t] + 5 [lA‘ Y + 14 H, o'\/[ p|-7:th]

= 14&; [Y, + H, ol Fovi] + 14&; (Y, + Hiyy )| Fovi].  as.
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Then applying Proposition 2.7(3) of [1], and Lemma 3.3(2) of [1], as well as (3.6), we obtain
R(];’g, =R Vi) = esssup Ek[Y + HF Ve, pl]-'o\/,]
PESvi,T

= 14 esssup gj[Yp + H(fw,pu-}v,] + 14c esssup & [Y, + H! v pl]-"(,v,]

pESovi.T PESsvi.T

= lARJ(U \/t)—}—lAcR (ocvt)= IAR W +1ACRUW, a.s.

Since R0, R70 and R¥:0 are all RCLL processes, it holds a.s. that R0, = 14R}0, + 1, R%Y,
for any ¢ € [0, T'], which further implies that

) = inf{z e, T1: RMO = Y,] < inf{t clo,T]: RO = Y,}
=1y inf{t elo,T]: R = Yt} F 1y inf{t €lo,T]: RO = Yt} . as. (6.35)

Since R"? =Y w)> R =Y

i (v) Tl TJ(V) T
equal elthe_r to RQO or to R(J, ® Then the definition of the set A shows that R{,’0 =Y, as.on A
and that Rf;o = Y, a.s. on A°, both of which further imply that

i(v)» @8- and since 0 = (V) A T/ (v), it holds a.s. that Y is

14 inf{t elo,T]: R = Y,} —ol, and
1 4ec inf{t €lo, T]: R;"O = Y,] =01y, as.

Hence, we see from (6.35) that 78 (v) < o = t!(v) AT/ (v), a.s. Thanks to the basic properties of
the essential infimum (e.g., [11, Proposition VI-1-1]), we can find a sequence {i,, },cn in Z such
that

7(v) = essinf ' (v) = lim J Th(v), as.
iel n—oQ
The limit lim,,_, oo | T/ (v) is also a stopping time; thus we have T(v) € S,,;7. O
Proof of Theorem 3.1. In light of Lemma 3.2, there is a sequence {jn}nen in Z such that

(v) = limp—eo | T/ (v), a.s. Since the family of processes {Y'};c7 is “&-uniformly-right-
continuous”, we can find a subsequence of {j,},en (We still denote it by {j, },,en) such that

=0, as. (6.36)

Jim_ esssup E[YE 0\ Fen] = Yig)
Fixi € 7 and n € N; we know from Definition 3.2 of [1] that there exists ak, = k(i Jn,T(V)) €
7 such that Sk = E ( ) For any ¢ € [0, T], Lemma 3.3 implies that R — R0

T(v)ve’
R0 and R/ are both RCLL processes, it holds a.s. that R0 — Rin0

T(v)vt = Tr(v)vt
which together with the fact that (v) < hn (v) A T (D), as. implies that

T(U)W a.s. Since

forany r € [0, T],

i) = 1nf{t € [v T] Rk" = Y,} = inf{t € [z(u), T] : Rf"’o = Y,}
- inf{t e[zw), T]: Ri™® = Y,} - inf{t e v, 7]: R = Y,}

= th), as. (6.37)



246 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 121 (2011) 212-264

Then (2.5), (6.37) and (3.3) of [1] show that a.s.
R ) 4 ) = B, [Fat + B 5] +
Gl B =& (8,115, 1Fe]| 7]
[ [ vin(w) HT’(lv) Tin (v) + Hé(uﬂfz(V)]‘ }—v]
[5/"[ r.]n(u)|ff(‘))] H](v) + é(v)u'-v]
[ + Y]
< gi[eslses;p GV L Fen] = Y| + Y17

For any [ € Z, Proposition 2.7(3) of [1], and (2.7), (2.4) and (3.3) imply that

I
N

\eXi

IA
AN

5~ [Y]n |FL(U)] _ Y in

TIn(v) z(v)

‘gl T],,(v)u:r(v)] r(v)

~

= &Yo@y + Hi(v) in () — CulFry] = Yey — Cy) + CH‘
l[ vy He tin gy — CelFey] + Yoy = Cy) =
~ l !
[y + Hyy oininy Frn] + Yoy —2Cx <2R'(z(1) —2Cs. as.

Taking the essential supremum over [ € Z, we can deduce from (2.8) and (3.3) that

Cy < esssup ‘81 i ] = Yl
e 1

!
where 3R'(z(v)) — 2C, + H’(v)

(6.38)

+ Y, <3R(z(v) —2C. + H} ), as.,

€ Dom(&) thanks to Proposition 3.1(1), (S1’) and (D2).

Applying Proposition 2.9 of [1] and Proposition 2.7(3) of [1], we can deduce from (6.38) and

(6.36) that
V(v) = essinf R/(v) < lim R*(v)
jeZ n—o0
< nli)rgoé' [esssup 51[ ‘L'Jﬂ(v)lfr(”)] T(v) YL'(,,)I}-V] — H)

leZ
= [ r(v)u:v] - 5[ ) + ,,,(U)IJ:V], a.s.
Taking the essential infimum of the right-hand side over i € 7 yields that
V) < essmf & [Yeo) + H., ol F]

i€

A

esssup (essmf & [Y + H’ |}" ]) =V@W) <V(®), as.

pesv,T 1€

Hence, it follows from (3.3) that

V()= essmf 5 [ ) + Hv T(V)I}",,] V) = essiIrlf Ri(v) > Y,, as.
1€

Proof of Proposition 3.2. By Lemma 3.2, there is a sequence {i,,},cry in Z such that e £ 7(v) =

lim, 00 | in (v), a.s. Forany n € N, since 0 < in (v), a.s., we have

() =inf{t € [v, T]: R"* = ¥,} = inf{t € [0, T]: R = ¥,} = t7" (o),
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Then (3.9) and (3.7) imply that
V(o) = V(o) < R"(0) = 5,-"[Yﬂ-n o T H o Fol = iy Yiny + H o Fo]

o,tin (o) o,7in (v)

[Yl'f,l(v)|~7: - zn[Y in (v)|~7:o] — Y+ Y,
< esssup|5[ ,n(v)|f 11— Y(’,| +Y,, as.
iel

As n — o0, the “&-uniform-right-continuity” of (v }ie7 implies that V(o) < Y, a.s., while the
reverse inequality is obvious from (3.9). [

Proof of Proposition 3.3. In light of Lemma 3.1 and (3.9), there exists a sequence {j, },eN in Z
such that

Vv)=V@®) = lim | R/"(v), as.
n— o0

For any n € N, Definition 3.2 of [1] assures a k, = k(i, j,,v) € T such that <5~'kn = El.‘jjn.
Applying Proposition 2.7(5) of [1] to 6~’i, we can deduce from (3.3) of [1] and (3.5) that

Ee[V (o) + Hi"|F)] < &, [R7(0) + Hin|F)] = €, [R7"(p) + H | F,]

= &[E,[R7" (o) + H,) |]—‘]|]—"]
jn[Rf" (p) + HJ" D] < R7"(v), as.

