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Abstract

Relying on the stochastic analysis tools developed in Bayraktar and Yao (2011) [1], we solve the optimal
stopping problems for non-linear expectations.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

We build this paper on the results of [1] and analyze the optimal stopping problems for non-
linear expectations. The background, literature review and the motivation for these problems
are provided in the introduction section of [1]. The notation used in this paper is outlined in
Section 1.1 of [1].

The rest of the paper is organized as follows: In Section 2 we solve a multi-prior optimal
stopping problem for a collection E = {Ei }i∈I of non-linear expectations, in which Nature is
in collaboration with the Stopper, and find an optimal stopping time in terms of the E -upper
Snell envelope. On the other hand, in Section 3 we solve the robust or the minimax optimization
problem in terms of the E -lower Snell envelope. In Section 4, we give some interpretations and
remarks on our results. In Section 5, we consider the case when E is a certain collection of g-
expectations. We see that in this framework, our assumptions on each Ei , the stability condition
and the uniform left/right-continuity conditions are naturally satisfied. We also determine an
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optimal prior i∗ ∈ I . Moreover, we show how the controller and stopper problem of [10] fits into
our g-expectations framework. This lets us extend their result from bounded rewards to rewards
satisfying linear growth. In this section, we also solve the optimal stopping problem for quadratic
g-expectations. The proofs of our results are presented in Section 6.

2. Optimal stopping with multiple priors

In this section, we will solve an optimal stopping problem in which the objective of the stopper
is to determine an optimal stopping time τ ∗ that satisfies

sup
(i,ρ)∈I×S0,T

Ei [Yρ + H i
ρ] = sup

i∈I
Ei [Yτ∗ + H i

τ∗ ], (2.1)

where E = {Ei }i∈I is a stable class of F-expectations, Y is a primary reward process and H i is
a model-dependent cumulative reward process. (We will outline the assumptions on the reward
processes below.) To find an optimal stopping time, we shall build a so-called “E -upper Snell
envelope” Z0 of the reward process Y . Namely, Z0 is the smallest RCLL F-adapted process
dominating Y such that Z0

+ H i is an Ei -supermartingale for any i ∈ I . We will show under
certain assumptions that the first time Z0 meets Y is an optimal stopping time for (2.1).

We start by making some assumptions on the reward processes: Let E = {Ei }i∈I be a stable
class of F-expectations accompanied by a family H , {H i

}i∈I of right-continuous F-adapted
processes that satisfies:

(S1) For any i ∈ I, H i
0 = 0, a.s. and

H i
ν,ρ , H i

ρ − H i
ν ∈ Dom(E ), ∀ν, ρ ∈ S0,T with ν ≤ ρ, a.s. (2.2)

Moreover, if no member of E satisfies (2.5) of [1], then there exists a j ∈ I such that

ζ j , esssup
s,t∈DT ;s<t

H j
s,t ∈ Dom(E ). (2.3)

(S2) There exists a CH < 0 such that for any i ∈ I , essinfs,t∈DT ;s<t H i
s,t ≥ CH , a.s.

(S3) For any ν ∈ S0,T and i, j ∈ I , it holds for any 0 ≤ s < t ≤ T that H k
s,t =

H i
ν∧s,ν∧t + H j

ν∨s,ν∨t , a.s., where k = k

i, j, ν


∈ I is the index defined in Definition

3.2(2) of [1].

Remark 2.1. (1) For any i ∈ I , (S2) and the right-continuity of H i imply that except on a null
set N (i)

H i
s,t ≥ CH , for any 0 ≤ s < t ≤ T, thus

H i
ν,ρ ≥ CH , ∀ν, ρ ∈ S0,T with ν ≤ ρ, a.s. (2.4)

(2) If (2.3) is assumed for some j ∈ I , the right-continuity of H j and (2.4) imply that except on
a null set N

CH ≤ H j
s,t ≤ ζ j , for any 0 ≤ s < t ≤ T, thus

CH ≤ H j
ν,ρ ≤ ζ j , ∀ν, ρ ∈ S0,T with ν ≤ ρ, a.s.

Then Lemma 3.2 of [1] implies that (2.2) holds for j . Hence we see that (2.3) is a stronger
condition than (2.2).



214 E. Bayraktar, S. Yao / Stochastic Processes and their Applications 121 (2011) 212–264

(3) Since H i , H j and H k are all right-continuous processes, (S3) is equivalent to the statement
that a.s.

H k
s,t = H i

ν∧s,ν∧t + H j
ν∨s,ν∨t , ∀ 0 ≤ s < t ≤ T . (2.5)

Now we give an example of H .

Lemma 2.1. Let {hi
}i∈I be a family of progressive processes satisfying the following

assumptions:

(h1) For any i ∈ I and ν, ρ ∈ S0,T with ν ≤ ρ, a.s.,
 ρ

ν
hi

t dt ∈ Dom(E ). Moreover, if
no member of E satisfies (2.5) of [1], we assume that there exists a j ∈ I such that T

0 |h j
t | dt ∈ Dom(E ).

(h2) There exists a c < 0 such that for any i ∈ I, hi
t ≥ c, dt × dP-a.s.

(h3) For any ν ∈ S0,T and i, j ∈ I , it holds for any t ∈ [0, T ] that hk
t = 1{ν≤t}h

j
t +1{ν>t}hi

t , dt×
dP-a.s., where k = k


i, j, ν


∈ I is the index defined in Definition 3.2(2) of [1].

Then


H i
t ,

 t
0 hi

sds, t ∈ [0, T ]


i∈I is a family of right-continuous F-adapted processes
satisfying (S1)–(S3).

Standing assumptions on Y in this section. Let Y be a right-continuous F-adapted process that
satisfies:

(Y1) For any ν ∈ S0,T , Yν ∈ Dom(E ).
(Y2) sup(i,ρ)∈I×S0,T

Ei [Y i
ρ] < ∞, where Y i , {Yt + H i

t }t∈[0,T ]. Moreover, if no member of E
satisfies (2.5) of [1], then

ζY , esssup
(i,ρ,t)∈I×S0,T ×DT

Ei [Y
i
ρ |Ft ] ∈ Dom(E ). (2.6)

(Y3) essinft∈DT Yt ≥ CY , a.s. for some CY < 0.

Remark 2.2. (1) For any i ∈ I , (A4) and (2.8) of [1] imply that Ei satisfies (2.5) of [1] if and
only if Ei satisfies the following statement: Let {ξn}n∈N ⊂ Dom(E ) be a sequence converging
a.s. to some ξ ∈ L0(FT ). If infn∈N ξn ≥ c, a.s. for some c ∈ R, then limn→∞

Ei [ξn] < ∞

implies ξ ∈ Dom(E ). The proof of this equivalence is similar to that of Corollary 2.2 of [1].
(2) It is clear that (2.6) implies sup(i,ρ)∈I×S0,T

Ei

Y i

ρ


< ∞.

(3) In light of (Y3) and the right-continuity of Y , it holds except on a null set N that

Yt ≥ CY , ∀t ∈ [0, T ], thus Yν ≥ CY , ∀ν ∈ S0,T . (2.7)

Then for any i ∈ I , Remark 2.1(1) implies that except on a null set N (i)

Y i
ν = Yν + H i

ν ≥ C∗ , CY + CH , ∀ν ∈ S0,T . (2.8)

The following lemma states that the supremum or infimum over a stable class of F-
expectations can be approached by an increasing or decreasing sequence in the class.

Lemma 2.2. Let ν ∈ S0,T and U be a non-empty subset of Sν,T such that

ρ11A + ρ21Ac ∈ U , ∀ρ1, ρ2 ∈ U , ∀A ∈ Fν .
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Let {X (ρ)}ρ∈U ⊂ Dom(E ) be a family of random variables, indexed by ρ, such that for any
ν, σ ∈ U , 1{ν=σ } X (ν) = 1{ν=σ } X (σ ), a.s., then for any stable subclass E ′

= {Ei }i∈I ′ of E ,
there exist two sequences {(in, ρn)}n∈N and {(i ′n, ρ′

n)}n∈N in I ′
× U such that

esssup
(i,ρ)∈I ′×U

Ei

X (ρ) + H i

ν,ρ |Fν


= lim

n→∞
↑ Ein


X (ρn) + H in

ν,ρn
|Fν


, a.s., (2.9)

essinf
(i,ρ)∈I ′×U

Ei

X (ρ) + H i

ν,ρ |Fν


= lim

n→∞
↓ Ei ′n


X (ρ′

n) + H
i ′n
ν,ρ′

n
|Fν


, a.s. (2.10)

For any ν ∈ S0,T and i ∈ I , let us define

Z(ν) , esssup
(i,ρ)∈I×Sν,T

Ei [Yρ + H i
ν,ρ |Fν] ∈ Fν and Z i (ν) , Z(ν) + H i

ν .

Clearly, taking ρ = ν above yields that

Yν ≤ Z(ν), a.s. (2.11)

The following two lemmas give the bounds on Z(ν), Z i (ν), i ∈ I , and show that they all
belong to Dom(E ).

Lemma 2.3. For any ν ∈ S0,T and i ∈ I

Z(ν) ≥ C∗ and Z i (ν) ≥ CY + 2CH , a.s. (2.12)

Moreover, if no member of E satisfies (2.5) of [1], then we further have

Z(ν) ≤ ζY − CH and Z i (ν) ≤ ζY − CH + H i
ν , a.s., (2.13)

where ζY − CH and ζY − CH + H i
ν both belong to Dom(E ).

Lemma 2.4. For any ν ∈ S0,T and i ∈ I , both Z(ν) and Z i (ν) belong to Dom(E ).

In the next two propositions, we will see that the F-adapted process {Z(t)}t∈[0,T ] has an
RCLL modification Z0, and that both


Z i (t)


t∈[0,T ]

and Z i,0 ,


Z0
t + H i

t


t∈[0,T ]

are Ei -
supermartingales for any i ∈ I .

Proposition 2.1. For any ν, σ ∈ S0,T and γ ∈ Sν,T , we have

Z(ν) = Z(σ ), a.s. on {ν = σ }, (2.14)

esssup
i∈I

Ei [Z(γ ) + H i
ν,γ |Fν] = esssup

(i,ρ)∈I×Sγ,T

Ei [Yρ + H i
ν,ρ |Fν] ≤ Z(ν), a.s. (2.15)

Proposition 2.2. Given i ∈ I , for any ν, ρ ∈ S0,T with ν ≤ ρ, a.s., we haveEi [Z i (ρ)|Fν] ≤ Z i (ν), a.s. (2.16)

In particular,


Z i (t)


t∈[0,T ]
is an Ei -supermartingale. Moreover, the process


Z(t)


t∈[0,T ]

admits an RCLL modification Z0. The process Z i,0 ,


Z0
t + H i

t


t∈[0,T ]

is also an Ei -
supermartingale.

We call Z0 the “E -upper Snell envelope” of the reward process Y . From (2.11) and their
right-continuity, we see that Z0 dominates Y in the following sense:
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Definition 2.1. We say that process X “dominates” process X ′ if P

X t ≥ X ′

t , ∀t ∈ [0, T ]


= 1.

Remark 2.3. (1) If X dominates X ′, then Xν ≥ X ′
ν , a.s. for any ν ∈ S0,T .

(2) Let X and X ′ be two right-continuous F-adapted processes. If P(X t ≥ X ′
t ) = 1 holds for all

t in a countable dense subset of [0, T ], then X dominates X ′.

The following proposition demonstrates that Z0 is the smallest RCLL F-adapted process
dominating Y such that Z i,0 is an Ei -supermartingale for any i ∈ I .

Proposition 2.3. The process Z0 dominates the process Y . Moreover, for any ν ∈ S0,T and
i ∈ I , we have Z0

ν , Z i,0
ν ∈ Dom(E ) and

Z0
ν = Z(ν), Z i,0

ν = Z i (ν), a.s. (2.17)

Furthermore, if X is another RCLL F-adapted process dominating Y such that X i , {X t +

H i
t }t∈[0,T ] is an Ei -supermartingale for any i ∈ I , then X also dominates Z0.