Then Proposition 2.7(3) of [1] and (2.5) imply that

essinf E&[VEOIF] < & [V (o)1 F)]

= &,[V(p) + H{|F,] + Hi < RI"(v) + H],  as.

Letting n — oo gives (3.10).
Now we assume that v < p < 7(v), a.s. Applying Legma 3.1 and (3.9) once _again, we can
find another sequence {j;},_y in Z such that V(p) = V(p) = lim,. | R/ (p), a.s. For

any n € N, Definition 3.2 of [1] assures a k,, = k(i, j,, p) € Z such that gkiz = El.pj/. Since

o<1 < Tk;'(\}), a.s., using (3.7) with i = k], and applying Proposition 2.7(5) of [1] to g-’;,
we can deduce from (2.5), (3.3) of [1] as well as Lemma 3.3 that

Vi) = V) + Hi = V) + B < R%() + HY" = & [R5 (0) + HY' | 7]
= &, [R% (o) + Hy'| 7))
= &[E, [R5 (0) + H\F, IR = &R (o) + HY 7]
= &[RRI (p) + HIIF)],  as. (6.39)

It follows from (3.3) that Cx < Y, + H;; < R (p) + H;; < RI (p) + H!, as., where

R (p) + H£ € Dom(&’) thanks to Proposition 3.1(1), (S1’) and (D2). As n — o0 in (6.39),
Proposition 2.9 of [1] implies that

Vi)

IA

lim &[R7(p) + H|F,] = E[V (p) + H}|F)]
g} [Vi (,0)|fv], a.s., proving (3.11).
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Finally, we show that { V' (z(0) A t)}te[o 7) is an &;-submartingale: Fix 0 < s < t < T; we

setv £ 7(0)As, p £ 7(0)At. Since v < p < 7(0) < T(v), a.s., (3.11), Corollary 2.3 of [1] and
Proposition 2.7(5) of [1] show that a.s.

Vi) As) = Viw) <&[VIIFR] =&V (T A)IF0n]
= E[E[V (2O A )1 Fe|IF] = E[VI(©) At)IF]. O
Proof of Theorem 3.2.
Proof of (1). Step 1: For any p, v € Sp.r, we define
P (v) = essmf &Y, + HY o Forn] + HW € Fonv-
It follows from (2.7), (2.4), and Proposition 2.7(5) of [1] that a.s.
Cy +2Cy = essinf &[Cy + CulFpp] +Cy < VP (v)

IA

ElYp + He o, |\ Fpro] + Hi oy < R (0 Av)+ HE, (6.40)

where R (p Av) + H/’;M € Dom(&) due to Proposition 3.1(1), (S1’) and (D2). Then Lemma 3.2
of [1] implies that ¥”(v) € Dom(&). Applying Proposition 2.7(2)-(3) of [1] and Lemma 3.3
of [1], we can rewrite ¥” (v) as follows:

P (v) — = eSiiIflf gi[l{pfv}YpAv + 1> (Y, + Hli,p)l}—PAV]
1

pAv
= cssinf (1{psv}YpAv + 10 &Y, + Hﬂ,plfv])
= L= ¥y + Lip>y) essinf &Y, + H IF)].  as.
Let o € Sp,r. Lemma 3.3(2) of [1] and Proposition 2.7(2) of [1] once again imply that
Ly=o) V() = Lpzv=0)¥) + Lip>v=0) essinf EYp + H I F] + Lo  Hj o,

= Lipzv=a)¥p + Lip=) essinf EilLw=o) (Y, + HE )IF] + Lo  H) oy
1

= Lip<v=0)¥y + 1{p>) essinf Lo=o)&[Y, + H(’},plf ]+ 1p=0)
IAS

pAa
= Lpzo=n)¥p + Lip>o=v) essinf EYp + Hy | Fo ]+ Loy Hi py
IAS

= 1=} ¥”(0), as. (6.41)

Step 2: Fix p € So.7. Forany v € So.r and o € S, 1, letting (v, Z',U) = (p Ao, Z, {p}) and
X (p) =Y, in Lemma 2.2, we can find a sequence {j,},en in Z such that

essmf & [Y,+ H,

pAa’plprO‘] - hm \L 5 [ H]/\gp|]:p/\g] a.s.

Definition 3.2 of [1] assures the existence of a k, = k(i’, j,, p A o) € T such that Ekn =&
Applying Proposition 2.7(3) of [1] to 5k,,, we can deduce from (2.5) and (3.3) of [1] that a.s.
ra kll i’ o le
WP () < E,[Yp + Hpho pl Fonv] + Hyny = Ex, [ Yo + M ol Fprv] + Hphy

= &, [YrFprn] = éf[%n[Y§"|fpm]|fW].
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For any n € N, Proposition 2.7(3) of [1], (5), and (2.8) as well as (2.5) imply that a.s.
Co < E YN Fpno] = Ei[Yp + H) ol Fono ] + H/l)mr
< & [Yp + Hhopl Fono | + iy < RINGp AOY+ HY
where R/ (p A o) + H’M € Dom(&) thanks to Proposition 3.1(1), (S1’) and (D2). Then
Proposition 2.9 of [1], Corollary 2.3 of [1] and Proposition 2.7(5) of [1] show that
vP(v) < lim | G [0 (Yo Fono [| Fonv]

= lim \L 5 [ [Y + Hjngp|pro] p/\g’|‘F,0/\V:|

n—o0

= 5'/[ lim N 5' [ + H]/\gpu:p/\n] p/\(7|«7:pm)]
=& [essmf & [Y, + H;,M p|pra] p/\g|-7p/\v]
— 5i,[y7p(0)|prU] — gi,[gi,[gﬂ(o)|fp]|fv] = é’i/[lpf’(o)u-"v], a.s., (6.42)

which implies that {¥°(¢)};¢[0,7) i an g,»/—submartingale. Hence, {— ¥”(t)};e0.7] is an &'-
supermartingale by assumption (3.12). Since &’ satisfies (HO), (H1), (2.3) of [1] and since
Dom(E") € Zr (which results from Dom(&) € %7 and (3.12)), Theorem 2.3 of [1] shows
that @/ " £ lim,_, . ¥”(g; (1)), 1 € [0, T]is an RCLL process and that