As a consequence of Proposition 2.3 and (2.12), we have for any ν ∈ S0,T and i ∈ I that

Z0
ν ≥ C∗, Z i,0

ν ≥ CY + 2CH , a.s. (2.18)

In what follows, we first give approximately optimal stopping times. This family of stopping
times will be crucial in finding an optimal stopping time for (2.1).

Definition 2.2. For any δ ∈ (0, 1) and ν ∈ S0,T , we define

τδ(ν) , inf

t ∈ [ν, T ] : Yt ≥ δZ0

t + (1 − δ)(CY + 2CH )


∧ T ∈ Sν,T

and

Jδ(ν) , esssup
i∈I

Ei [Z0
τδ(ν) + H i

ν,τδ(ν)|Fν].

Remark 2.4. (1) For any δ ∈ (0, 1) and ν ∈ S0,T , the right-continuity of Y and Z0 implies that
{τδ(t)}t∈[0,T ] is also a right-continuous process. Moreover, since Z0

T = Z(T ) = YT , a.s., we
can deduce from (Y3) that YT > δZ0

T + (1 − δ)(CY + 2CH ). Then the right-continuity of
processes Y and Z0 implies that

Yτδ(ν) ≥ δZ0
τδ(ν) + (1 − δ)(CY + 2CH ), a.s.

(2) For any ν ∈ S0,T , we can deduce from (2.17) and (2.15) that

Jδ(ν) = esssup
i∈I

Ei

Z0

τδ(ν) + H i
ν,τδ(ν)|Fν


= esssup

i∈I
Ei

Z(τδ(ν)) + H i

ν,τδ(ν)|Fν


≤ Z(ν) = Z0

ν , a.s. (2.19)

The following two results show that ∀δ ∈ (0, 1), {Jδ(ν)}ν∈S0,T possesses similar properties to
{Z(ν)}ν∈S0,T .

Lemma 2.5. For any δ ∈ (0, 1) and ν ∈ S0,T , we have Jδ(ν) ∈ Dom(E ). And for any σ ∈ S0,T ,
Jδ(ν) = Jδ(σ ), a.s. on {ν = σ }.
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Proposition 2.4. Given δ ∈ (0, 1), the following statements hold:

(1) For any i ∈ I, {J i
δ (t) , Jδ(t) + H i

t }t∈[0,T ] is an Ei -supermartingale.

(2) {Jδ(t)}t∈[0,T ] admits an RCLL modification J δ,0 such that the process J δ,i,0 , {J δ,0
t +

H i
t }t∈[0,T ] is an Ei -supermartingale for each i ∈ I .

(3) For any ν ∈ S0,T , J δ,0
ν ∈ Dom(E ) and J δ,0

ν = Jδ(ν), a.s.

Fix ν ∈ S0,T . The right-continuity of Z0 and (2.18) imply that the stopping times τδ(ν) are
increasing in δ. Therefore, we can define the limiting stopping time

τ(ν) , lim
δ↗1

τδ(ν). (2.20)

To show that τ(0) ∈ S0,T is an optimal stopping time for (2.1), we need the family of
processes {Y i

}i∈I to be uniformly continuous from the left over the stable class E .

Definition 2.3. The family {Y i
}i∈I is called “E -uniformly-left-continuous” if for any ν, ρ ∈

S0,T with ν ≤ ρ, a.s. and for any sequence {ρn}n∈N ⊂ Sν,T increasing a.s. to ρ, we can find a
subsequence {nk}k∈N of N such that

lim
k→∞

esssup
i∈I

Ei

 nk

nk − 1
Yρnk

+ H i
ρnk

|Fν


− Ei


Y i

ρ |Fν

 = 0, a.s. (2.21)

The next theorem shows that τ(ν) is not only the first time when process Z0 meets the process
Y after ν, but it is also an optimal stopping time after ν. The assumption that the elements of the
stable class E are convex (see (3.1) of [1]) becomes crucial in the proof of this result.

Theorem 2.1. Assume that {Y i
}i∈I is “E -uniformly-left-continuous”. Then for each ν ∈ S0,T ,

the stopping time τ(ν) defined by (2.20) satisfies

Z(ν) = esssup
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


= esssup

i∈I
Ei

Z(τ (ν)) + H i

ν,τ (ν)|Fν


= esssup

i∈I
Ei

Z(ρ) + H i

ν,ρ |Fν


, a.s. (2.22)

for any ρ ∈ Sν,τ (ν) and τ(ν) = τ1(ν) , inf

t ∈ [ν, T ] : Z0

t = Yt

, a.s.

Taking ν = 0 in (2.22), one can deduce from (2.8) of [1] that τ(0) = inf

t ∈ [0, T ] : Z0

t =

Yt


satisfies

sup
(i,ρ)∈I×S0,T

Ei [Yρ + H i
ρ] = sup

(i,ρ)∈I×S0,T

Ei [Yρ + H i
ρ]

= Z(0) = sup
i∈I

Ei

Yτ(0) + H i

τ(0)


= sup

i∈I
Ei

Yτ(0) + H i

τ(0)


.

Therefore, we see that τ(0), the first time the Snell envelope Z0 meets the process Y after time
t = 0, is an optimal stopping time for (2.1).
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3. Robust optimal stopping

In this section we analyze the robust optimal stopping problem in which the stopper aims to
find an optimal stopping time τ∗ that satisfies

sup
ρ∈S0,T

inf
i∈I

Ei [Y
i
ρ] = inf

i∈I
inf Ei [Y

i
τ∗

], (3.1)

where E = {Ei }i∈I is a stable class of F-expectations and Y i
= Y + H i , i ∈ I , is the model-

dependent reward process introduced in (3.1). (We will modify the assumptions on the reward
processes shortly.) In order to find an optimal stopping time we construct the lower and the upper
values of the optimal stopping problem at any stopping time ν ∈ S0,T , i.e.,

V (ν) , esssup
ρ∈Sν,T


essinf

i∈I
Ei

Yρ + H i

ν,ρ |Fν


,

V (ν) , essinf
i∈I


esssup
ρ∈Sν,T

Ei

Yρ + H i

ν,ρ |Fν


.