P(J/,‘”J“ = lim @* (g} (1)) forany t € [0, T]) -1 (6.43)
n—>0oo

A

Step 3: For any v € Sor and n € N, g, +(v) takes values in a finite set D = ([0, T) N
{k2~ "}keZ) U{T}. Given an & € D%, it holds for any m > n that ¢, () = « since Dy Cc Dy. It
follows from (6.43) that

ot = mli_)moo W)(q,jl‘(oe)) = ¥P(a), as.
Then one can deduce from (6.41) that
V= 2 Yt Y8 = D gty V@)

OIET (IET

=21 aFo=a) V0@ ) = (g7 (), as.

aeD}

Thus the right-continuity of the process ¥+ implies that

vrt = lim v = lim ¥ (g (v), as. (6.44)
n—oo

n—o00 qn (v

We have assumed that esssup,cp, g/[YgLF,] € Dom(&) for some j = j(p) € Z. It holds a.s.
that

[Y’|.’F,] <esssup &; Yy | 7], VteDr.
YEDT

Since &;[¥}|F.] is an RCLL process, it holds except on a null set N that
Ei[Y]I7] < esssup &[Y]|F]. Vrel0,T], thus

SGDT

[Y |f /\q+(V)] S eSSSHp EI[Yﬁ{'fY]v Vl’l (S N
SEDT
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Then one can deduce from (6.40), (2.4) and Proposition 2.7(3) of [1] that

Cy +2Cy < VP (qF () < &Y, + H;Aq+(u) p|fwm)] +¢!
gj [Y/{ - Hp/\qu(U)"/f /\qn (V)] + g
5'[ Y — Cy|F /\q+(v)] +¢t = gj[Y,({lprq,T(U)] —Cyg+1¢!
esssup &; [Yf|]-'] Cy+¢', as.,

SET

Al

A

where the right-hand side belongs to Dom(&’) due to (D2) and the assumption that ¢ " e Dom(&).
Proposition 2.9 of [1], (6.44), (6.42) and Proposition 2.7(5) of [1] then imply that /e + =
lim, o0 ¥* (g, (v)) € Dom(&) and that

UP(v) < lim E [¢° (g IF] = [Wﬂf |=wrt, as. (6.45)
In the last equality, we used the fact that ¥} = limy 00 ¥° (q,;|r (v)) e F, by the right-
continuity of the filtration F.
A

Step 4: Given v € Sp,r, we set y L2100 AV, Yy 2 7(0) A g, (v),Vn € Nandlet p € Sy
Since lim;,—, o0 1 1{3(0)>qn W) = = 1{¢(0)>v) and since

{0 > v} C {g; ) =g (z©) Av)],
(20 > g7 W} C g7 ) =2 A g}, VneN,
one can deduce from (6.45), (6.44) and (6.41) that
Le©>0) V() = Lesn ¥ = Lzoy>v lim #7(q, ()
= lim 100 7 (g, (2(0) A V))
= lim Lz (0)>v} &7 (qn (v)) = hm l{r(0)>qn+(v)}¢ (qn (v))
= nli>n;>10 l{f(0)>q+(v) (r(O) ANg, (v)) = 1{,(0)>v} hm yr (yn) a.s. (6.46)

For any n € N, we see from (3.9) that

V(yn) = V(yu) = esssup (essaInf E[Ys + Hyin,rr|fl’n]>

o€Sy,. T

> essinf &[Ypvy, + H.

ssir npvynl Frnls s, (6.47)

Since {(0) < v} C {y» = ¥y = 1(0)}, Proposition 2.7(2)—(3) of [1] imply that for any i € 7
1{1(0)511}5 [Y + H PAYns p| ] =& [I{E(O)SV}( + HpAy ,0)|‘7:Vn:|

= 1{r(0)<u}5 [Y +HpAy plfy], a.s.,
and that
gi[YﬂvVn +H s v Frn] = gi[l{pfyn}yyn + 1ip>y,) (Y + Hp/\)/ o) Fr]
= Ljp<y) Yy, + 1{p>yn}5'[ Hy,. pl}"yn]
= Ljp<y,) Yy, + 1{p>y,l r(0)>u}5 [ + Hp/\y p|-7:pAVn]
+1{p>yn,z<0)5v}5i[ o+ Hpyy ol Fony]s  as.
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Then it follows from (6.47) and Lemma 3.3 of [1] that
V() = Nozyn Y + Yoy, £0)>v) eSSinf E[Yp+ Hyry ol For]

FHpsy,.c0)<v) oSSinf & GYp + Hiny )| Fory]

I{PS]’)L}YVVL + 1{,0>)/;1,L(0)>v} (Wp(yn) H)é/\)/n)
+ 1{p>y,, r(0)<v} (W (7/) - ﬂAV) a.s.

As n — 00, the right-continuity of processes Y and H i/, (6.46), and Lemma 3.3 of [1] as well as
Proposition 2.7(2)—(3) of [1] show that

lim V) > 1oy Vy + Lpoyro) (im0 — HS, )

n—oo

+ 1{p>y T(0)<v} (lp (y) — pAy)
Lip=yy Yy + 1ipsy essmf & [Y, + H OAY, ol Fony]

v

= eSSiIIIf(l to=r1¥y + 1{p>y}g [Yo + Hl |]:V]>
1S

= essinf Ellip=) Yy + Loy (Yo + Hy )| Fy]

= essmfé' [Y, + H’ o Fy] as.

Taking the essential supremum of the right-hand side over p € S, 1, we obtain

lim V(y,) > esssup (es_sinf E[Yp + H}’;’p|]-‘y]) =Vy)=V(y), as. (6.48)

n—00 €S, T i€l

On the_ other hand, for any i € 7 and n € N we have that V (y;,) = V(yn) = essinfjc7 R!
(Yn) < R'(yn), a.s. Then (3.6) and the right-continuity of the process R0 imply that

My o0V (yn) < lim Ri(yn) = lim RIO=R"=R(y), as.

Taking the essential infimum of R'(y) overi € T yields that

limy ooV (1) < essinf R'(y) = V(y) = V(y), as.
1€

This together with (6.48) shows that lim,_, o, V(y,) = V(y), a.s., which implies that for any
veSorandi el

Tim V' (2(0) A g (1) = lim ( (2O AgFD) +H (v))

= V(z(0) Av) + Hl(O)/\v =V (r 0)Av), as. (6.49)

Step 5: Proposition 3.3 shows that the stopped process { V' (z(0) A 1)} is an &/-submar-

tel0,T]
tingale; thus { -V (z(0) A z‘)}te[0 7y is an &'-supermartingale by (3.12). Then Theorem 2.3

A

of [1] implies that V,i/’+ = H_mnﬁoovi,(l(O) A q,f(t)),t € [0, T] is an RCLL process and
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that P(Vti/’+ = lim,_ Vi/(L(O) A q,j’(t)) forany r € [0, T]) = 1. For any 0,¢ € So.r,
Lemma 3.3 of [1] and (3.4) show that

lo=)V(o) = l{g:;}V(o) = essinf (1{0:;}Rj(a)> = essinf (1{U:;}Rj(§)>

jeT jeT
= Lio=t) V() = Lio=g)V(©), as.,

which implies that

Lo=)V' (0) = Lio=t) V() + Lg=g) HY = Lio=)V (&) + Lio=) H

=1V (), as. (6.50)

Leto € S({T take values in a finite set {t] < --- < t,,}. Forany o« € {1 ---m} and n € N, since
{0 =t} C{z(0) A g (o) = T(0) A g (1)}, (6.50) implies that Lig—y,) V' (2(0) A g, (0)) =
l{g:ta}Vi/ (1(0) A q,f(ta)), a.s. Asn — 00, (6.49) shows that a.s.

Lomig Vit = Yooy Vi, ™ = 1im 1oy V7 (2(0) A g ()

= lim Loo) V' (2(0) A ¢, (0)) = L=y V' (z(0) A o).

Summing up the above expression over o € {1 ---m} yields that Vé,’+ =v (1(0) A O'), a.s.
Then the right-continuity of the process V't and (6.49) imply that

VIt = 1im VI,T = lim V' (2(0) Agf (1) = VI (z(0) Av),  as. (6.51)

n—oo 4n (V)  n—oo
In particular, v+ is an RCLL modification of the stopped process {Vi/(L(O) A t)} -
tell,
Therefore, V0 £ { vt — g } is an RCLL modification of the stopped value process
A g0,

{V(z©O) A t)}te[O,T]' For any v € Sp.7, (6.51) implies that

0 ~/’+ .7 _ v v
Vi =V = Hygyny = V' (20) AV) = Hyg,,

V(z(0) Av), as., proving 3.13). O

Proof of (2). (3.13) and Proposition 3.2 imply that Vro(o) = V(g (0)) = Y7(0), a.s. Hence, we can

deduce from the right-continuity of processes V° and Y that ty in (3.14) is a stopping time in
So,z(0) and that Yy, = Vrov = V(ty), a.s., where the second equality is due to (3.13). Then it

follows from (3.11) that forany i € 7
E;

V)= Vi) <&[Vien] =&Y ] = &[]
Taking the infimum of the right-hand side over i € 7 yields that

VO < inf &[], ] < sup (

inf &[}]) = V0 = V),
p€So,r

iel

which implies that infje7 &[Y, | = SUPpes, ; infier & [Y)]. O
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Proof of Proposition 4.1. Fix t € [0, T]. For any § € Dom(&) and i € Z, the definition of
Dom(&’) assures that there exists a ¢(§) € R such that c(&§) < &, a.s. Then Proposition 2.7(5)
of [1] shows that

c(§) = Elc®)|F] < ELEIF]  as. (6.52)

Taking the essential infimum of the right-hand side over i € Z, we obtain for an arbitrary i’ € 7
that

c(§) < EIEIF] < EEIF,  as.

Since gi/[ELE] € Dom* (&) = Dom(&), Lemma 3.2 of [1] implies that &[£|F;] € Dom(&);
thus &[-|F;] is a mapping from Dom(&) to Dom; (&) = Dom(&) N LO(F,).

A simple application of Lemma 3.3 of [1] shows that & satisfies (A3), (A4) and (4.1). Hence,
it only remains to show (A2) for & Fix 0 < s <t < T. Letting (v,Z',U) = (¢t,Z,{T}) and
taking X (7)) = & in Lemma 2.2, we can find a sequence {i, },,cn in Z such that

EIEIF] = essinf €71 = lim | &, €I, as. (6.53)

Now fix j € Z. For any n € N, it follows from Definition 3.2 of [1] that there exists a
kn =k(j,in,t) € Zsuchthat &, = Sj.’l.n. Applying (3.3) of [1] yields that

EIEIF < &, €151 = &, 16151 = §[&, [61R]I7]. as. (6.54)

For any n € N, (6.52) and (6.53) show that c(§) < &, [£17] < §,~l[g|f,], a.s., where
& [€1F1] € Dom*(&;,) = Dom(&). Proposition 2.9 of [1] and (6.54) then imply that

E[1E1FNF] = lim &, EIFNF] = SEIF] as.
Taking the essential infimum of the left-hand side over j € 7, we obtain
E[EE1FNF] = EIEIF),  as. (6.55)
On the other hand, for any i € 7 and p € &; 1, applying Corollary 2.3 of [1], we obtain
El517) = E[EIE1FNF] = EIEEIFNF = E[EEIFNF]  as.

Taking the essential infimum of the left-hand side over i € Z yields that &[&|Fs] >
ﬁ[é[& | F:] |.7-'s], a.s., which together with (6.55) proves (A2) for &. O

Proof of Proposition 5.1. By (5.2), it holds df x dP-a.s. that for any z € R?
lg(t,2)| = |g(t,2) — g(1,0)| < Kglz|, thus Z(t,2) = —Kglz| < g(t,2).

Clearly, g is a generator satisfying (5.2). It is also positively homogeneous in z, i.e.
§(t,0z) = —Kglaz| = —aKglz| = ag(t,z), Yo >0,Vze R

Then [13, Example 10] (or [16, Proposition 8]) and (5.6) imply that for any n € N and any
A € Fr with P(A) > 0

n&;[1a] = Enla] < Enlal. (6.56)



254 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 121 (2011) 212-264

Since £5[14] > 0 (which follows from the second part of (A1)), letting n — o0 in (6.56) yields
(HO).