With the so-called “E -uniform-right-continuity” condition on {Y i
}i∈I , we can show that at any

ν ∈ S0,T , V (ν) and V (ν) coincide with each other (see Theorem 3.1). We denote the common
value, the value of the robust optimal stopping problem, as V (ν) at ν. We will show that up to a
stopping time τ(0) (see Lemma 3.2), at which we have V (τ (0)) = Yτ(0), a.s., the stopped value
process


V

τ(0) ∧ t


t∈[0,T ]

admits an RCLL modification V 0. The main result in this section,

Theorem 3.2, shows that the first time V 0 meets Y is an optimal stopping time for (3.1).

Standing assumptions on H and Y in this section. Let us introduce

Ri (ν) , esssup
ρ∈Sν,T

Ei

Yρ + H i

ν,ρ |Fν], for any i ∈ I and ν ∈ S0,T .

To adapt the results that we obtained for the family {Z(ν)}ν∈S0,T to each family {Ri (ν)}ν∈S0,T ,

i ∈ I , we assume that H = {H i
}i∈I is a family of right-continuous F-adapted processes

satisfying (S2), (S3) and,

(S1′) For any i ∈ I, H i
0 = 0, a.s. and (2.2) holds. If Ei does not satisfy (2.5) of [1], then we

assume that ζ i
= esssups,t∈DT ;s<t H i

s,t ∈ Dom(E ).

On the other hand, we assume that Y is a right-continuous F-adapted process that satisfies (Y1),
(Y3) and

(Y2′) For any i ∈ I, supρ∈S0,T
Ei

Y i

ρ


< ∞. If Ei does not satisfy (2.5) of [1], then

esssup(ρ,t)∈S0,T ×DT
Ei [Y i

ρ |Ft ] ∈ Dom(E ).

We also assume that for any i ∈ I, Y i is “quasi-left-continuous” under Ei : for any ν, ρ ∈ S0,T
with ν ≤ ρ, a.s. and for any sequence {ρn}n∈N ⊂ Sν,T increasing a.s. to ρ, we can find a
subsequence


nk = n(i)

k


k∈N of N such that

lim
n→∞

Ei

 nk

nk − 1
Yρnk

+ H i
ρnk

|Fν


= Ei


Y i

ρ |Fν


, a.s. (3.2)

Remark 3.1. (S1′) and (Y2′) are analogous to (S1) and (Y2) respectively while the quasi-left-
continuity (3.2) is the counterpart of the E -uniform-left-continuity (2.21). It is obvious that (S1′)
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implies (S1) and that (2.21) gives rise to (3.2). Moreover, (2.6) implies (Y2′): In fact, for any
i ∈ I , one can deduce from (2.8) that

C∗ ≤ esssup
(ρ,t)∈S0,T ×DT

Ei [Y
i
ρ |Ft ] ≤ esssup

(i,ρ,t)∈I×S0,T ×DT

Ei [Y
i
ρ |Ft ], a.s.

Then Lemma 3.2 of [1] implies that esssup(ρ,t)∈S0,T ×DT
Ei [Y i

ρ |Ft ] ∈ Dom(E ), and it follows

that supρ∈S0,T
Ei

Y i

ρ


< ∞. �

Fix i ∈ I . Applying Lemma 2.4, (2.7), (2.4), (2.15), Propositions 2.2 and 2.3 and Theorem 2.1
to the family {Ri (ν)}ν∈S0,T , we obtain:

Proposition 3.1. (1) For any ν ∈ S0,T , Ri (ν) belongs to Dom(E ) and satisfies

CY ≤ Yν ≤ esssup
ρ∈Sν,T

Ei [Yρ + H i
ν,ρ |Fν] = Ri (ν), a.s., thus C∗ ≤ Y i

ν , a.s. (3.3)

(2) For any ν, σ ∈ S0,T and γ ∈ Sν,T , we have

Ri (ν) = Ri (σ ), a.s. on {ν = σ }, (3.4)Ei [Ri (γ ) + H i
ν,γ |Fν] = esssup

ρ∈Sγ,T

Ei [Yρ + H i
ν,ρ |Fν] ≤ Ri (ν), a.s. (3.5)

(3) The process


Ri (t)


t∈[0,T ]
admits an RCLL modification Ri,0, called the “Ei Snell envelope”,

such that {Ri,0
t + H i

t }t∈[0,T ] is an Ei -supermartingale and that for any ν ∈ S0,T

Ri,0
ν = Ri (ν), a.s. (3.6)

(4) For any ν ∈ S0,T , τ i (ν) , inf{t ∈ [ν, T ] : Ri,0
t = Yt } is an optimal stopping time with

respect to E i after time ν, i.e., for any γ ∈ Sν,τ i (ν),

Ri (ν) = Ei

Yτ i (ν) + H i

ν,τ i (ν)
|Fν] = Ei


Ri (τ i (ν)) + H i

ν,τ i (ν)
|Fν]

= Ei

Ri (γ ) + H i

ν,γ |Fν], a.s. (3.7)

Corollary 3.1. For any ν ∈ S0,T , both V (ν) and V (ν) belong to Dom(E ).

Proof. Fix (l, ρ) ∈ I × Sν,T ; for any i ∈ I , (2.7), (2.4) and Proposition 2.7(5) of [1] imply thatEi

Yρ + H i

ν,ρ |Fν] ≥ Ei

CY + CH |Fν] = C∗, a.s.

Taking the essential infimum over i ∈ I on the left-hand side yields that

C∗ ≤ essinf
i∈I

Ei

Yρ + H i

ν,ρ |Fν] ≤ esssup
ρ∈Sν,T


essinf

i∈I
Ei

Yρ + H i

ν,ρ |Fν]


= V (ν) ≤ V (ν) = essinf

i∈I
Ri (ν) ≤ Rl(ν), a.s.