Next, we consider a sequence {£,},eny C L2(Fr) with sup,en 1€l € L?(Fr).If &, converges
a.s., it is clear that & 2 lim,— oo &, € L2(.7-"T). Applying Lemma 5.1 with u = K, we obtain

‘gg[én] - gg[é]‘ . ggu[@n - ‘§|] =

sup &g, [16n — &11F]
T]

1elo, L2(Fp)
K 4+KHT
< ce ™K g, — £l 2z,
where we used the fact that K, = p in the last inequality. As n — oo, thanks to the Dominated
Convergence Theorem of the linear expectation E, we have that ||§, — & ||i2 F = Elg, —&12 —

0; thus lim,, , o & [£,] = E[£]. Then (H1) and (H2) follow.
Foranyv € Sprand & € L>t(Fr) 2 {6 € L*(Fr) : € > 0, a.s.}, Lemma 5.1(1) shows that
sup;cro.71 |Eg[€1F:1| € L+ (Fr); consequently E[€|F,] € L>T(Fr). Since X5 £ &[] F ] is

a continuous process, X§’+ = Xﬁ = Egl&|F] € L>*(Fr), which proves (H3). O

Proof of Proposition 5.2. Fix v € Sp 7. It is easy to check that the generator g¥ satisfies (5.2)
with Lipschitz coefficient K| v K5. For any & € L2(}"T), we set 1 £ Ff’gz € F, and define

ét = 1<y ng’gz + 1> an,gl’ vt €10, T].
It follows that

g'(t, 0)) = 1jy<y £2(1, 6)) + 1=y 1 (¢, O))
= Lp< 821, 65°%2) + 1@ (1, O%Y), Vi €0, T].

For any ¢ € [0, T1], since {v < t} € F;, one can deduce that
T - T _
1= (s + f ¢"(s, By)ds — / @Sde)
t t
T - T N
=1p<né +/ Ly<ng" (s, O5)ds —/ 1<) O5dBy
4 t
T e T ;
1 t

T T
= l{vsz}<§ +/ g2(s, O ds —/ 9§’g2d3s> =1 7%, as. (6.57)
t t

The continuity of processes |’ T gV (s, By)ds, i T ©,dBy and I'**#* then implies that except on
anull set N

T T
1p<n (‘5 —I—/ g" (s, ©)ds —/ @Sst> = 1<y F{E,gz’ vVt € [0, T].
t t

Taking t = v(w) for any w € N°€ yields that

T - T -
£ +/ g"(s, Oy)ds —/ OydBy = I'582 =, as. (6.58)
vV v
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Now fix ¢ € [0, T]. We can deduce from (6.58) that

T - T _
j v (é +/ g' (s, 6)ds —/ @des>
4 t
= 1{1}>t} (n +/ gV(S, és)ds _/ éSst>
1 t

% vV
= 1ju=) <n+ f g1(s, O"¥")ds — / @ﬁ’g‘st>, as. (6.59)
t t

Moreover, Proposition 2.7(5) of [1] implies that

T T
Nl Fin] = 11+ / a1(s, O ds — / 074148,
tAV t
v v
= &g [N F] +/ gi1(s, ©,8")ds —/ o81dB,
AV AV
v vV
= n+/ gi(s, 9‘?’gl)ds—/ Or8'dB,, as.
AV AV

Multiplying both sides by 1;,~;) and using (6.59), we obtain

T - T _
Ls) (5 +/ g" (s, O5)ds —/ @XdBS>
4 t

= 1o NIF] = 1&g [T F ], as.,
which in conjunction with (6.57) shows that for any ¢ € [0, T']

T T
£+ f ¢"(s, By)ds — / BydB, = 1yen I5 4 1o €y, [TE0|F]
t t

= 1{u<t}5g2 [El}—t] + 1{v>t}€g1 [5g2[$|-7:v]|-7:t]

=&, olE17],  as.

Since fT g" (s, és)ds, fT é;st and 551 & [§1F.] are all continuous processes, it holds except
for a null set N’ that

T - T _
3 g2[$|f,]_$+/ " (s, Q‘Y)ds—/ 6,dB,, V1 €0, T].
t

[E|F], 9) e C3([0, T]) x HF([O T1; R?). Thus the pair is the
[£|F] forany t € [0, T]. O

One can easily show that ( 21,0

unique solution to the BSDE(&, g¥), namely &,v[§|F;] = g1 @

Proof of Theorem 5.1. We first note that for any g€ %', (5.7) implies that for every &,-
submartingale X, —X is an £,--supermartingale although g~ is concave (which means that £,-
may not belong to &”). Hence condition (3.12) is satisfied.

Fix g € 4. Clearly H® = 0. For any s, t € Dy with s < t, we can deduce from (hl) and (h2)
that

' ' t T
Cp 20T < / cds < / hedr = Hf’, < / W (r)dr < / KW (r)dr, as.,  (6.60)
s K} K 0

which implies that C < essinfy ;ep, .5« H < eSSSUP; eDyis < Hsg, < fT h'(r)dr, as.;
thus (S2) holds. Since fo W' (r)dr € L*>(Fr), it follows that esssup, ;cp,., ., He; € L**(Fr) £
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€ € L*(Fr) : € = ¢, a.s. for some ¢ € R} = Dom(&”). We can also deduce from (6.60) that
except on a null set N

T
C%/fotff W (r)dr, VO<s<t<T.
0

Hence, for any v, p € Sp.7 with v < p, a.s., we have C < H,fp < fOT h'(r)dr, a.s., which
implies that H‘f o € L2*(Fr) = Dom(&”"); so we get (S1). Moreover, (S3) directly follows from
(h3).

Next, we check that the process Y satisfies (Y1) and (2.6). By (5.11) and (Y3), it holds a.s.
that Cy < Y; < ¢y forany ¢ € Dr. The right-continuity of the process ¥ then implies that except
on a null set N

Cy <Y, <¢y, Vtel0,T], thus Cy<Y,<¢y,, VpeSr. (6.61)

Since ¢ € L2(Fp), it follows that Y, € L>*(Fr) = Dom(&") for any p € So.r; thus (Y1)
holds. Moreover, for any g€ ¥’', p € So.r and ¢ € Dy, Proposition 2.2(2) of [1], (6.61) and
Lemma 5.1(2) show that a.s.

P
Cy+cT = ElCy + JIT|F] < Sg[Yp +/ c/ds|.7-",]
0
< 5g[Y§|ft] < |5g[Y,§|~7:z]| = |5g[Y§|-7:t] — Eg[O]F]]

P
< Ean[IYE117] < ng[|Yp| - |h§|ds|fz}

T
= sup &gy [5{/ v (=Cy) +[ B (s) Vv (=) dSlfz}-
1€[0,T] 0

Taking the essential supremum of Eg[Y§|]-',] over (g, p,t) € 9’ xSo.r x Dr, we can deduce
from (A4) that

Cy+cT < esssup ElY51F]

(g.p,t) €9’ xSo. 1 xDr

IA

T
sup &gy, I:C)// +/ h’(s)ds|.7—'ti| —Cy =T, as. (6.62)
1€[0,T] 0

Lemma 5.1(1) implies that

T
Sup &g, [;H / h’(S)dSIfz}
1el0,T] 0

L2(Fr)

(M+MY)T

< Ce < 00.

T
{{,+/ K (s)ds
0

L2(Fr)

Hence, we see from (6.62) that esssup(, , /) e’ xS, 7 xDr Eg[Y,§|}}] e L>*(Fr) = Dom(&"),
which is exactly (2.6). '
Now we show that the family of processes {Yf, t € [0, T]}ge%’ is both “&”-uniformly-

left-continuous” and “&”-uniformly-right-continuous”. For any v, p € Sp.r with v < p, as,,
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let {on}nen C S,.7 be a sequence increasing a.s. to p. For any g € 4’, Lemma 5.1(2) implies

that a.s.
I -7:vi|

P
+/ h’(s)dsl]-',,:|,

n

n o
< gng: man — Yp —/ hg(s)ds

n
5g[mypn + Hj, |fv] — &[Y§17]

n
sé’gM[—n_lYp -Y,

n

where gy (z) 2 Mlz|,z € R? and 7/ (t) £ I'(t) — ¢/, t € [0, T]. Taking the essential supremum
of the left-hand side over g € ¢’ yields that

n
esssup é'g[TIan + H§n|fv] — & (Y317
ge¥’ n
n P,
<& mYp,, —Y,|+ [ W(s)ds|F, |, as. (6.63)

Moreover, Lemma 5.1(1) implies that

P
5gM|: Lypn =Y +/ h/(S)dS|~7:v:|
n—1 Pn L2(Fr)
o
<| sup 5g1w|: —1an -7, +/ h/(s)dslfti|
t€[0,T] n— n L2(_7.'T)
(M+MHT n L~
< Ce p— Y, =Y, + h'(s)ds (6.64)
n L2(Fr)

Since ‘Lan —Yp’ < 355 (Yo, = Yol + 557 (Yol = 2[¥p, = Y, | + 355 [Yo[ forany n > 2.

n—1
%Yy — Yp) + /) ﬁ’(s)ds) = 0, a.s. It also holds

n—1

the continuity of Y implies that limn_mo(
for any n > 2 that

n
YPn - YP

(2 T
—}—/ h'(s)ds < 3(¢y — Cy) +/ W (s)ds —c'T, as.,
0

n

n—1

where the right-hand side belongs to LZ(}"T).NThus the Dominated Convergence Theorem
implies that the sequence {|ﬁan - Y, + ffﬁ: R (s)ds},en converges to 0 in L2(Fr), which
together with (6.63) and (6.64) implies that the sequence {esssupg ' |5g[nnT1 Y, + Hﬁn | Fv]—
Eg[Y,§|fU]|},,€N also converges to 0 in L%(Fr). Then we can find a subsequence {ny}ien of N
such that

ng

lim esssup Sg[n Iank + H}fnk |qu] — Sg[Y§|}'U] =0, as.
P —

n—oo
ge¥’

Therefore, the family of processes {Y¢}, ¢ is “&-uniformly-left-continuous”. The “&”-
uniform-right-continuity” of {¥$¢}, . can be shown similarly. [

Proof of Theorem 5.2. For any U € i, Theorem 5.1 and Proposition 2.2 imply that ZV-0 =
[Z? + f(; hgds} 071 is an &g, -supermartingale. In light of the Doob—Meyer Decomposition
tell,
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of g-expectation (see e.g. [15, Theorem 3.3]), there exists an RCLL increasing process AY null
at 0 and a process oY ¢ H%([O, T1; R?) such that

T T
zP0 = 790 +/ gu(s, OYV)ds + AY — AV —/ oUVdB,, 1€l0,T]. (6.65)
t t

In what follows we will show that U*(t, w) £ u*(t, @, 9,”0(0))), (t,w) € [0, T] x £ is the
optimal control desired, where U 0 = ( denotes the null control. Recall that T(0) = inf{t €
[0, T] | Z? =Y } Taking t+ = 7(0) and r = 7(0) A ¢ respectively in (6.65) and subtracting the
former from the latter yields that

7(0)

U,0 U,0 O U U
Zziyn = Zz(0) T /7 gu(s, OY)ds + AY ) — AYy) ., — /ﬁ Oy dB,
T(0)At T(0)AL

telo,T], (6.66)

which is equivalent to

Z(0) 7(0)
0 0 U U U U
Zzoyne = Zzo) + /; H(s, 07, Ug)ds + Az o) — AZo)ar — / Oy dB,
T(O)At HOW;

tel0,T]. (6.67)
In particular, taking U = U 0 we obtain

T(0) T(0)

0 0
Zon = 230 + / H(s, 6", U%)ds +A7(0) Alon — / oV ds,,
T(O)AL T(0)AL

tel0,T]. (6.68)

Comparing the martingale parts of (6.67) and (6.68), we see that for any U € 4,

oV = @Y, dr x dP-as. (6.69)
on the stochastic interval [0, T(0)]] £ {(t,w) € [0, T] x £2: 0 <t < 7(0)}. Plugging this back
into (6.67) yields that

0 T uo U T uY
ZT(O)M = Zf(o) +/ H(s, 6O, Us)ds + Af(o) AT(O)M —ﬁ 6y dBy,
T(0)AL T(0)AL

te[0,T]. (6.70)

Let us define gk, (2) 2 K,lzl.z € R?. Note that it is not necessary that gx, = gy for some
U e . Forany U € 4, we set I} = Eoy [ g(’oo)|f,] and I} 2 Eex, [ r(0)|]:t],t € [0, 7],
which are the solutions to the BSDE(Z?(O), gu) and the BSDE(—A%](B), gk, ) respectively, i.e.,

F,_Zf(0)~|—/ gu(s, O5)ds — /QdB and

T
A‘L’(O) + /

K, |6, ds—/ O,dB,, te[0,T],
t
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where O, O e H%([O, Tl; Rd). Proposition 2.7(5) of [1] and Corollary 2.3 of [1] imply that for
anyt € [0, T]

U,0 U,0
Feo = Fron = Egu [Z?(O) |Fe)] = Egu [Zf(o)u:?(om]
U.0
= Z?(O) Eeu [EgU I:Z?(())L?:?(O):H]:t:l
r(O) ggu[ T(o)|~7‘—t] = 1(0) Ft, a.s.