Since Rl(ν) ∈ Dom(E ) by Proposition 3.1(1), a simple application of Lemma 3.2 of [1]
proves the corollary. �

As we will see in the next lemma, since the stable class E is closed under pasting (see
Definition 3.2(2) of [1]), V (ν) can be approximated by a decreasing sequence that belongs to
the family {Ri (ν)}i∈I .
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Lemma 3.1. For any ν ∈ S0,T , there exists a sequence {in}n∈N ⊂ I such that

V (ν) = essinf
i∈I

Ri (ν) = lim
n→∞

↓ Rin (ν), a.s. (3.8)

Thanks again to the stability of E under pasting, the infimum of the family {τ i (ν)}i∈I of
optimal stopping times can be approached by a decreasing sequence in the family. As a result the
infimum is also a stopping time.

Lemma 3.2. For any ν ∈ S0,T , there exists a sequence {in}n∈N ⊂ I such that

τ(ν) , essinf
i∈I

τ i (ν) = lim
n→∞

↓ τ in (ν), a.s., thus τ(ν) ∈ Sν,T .

The family of stopping times {τ(ν)}ν∈S0,T will play a critical role in this section. The next
lemma basically shows that if E j and Ek behave in the same way after some stopping time ν, then
R j,0 and Rk,0 are identical after ν:

Lemma 3.3. For any i, j ∈ I and ν ∈ S0,T , let k = k(i, j, ν) ∈ I as in Definition 3.2 of [1].
For any σ ∈ Sν,T , we have Rk,0

σ = Rk(σ ) = R j (σ ) = R j,0
σ , a.s.

Proof. For any ρ ∈ Sσ,T , applying Proposition 2.7(5) of [1] to Ei , we can deduce from (2.5) and
(3.3) of [1] thatEk


Yρ + H k

σ,ρ |Fσ


= Ek


Yρ + H j

σ,ρ |Fσ


= E ν

i, j


Yρ + H j

σ,ρ |Fσ


= Ei

E j

Yρ + H j

σ,ρ |Fν∨σ


|Fσ


= Ei

E j

Yρ + H j

σ,ρ |Fσ


|Fσ


= E j


Yρ + H j

σ,ρ |Fσ


, a.s.

Then (3.6) implies that

Rk,0
σ = Rk(σ ) = esssup

ρ∈Sσ,T

Ek

Yρ + H k

σ,ρ |Fσ


= esssup

ρ∈Sσ,T

E j

Yρ + H j

σ,ρ |Fσ


= R j (σ ) = R j,0

σ , a.s.,

which proves the lemma. �

We now introduce the notion of the uniform-right-continuity of the family {Y i
}i∈I over

the stable class E . With this assumption on the reward processes, we can show that at any
ν ∈ S0,T , V (ν) = V (ν), a.s.; thus the robust optimal stopping problem has a value V (ν) at ν.

Definition 3.1. The family {Y i
}i∈I is called “E -uniformly-right-continuous” if for any ν ∈ S0,T

and for any sequence {νn}n∈N ⊂ Sν,T decreasing a.s. to ν, we can find a subsequence of {νn}n∈N
(we still denote it by {νn}n∈N) such that limn→∞ esssupi∈I

Ei [Y i
νn

|Fν] − Y i
ν

 = 0, a.s.

Theorem 3.1. Suppose that {Y i
}i∈I is “E -uniformly-right-continuous”. Then for any ν ∈ S0,T ,

we have

V (ν) = essinf
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


= V (ν) ≥ Yν, a.s. (3.9)

We will denote the common value by V (ν)(=V (ν) = V (ν)). Observe that τ(0) is optimal for the
robust optimal stopping problem in (3.1).

Standing assumption on Y for the rest of this section. We assume that the family of processes
{Y i

}i∈I is “E -uniformly-right-continuous”.
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Proposition 3.2. For any ν ∈ S0,T , we have V (τ (ν)) = Yτ(ν), a.s.

Note that τ(ν) may not be the first time after ν when the value of the robust optimal stopping
problem is equal to the primary reward. Actually, since the process {V (t)}t∈[0,T ] is not neces-
sarily right-continuous, inf{t ∈ [ν, T ] | V (t) = Yt } may not even be a stopping time. We will
address this issue in the next two results.

Proposition 3.3. Given i ∈ I , for any ν, ρ ∈ S0,T with ν ≤ ρ, a.s., we have

essinf
k∈I

Ek[V
k(ρ)|Fν] ≤ V i (ν), a.s., (3.10)

where V i (ν) , V (ν) + H i
ν ∈ Dom(E ). Moreover if ρ ≤ τ(ν), a.s., thenEi [V

i (ρ)|Fν] ≥ V i (ν), a.s. (3.11)

In particular, the stopped process


V i

τ(0) ∧ t


t∈[0,T ]

is an Ei -submartingale.

Now we show that the stopped value process


V

τ(0) ∧ t


t∈[0,T ]

admits an RCLL modifi-

cation V 0. As a result, the first time when the process V 0 meets the process Y after time t = 0 is
an optimal stopping time of the robust optimal stopping problem.

Theorem 3.2. Assume that for some i ′ ∈ I, ζ i ′
= esssups,t∈DT ;s<t H i ′

s,t ∈ Dom(E ) and that
there exists a concave F-expectation E ′ (not necessarily in E ) satisfying (H0) and (H1) such that

Dom(E ′) ⊃ {−ξ : ξ ∈ Dom(E )} and for every Ei ′ -submartingale X ,

− X is an E ′-supermartingale. (3.12)

We also assume that for any ρ ∈ S0,T , there exists a j = j (ρ) ∈ I such that esssupt∈DT
E j

[Y j
ρ |Ft ] ∈ Dom(E ).

(1) Then the stopped value process


V

τ(0)∧t


t∈[0,T ]

admits an RCLL modification V 0 (called
the “E -lower Snell envelope” of Y ) such that for any ν ∈ S0,T

V 0
ν = V (τ (0) ∧ ν), a.s. (3.13)

(2) Consequently,

τV , inf{t ∈ [0, T ] : V 0
t = Yt } (3.14)

is a stopping time. In fact, it is an optimal stopping time of (3.1).

4. Remarks on Sections 2 and 3

Remark 1. Let E = {Ei }i∈I be a stable class of F-expectations. For any ξ ∈ Dom(E ) and
ν ∈ S0,T , we define

E [ξ |Fν] , esssup
i∈I

Ei [ξ |Fν] and E [ξ |Fν] , essinf
i∈I

Ei [ξ |Fν]

as the maximal and minimal expectation of ξ over E at the stopping time ν. It is worth pointing
out that E is not an F -expectation on Dom(E ) simply because E [ξ |Ft ] may not belong to
Dom(E ) for some ξ ∈ Dom(E ) and t ∈ [0, T ]. On the other hand, we will see in Example 4.1
that neither E nor E satisfies strict monotonicity. Moreover, as we shall see in the same example,
E does not satisfy (H2) while E does not satisfy (H1); thus we do not have a dominated
convergence theorem for either E or E . Note also that E may not even be convex.
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Our results in Sections 2 and 3 can be interpreted as a first step in extending the results for the
optimal stopping problem supρ∈S0,T

Ei [Yρ], in which Ei (i ∈ I) is an F-expectation satisfying
positive convexity and the assumptions (H1)–(H3), to optimal stopping problems for other non-
linear expectations, such as E and E , which may fail to satisfy these assumptions.

Example 4.1. Consider the probability space

[0, ∞), B[0, ∞), F = {Ft }t≥0, P


to be a filtered

probability space in which P is defined by P(A) ,


A e−x dx, ∀A ∈ B[0, ∞). We assume that
the filtration F satisfies the usual hypothesis. Let P denote the set of all probability measures
equivalent to P . For any n ∈ N, we define a Pn ∈ P by Pn(A) , n


A e−nx dx, ∀A ∈ B[0, ∞).

As discussed in Example 3.1 of [1], E = {EQ}Q∈P is a stable class. For any h > 0, one can
deduce that

1 = sup
Q∈P

EQ[1] ≥ E

1[0,h]


= sup

Q∈P
EQ

1[0,h]


≥ sup

n∈N
EPn


1[0,h]


= sup

n∈N
Pn[0, h] = lim

n∈N


1 − e−nh

= 1,

where we used the fact that EQ = EQ for any Q ∈ P since EQ[ξ |F·] is an RCLL process for
any ξ ∈ L1


[0, ∞), B[0, ∞), P


. Hence, we have E


1[0,h]


= 1, ∀h > 0, which implies that E

does not satisfy strict monotonicity.
Moreover, E does not satisfy (H2). For ξ = 0, η = 1 and An =


0, 1

n


, n ∈ N, it follows that

lim
n→∞

↓ E [ξ + 1An η] = lim
n→∞

E [1
[0, 1

n ]
] = 1 ≠ 0 = sup

Q∈P
EQ[0] = E [0] = E [ξ ].

On the other hand, it is simple to see that E [1[h,∞)] = 0 for any h > 0, which means that E
does not satisfy strict monotonicity either. Furthermore, E does not satisfy (H1). For ξ = 1 and

An =


1
n , ∞


, n ∈ N, we have that

lim
n→∞

↑ E [1An ξ ] = lim
n→∞

E [1
[

1
n ,∞)

] = 0 ≠ 1 = inf
Q∈P

EQ[1] = E [1] = E [ξ ]. �

Although it does not satisfy strict monotonicity, E is almost an F-expectation on Dom(E ) as
we will see next.

Proposition 4.1. For any t ∈ [0, T ], E [·|Ft ] is an operator from Dom(E ) to Domt (E ) ,
Dom(E ) ∩ L0(Ft ). Moreover, the family of operators


E [·|Ft ]


t∈[0,T ]

satisfies (A2)–(A4) as
well as

E [ξ |Ft ] ≤ E [η|Ft ], a.s. for any ξ, η ∈ Dom(E ) with ξ ≤ η, a.s. (4.1)

Remark 2. We have found that the first time τ(0) when the Snell envelope Z0 meets the process
Y is an optimal stopping time for (2.1) while the first time τV when the process V 0 meets the
process Y is an optimal stopping time for (3.1). It is natural to ask whether τ(0) (resp. τV ) is
the minimal optimal stopping time of (2.1) (resp. (3.1)). This answer is affirmative when E is a
singleton. Let E be a positively-convex F-expectation satisfying (H1)–(H3) and let Y be a right-
continuous F-adapted process satisfying (Y1), (Y3) and the following:

sup
ρ∈S0,T

E

Yρ


< ∞; if E does not satisfy (2.5) of [1], then

esssup
(ρ,t)∈S0,T ×DT

E [Yρ |Ft ] ∈ Dom#(E ).
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(Note that we have here merged the cumulative reward process H into the primary reward
process Y .) If τ ∈ S0,T is an optimal stopping time for (2.1), i.e. supρ∈S0,T

E [Yρ] = E [Yτ ],
Proposition 2.2 and (2.17) imply that

sup
ρ∈S0,T

E [Yρ] = sup
ρ∈S0,T

E [Yρ] = Z(0) ≥ E [Z(τ )] = EZ0
τ


= E


Z0

τ


≥ E [Yτ ]

= sup
ρ∈S0,T

E [Yρ],

and thus E [Z0
τ ] = E [Yτ ]. The second part of (A1) then implies that Z0

τ = Yτ , a.s. Hence
τ(0) ≤ τ , a.s., which means that τ(0) is the minimal stopping time for (2.1).

However, this is not the case in general. Let E = {Ei }i∈I be a stable class of F-expectations
and let Y be a right-continuous F-adapted process satisfying (Y1)–(Y3). We take H i

≡ 0 for
any i ∈ I . If τ ∈ S0,T is an optimal stopping time for (2.1), i.e. sup(i,ρ)∈I×S0,T

Ei [Yρ] =

supi∈I Ei [Yτ ], (2.15) and (2.17) then imply that

sup
(i,ρ)∈I×S0,T

Ei [Yρ] = sup
(i,ρ)∈I×S0,T

Ei [Yρ] = Z(0) ≥ sup
i∈I

Ei [Z(τ )] = sup
i∈I

Ei [Z(τ )]

= sup
i∈I

Ei

Z0

τ


≥ sup

i∈I
Ei [Yτ ] = sup

(i,ρ)∈I×S0,T

Ei [Yρ],

and thus E

Z0

τ


= supi∈I Ei


Z0

τ


= supi∈I Ei [Yτ ] = E [Yτ ]. However, this may not imply that

Z0
τ = Yτ , a.s. since E does not satisfy strict monotonicity as we have seen in Example 4.1.