Then the continuity of processes I and ZY-0

implies that
uo  _ U0 . .
Iy = Zeiogn = Z?(O) Zeiyne +F0n = T70)

o 7(0) 7(0)
ZI(O) Z?(b)/\t +/ gu (s, B)ds —/ O;dB;

T(0)AL T(O)AL
0 0 7(0) 7(0)
= Zz0) — Zz o)t —1—/7 H(s, 6, Ug)ds — /; O;d By
T(0)AL T(0)AL

7(0)

0
= AUy + AV / [HGs. 6, U — His, 0V, U] as

7(0) o
—/ (6, — 0V )dB,, 1[0, T],
T(0)AL

where we used (6.70) with U = U™ in the last inequality. Since it holds dr x dP-a.s. that
H(t, 6, Up) — H(t, 0V, u*t, "))

H(t, 6, U)) — H(t, 0V, Uy)

g°(t, 6, Up) — g°t, V" Uy
< |8, 0, U) — g%, 6, U)

((OVN3

H(t, 6, U) — H(t, 0V, UF)

IA

Uo
— 9[ ,

=K,

the Comparison Theorem for BSDEs (see e.g. [13, Theorem 35.3]) implies that
L=1 =72, — A% €0 T].

In particular, when t = 0, we can deduce from (2.17) that &g, [ Aij(z)] > &g [Z2V (T (0)] —
Z(0). Taking the supremum of the right-hand side over U € il and applying Theorem 2.1 with
v = 0, we obtain

0> &gy, [—A%)] = sup £y [ZU(?(O))] — Z(0) =0,

and thus &, [ A%))] = 0. The strict monotonicity of g-expectation (see e.g. [5, Proposition
2.2(iii)]) then implies that Agg)) = 0, a.s. Plugging this back into (6.66) and using (6.69), we
obtain

U0 _ U0 O o O o0
Zz o = Z70) +/ gu+(s, 67 )ds —/; 6, dB;
T(O)A? T(0)At

T T
0 0
= Z35) + / gu(s, Ls<z(0)) 65 )ds — f Ls<z0) 6y dBy,

t

t€[0,T7, (6.71)
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which implies that &, [ 70) |ft] r(O)N,‘v’t € [0, T']. Namely, { T(O)OM] . TI sagu+-

martingale. Eventually, letting + = 0 in (6.71), we can deduce from (2.17) and Theorem 2.1
that

U*,0 = O u*
20 = 200 = &, [ 24| = Eqir | Z(0) + /0 hY" ds

o
= Egpe | Yz0) + / rYds|. O
0

Proof of Proposition 5.3. Because of its linearity in z, the primary generator
gt o, z,u) 2 (o7 (t, X (@) f(t, X (@), u), z)
V(t,w,z,u) €[0, T x 2 x R x § (6.72)

satisfies (g°2) and (g°4). Then (g°1) follows from the continuity of the process {X (¢)};c[0,7] as
well as the measurability of the volatility o and of the function f. Moreover, (5.15) and (5.20)
imply that for a.e. t € [0, T]

|g0(t, w, 11, M) - go(t7 w, 22, M)' - ‘(a_l(tv X((,U))f(t, X((,z)), M)v Z— Z/>

o=t x@n| 17 X @), w)| 12—
K%z =7, Va2 €RY V(w,u) € 2 xS,

which shows that g° satisfies (g°4) with K, = K 2 Clearly, 9= ’H%([O, T1]; S) is closed under
the pasting in the sense of (5.13). Hence, we know from the last section that {&g,, } ;. is a stable

class of g-expectations, where gy is defined in (5.12).
Fix U € 4. For any & € L?(F), we see from (5 4) that

IA

IA

T
ElE1F] = &+ / cuts. Bnds — [ 0.dB,
t t
T
=§+/<_1(SX)f(sXU3 ds—/ O,dB;
t

T
:g_/ 6,dBY, tel0,T],
t

where B[U £ B, — fé o_l(s, X)f(s, X, U)ds, t € [0, T]is a Brownian motion with respect to
Py.Forany ¢t € [0, T], taking Ey[-|F;] on both sides above yields that

T
Equl§1F1] = Ey &gy [§IFIF] = EulélFi] — Euy [/ QSstUlfz]
t

= EylE|F],  as. (6.73)

Hence the g-expectation &, coincides with the linear expectation Ey on LZ(]-'T).

Clearly, the process Y ES {(p(X (t))} 1€[0.T] satisfies (Y3) since ¢ is bounded from below by
—K. We see from (5.19) that ¥; = (X (t)) < K|X ()| < K||X||*;,Vt € [0, T'], which implies
that

+
é‘{/ 2 <esssup Y,) < K||X||>§~, a.s. (6.74)
IEDT
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For any ¢ € [0, T], the Burkholder—Davis—Gundy inequality, (o' 1), and (5.15) as well as Fubini
Theorem imply that
2 }
t

1
< 2x2+4C/ |a(s,0)|2ds+4CE/ lo (s, X) — o (s, 0)|*ds
0 0

E[(1X17)°] = E[ sup 1x()P] <26 +2E] sup
s€[0,1] s€[0,7]

/S o(r, X)dB,

0

IA

2x2 + 2CE/ lo (s, X)|*ds
0

T !
< 2x2+4C/ lo (s, 0)|2ds +4Cn2K2/ E[(||X||§f)2]ds.
0 0
Then applying Gronwall’s inequality yields that

T
E[(lell”})z] < (2x2 +4c/ |o(s,0)|2ds>e4C"2K2T < o0, (6.75)
0

which together with (6.74) shows that ¢}, € L?(Fr), proving (5.11).

Next, we define a function h°(f, w, u) £ h(t, X (w), u),V(t, w,u) € [0,T] x 2 x S. The
continuity of the process {X (#)};c(0,7] and the measurability of the function / imply that h is
Z ® 6/ (R)-measurable. We see from (5.20) that i satisfies (ﬁl). It also follows from (5.20)
that for a.e. t € [0, T'] and for any w € {2,

hY (@) 2 1°(t, 0, Up()) = h(t, X (@), U;(®)) < K|X@)]%5, YU €4l
Taking the essential supremum of h,U(a)) over U € &l with respect to the product measure space

~ +
([0, T]x 2, P, % x P) yields that h(t, w) 2 (esssupUe;L h,U(w)) < KIIX@)|l%. dr xdP-as.,

which leads to the relation fOTﬁ(t, w)dt < KT|X(w)|7, as. Hence, (6.75) implies that
fOT h(t, w)dr € L2(Fr), proving (h2) for h.

We can apply the optimal stopping theory developed in Section 2 to the triple ({Sgu} Ueils
{hY} veir Y ) and use (6.73) to obtain (5.16). In addition, if there exists a measurable mapping
u* 2 [0,T] x 2 x RY + S satisfying (5.17), then (6.72) indicates that for any (7, ,z) €
[0, 7] x 2 x R4

sup(g”(t, w,z,u) +ho@, o, u)) = sup ﬁ(t, X(w), z,u)

ues ues
= ﬁ(t, X(w), z, u*(t, X (w), 2))
=g°(t,w, z, u™(t, X (), 2)) + h’(t, 0, u™(t, X (w), 2)),
which shows that (5.14) holds for the mapping u*(z, ®, z) = u*(t, X (»), 2), (t, w,7) €[0,T] x
2 x RY. Therefore, an application of Theorem 5.2 yields (5.18) for some U* € {I. [

Proof of Proposition 54 (5.23) directly follows from [4, Theorem 5]. To see the second state-
ment, we set A" £ ['61:8 — ['52:8 and A@ £ %518 — ©%2:8; then (5.21)(i) implies that
£.8

dAT, = — (2@, 6,"°) — 2(t, 6,°"))dt + A6,dB,

l A
9 @
_ _/ a_g(t’M@’ + 67" ) AG,drdt + AO,dB;
0 Z

A6 (—a;dr +dB;), 1€][0,T],
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where a; 2 [ 220,06, + 6/%), dx, 1 € [0, T]. Since My ([0, T1; RY) C MZ([0, TT; RY) =
H%([O, T1; R?), one can deduce from (5.21)(ii) that

[ furacef [ 2

T pl . A
27T + 2/<2E/ / A6 + (1= )0 Pdrdr
0 JO

2
+ 02| dadr

I /\

IA

2 4 5 ! g.8? 6.8
< 2 T+§K E/ (‘Qt“ ‘ +’9t2’ ‘)dt<oo.
0

Moreover, Doob’s martingale inequality shows that

t 2 T
E| sup / agdB; <A4E / agdB;
tel0,7T]1J0 0

Thus, we can define the process Q; £ exp{—% fol |as|2ds + fol asdBgt,t € [0, T] as well as the
stopping times

vnéinf{te[v,T]:Q,\/|AF,|>n}/\T, Vn € N.

2 T
] = 4E/ la,|2dt < . (6.76)
0

It is clear that lim,—. o 1 v, = T, a.s., and (6.76) assures that there exists a null set N such that
forany w € N, T = v, (w) for some m = m(w) € N.
For any n € N, integrating by parts on [v, v,] yields that

Vn Vn Yn
0,,AL, = O,AT, —f 0: A B,a,dt +/ 0:A6,dB; +/ ATy Qa;dB;
" v v vV
+/ Q,A@,aldt
v

Vn
:/ (QtAQt +AFtQtat)dBt

which implies that E [Qu,, AFUn] = 0. Thus we can find a null set N, such that AT, () (w) =
c
0, Yo € N¢. Eventually, for any € HN U (Unen Nn)} , we have

£\ (w) = I () = Tim F‘E‘( (@) = lim ng(w)(a)) 2t w) = 2w). O

Proof of Proposition 5.5. Let {A,},cn be any sequence in Fr such that lim, . | 14, = 0,
as.Forany £&,n € L (Fr) £ {§ € L*(Fy) : § > 0, as.}, since E[e*]] < oo and since

SUp,, N E[eM‘?"’IAH’”] < E[eME'e)"”'] < %E[ez’\m] + %E[ew’”] < o0 holds for each A > 0,
Lemma 5.2 implies that

0= lim E|: sup

n—=>00 | re[0,71]

%@+ummn—@@mm]z£$

1 - &l&1 = o,

n

and thus &; satisfies (H2). Similarly, we can show that (H1) also holds for ;.
Moreover, for any v € Sy, 7 and § € Lt (Fr), since the process I'5:8 belongs to Cg([0, TD,

one can deduce that &[§|F,] = Ff’g' € L®Y(Fr). Then the continuity of the process
X& 2 £,[£|F] implies that X5 = X5 = &I[£|F,] € L (Fr), which proves (H3). [
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Proof of Theorem 5.3. This proof is just an application of the optimal stopping theory
developed in Section 2 to the singleton {£;}. Hence, it suffices to check that Y satisfies (Y1),
(Y2) and (2.21).

Like for (6.61), it holds except on a null set N that

Cy <Y, <¢y, Vtel0,T], thus Cy<Y,<¢,, VpeSr. (6.77)

Since ¢y, € L¢(Fr), it holds for any p € Sp 7 that
E[e)‘lypl] < E[e)‘({Q_CY)] = e_’\CYE[eM{’] <00, Vi>0, (6.78)

which implies that Y, € Le*(Fr) = Dom({é'g,}). Hence (Y1) holds.
Next, for any p € S, and ¢t € D, Proposition 2.2(2) of [1], (6.77) show that

Cy = &ICy|F]l < &Y, | Fi] < &yl Fil = ¥ < sup |0
1€[0,T1

, as.

Taking the essential supremum of Sg,[Yp |F:] over (p, t) € So,r x Dr yields that

Cy < esssup  &lY,|F]< sup ny’g‘, a.s.

(p,0)eSo. T xDr te€[0,T]

€ L¢(Fr), we can deduce that
esSSUP(, 1yes, 7 x Dy EslYolFi] € L9 (Fr) = Dom({E€;}), which together with Remark 2.2(2)
proves (Y2).

Moreover, for any v, p € So,7 with v < p, a.s. and any sequence {p,},eN C Sy, increasing

a.s. to p, the continuity of the process Y implies that .Y, converges to Y, a.s. By (6.77), one
can deduce that

Since I'v¢ ¢ Cy(0, T1), or equivalently sup, (o 7 ‘F,{y’g

A

< sup E[eum,,l] < E[ezm;—cm]
neN

= e_”‘CYE[eZ’\{;] <00, VA>D0,

|

sup E| exp A‘LY,OH
neN n—1

which together with (6.78) allows us to apply Lemma 5.2:

n—o00 n—1

0= lim E|: sup

n
& [—anm] AVArA

te[0,T]
. n

Hence, limy—oc E[ |€ [ 727 ¥ 175 | = &1Y, 1721
{nr}ren of N such that

] = 0. Then we can find a subsequence

lim
n—>oo

=0, as.,proving (2.21) forY. O

ng
& |:nk—_1ank |.7:Ui| — &Yl Fu]
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