Now we further assume that Y satisfies (Y2′); if τ ′
∈ S0,T is an optimal stopping time for

(3.1), i.e. supρ∈S0,T
infi∈I Ei [Yρ] = infi∈I Ei [Yτ ′ ], (3.10) and Theorem 3.1 imply that

sup
ρ∈S0,T

inf
i∈I

Ei [Yρ] = sup
ρ∈S0,T

inf
i∈I

Ei [Yρ] = V (0) = V (0) ≥ inf
i∈I

Ei [V (τ ′)] = inf
i∈I

Ei [V (τ ′)]

≥ inf
i∈I

Ei [Yτ ′ ] = sup
ρ∈S0,T

inf
i∈I

Ei [Yρ],

and thus E [V (τ ′)] = infi∈I Ei [V (τ ′)] = infi∈I Ei [Yτ ′ ] = E [Yτ ′ ]. However, this may not imply
that V (τ ′) = Yτ ′ , a.s. since E does not satisfy strict monotonicity, which we have also seen in
Example 4.1. (If V (τ ′) were a.s. equal to Yτ ′ , for any i ∈ I , applying (2.14) to singleton {Ei }, we
would deduce from (3.13) and Lemma 3.3 of [1] that

V 0
τ ′∧τV

= V (τ ′
∧ τV ) = V (τ ′

∧ τV )

= essinf
i∈I

Ri (τ ′
∧ τV ) = essinf

i∈I


1{τ ′≤τV } Ri (τ ′) + 1{τ ′>τV } Ri (τV )


= 1{τ ′≤τV } essinf

i∈I
Ri (τ ′) + 1{τ ′>τV } essinf

i∈I
Ri (τV )

= 1{τ ′≤τV }V (τ ′) + 1{τ ′>τV }V (τV )

= 1{τ ′≤τV }V (τ ′) + 1{τ ′>τV }V (τV ) = 1{τ ′≤τV }V (τ ′) + 1{τ ′>τV }V
0
τV

= 1{τ ′≤τV }Yτ ′ + 1{τ ′>τV }YτV = Yτ ′∧τV , a.s.,

which would further imply that τV = τ ′
∧ τV , a.s., and thus τV ≤ τ ′, a.s.)
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5. Applications

In this section, we take a d-dimensional Brownian motion B on the probability space
(Ω , F , P) and consider the Brownian filtration generated by it:

F =


Ft , σ


σ

Bs; s ∈ [0, t]


∪ N


t∈[0,T ]

,

where N collects all P-null sets in F . (5.1)

We also let P denote the predictable σ -algebra with respect to F.

5.1. Lipschitz g-expectations

Suppose that a “generator” function g = g(t, ω, z) : [0, T ] × Ω × Rd
→ R satisfies

(i) g(t, ω, 0) = 0, dt × dP-a.s.
(ii) g is Lipschitz in z for some Kg > 0 : it holds dt × dP-a.s. that
|g(t, ω, z1) − g(t, ω, z2)| ≤ Kg|z1 − z2|, ∀z1, z2 ∈ Rd .

(5.2)

For any ξ ∈ L2(FT ), it is well-known from [12] that the backward stochastic differential
equation (BSDE)

Γt = ξ +

∫ T

t
g(s,Θs)ds −

∫ T

t
ΘsdBs, t ∈ [0, T ] (5.3)

admits a unique solution

Γ ξ,g,Θξ,g


∈ C2

F([0, T ]) × H2
F([0, T ]; Rd) (for convenience, we

will denote (5.3) by BSDE(ξ, g) in the sequel), based on which [13] introduced the so-called
“g-expectation” of ξ by

Eg[ξ |Ft ] , Γ ξ,g
t , t ∈ [0, T ]. (5.4)

To show that the g-expectation Eg is an F-expectation with domain Dom(Eg) = L2(FT ),
we first note that L2(FT ) ∈ DT . The (strict) Comparison Theorem for BSDEs (see e.g.
[13, Theorem 35.3]) then shows that (A1) holds for the family of operators


Eg[·|Ft ] :

L2(FT ) → L2(Ft )


t∈[0,T ]
, while the uniqueness of the solution (Γ ξ,g,Θξ,g) to the BSDE(ξ, g)

implies that the family


Eg[·|Ft ]


t∈[0,T ]
satisfies (A2)–(A4) (see e.g. [13, Lemma 36.6] and [5,

Lemma 2.1]). Therefore, Eg is an F-expectation with domain Dom(Eg) = L2(FT ).
Moreover, the generator g characterizes Eg in the following ways:
(1) Theorem 3.2 of [8] (see also Proposition 10 of [16]) shows that Eg[·|Ft ] is a convex (resp.

concave) operator on L2(FT ) for any t ∈ [0, T ] if and only if the generator g is convex (resp.
concave) in z, i.e., it holds dt × dP-a.s. that

g(t, λz1 + (1 − λ)z2) ≤ (resp. ≥)λg(t, z1) + (1 − λ)g(t, z2),

∀λ ∈ (0, 1), ∀z1, z2 ∈ Rd . (5.5)

(2) Let g̃ be another generator satisfying (5.2). If it holds dt × dP-a.s. that g(t, z) ≥ g̃(t, z)
for any z ∈ Rd , then the Comparison Theorem for BSDEs (see e.g. [6]) shows that for any
ξ ∈ L2(FT ) and t ∈ [0, T ]

Eg[ξ |Ft ] ≥ Eg̃[ξ |Ft ], a.s. (5.6)
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In light of Theorem 4.1 of [3], the reverse statement also holds given that almost surely, the
mapping t → g(t, z) is continuous for any z ∈ Rd .

(3) g−(t, ω, z) , −g(t, ω,−z), (t, ω, z) ∈ [0, T ] × Ω × Rd also satisfies (5.2). Its
corresponding g-expectation Eg− relates to Eg in that for any ξ ∈ L2(FT ) and t ∈ [0, T ]

Eg− [ξ |Ft ] = −Eg[−ξ |Ft ], a.s. (5.7)

(In fact, multiplying both sides of BSDE(−ξ, g) by −1 makes

−Γ−ξ,g, −Θ−ξ,g


solve the

BSDE(ξ, g−).)
To show that the g-expectation Eg satisfies (H0)–(H3), we need two basic inequalities that it

satisfies.

Lemma 5.1. Let g be a generator satisfying (5.2).

(1) For any ξ ∈ L2(FT ), we have sup
t∈[0,T ]

Eg[ξ |Ft ]


L2(FT )

+
Θξ,g


L2

F([0,T ];Rd )
≤ Ce(Kg+K 2

g )T
‖ξ‖L2(FT ),

where C is a universal constant independent of ξ and g.
(2) For any µ ≥ Kg and ξ, η ∈ L2(FT ), it holds a.s. thatEg[ξ |Ft ] − Eg[η|Ft ]

 ≤ Egµ


|ξ − η| |Ft


, ∀t ∈ [0, T ],

where the generator gµ is defined by gµ(z) , µ|z|, z ∈ Rd .

Proof. A simple application of [3, Proposition 2.2] yields (1). On the other hand, (2) is a mere
generalization of [14, Proposition 3.7, inequality (60)] obtained by taking into account the con-
tinuity of processes Eg[ξ |F·] and Egµ [ξ |F·] for any ξ ∈ L2(FT ). �

Proposition 5.1. Let g be a generator satisfying (5.2). Then Eg satisfies (H0)–(H3).

Remark 5.1. Since Eg[ξ |F·] is a continuous process for any ξ ∈ L2(FT ), we see from (2.6)
of [1] that Eg[·|Fν] is just a restriction of Eg[·|Fν] to L2,#(FT ) , {ξ ∈ L2(FT ) : ξ ≥ c,
a.s. for some c = c(ξ) ∈ R} for any ν ∈ S0,T .

Thanks to Proposition 5.1, all results on F-expectations E and E in Section 2 of [1] are
applicable to g-expectations. In the following example we deliver the promise that we made
in Remark 2.7 of [1]. This example indicates that for some g-expectations, limn→∞Eg[ξn] < ∞

is not a sufficient condition for limn→∞ ξn ∈ Dom+(Eg) = L2,+(FT ) , {ξ ∈ L2(FT ) : ξ ≥

0, a.s.} given that {ξn}n∈N is an a.s. convergent sequence in Dom+(Eg).

Example 5.1. Consider a probability space ([0, 1], B[0, 1], λ), where λ is the Lebesgue measure
on [0, 1]. We define a generator g̃(z) , −|z|, z ∈ Rd . For any n ∈ N, it is clear that the random

variable

ξn(ω) , ω−

1
2 +

1
n+2

ω∈[0,1]

∈ L2,+(FT ) = Dom+(g̃). Proposition 2.2(2) of [1] then
implies that

0 = Eg̃[0] ≤ Eg̃[ξn] = Γ ξn ,g̃
0 = ξn −

∫ T

0
|Θξn ,g̃

s |ds −

∫ T

0
Θξn ,g̃

s dBs

≤ ξn −

∫ T

0
Θξn ,g̃

s dBs .
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Taking the expected value of the above inequality yields that

0 ≤ Eg̃[ξn] ≤ E

ξn −

∫ T

0
Θξn ,g̃

s dBs


= E[ξn] =

∫ 1

0
ω−

1
2 +

1
n+2 dω =

1
1
2 +

1
n+2

< 2. (5.8)

Since {ξn}n∈N is an increasing sequence, we can deduce from (A1) and (5.8) that 0 ≤ limn→∞ ↑

Eg̃[ξn] ≤ 2. However, limn→∞ ↑ ξn =

ω−

1
2

ω∈[0,1]

does not belong to L2,+(FT ) =

Dom+(g̃). �

Like in Proposition 3.1 of [1], pasting two g-expectations at any stopping time generates
another g-expectation.

Proposition 5.2. Let g1, g2 be two generators satisfying (5.2) with Lipschitz coefficients K1 and
K2 respectively. For any ν ∈ S0,T , we define the pasting of Eg1 , Eg2 at ν to be the following
continuous F-adapted process

E ν
g1,g2

[ξ |Ft ] , 1{ν≤t}Eg2 [ξ |Ft ] + 1{ν>t}Eg1


Eg2 [ξ |Fν]|Ft


, ∀t ∈ [0, T ] (5.9)

for any ξ ∈ L2(FT ). Then E ν
g1,g2

is exactly the g-expectation Egν with

gν(t, ω, z) , 1{ν(ω)≤t}g2(t, ω, z) + 1{ν(ω)>t}g1(t, ω, z),

(t, ω, z) ∈ [0, T ] × Ω × Rd , (5.10)

which is a generator satisfying (5.2) with the Lipschitz coefficient K1 ∨ K2.

Fix M > 0; we denote by GM the collection of all convex generators g satisfying (5.2) with
Lipschitz coefficient Kg ≤ M . Proposition 5.2 shows that the family of convex g-expectations
EM , {Eg}g ∈G M is closed under the pasting (5.9). To wit, EM is a stable class of g-expectations
in the sense of Definition 3.2 of [1]. In what follows we let G ′ be a non-empty subset of GM
such that E ′ , {Eg}g ∈G ′ is closed under pasting. Now we make the following assumptions on
the reward processes:

Standing assumptions on the reward processes in this subsection. Let Y be a continuous F-
adapted process with

ζ ′

Y ,


esssup
t∈DT

Yt

+

∈ L2(FT ) (5.11)

and satisfying (Y3). Moreover, for any g ∈ G ′, the model-dependent cumulative reward process
is in the form of

H g
t ,

∫ t

0
hg

s ds, ∀t ∈ [0, T ],

where {hg
t , t ∈ [0, T ]}g ∈G ′ is a family of predictable processes that satisfy:

(h̃1) There exists a c′ < 0 such that for any g ∈ G ′, hg
t ≥ c′, dt × dP-a.s.

(h̃2) The random variable ω →
 T

0 h′(t, ω) dt belongs to L2(FT ) with h′(t, ω) ,
esssupg ∈G ′hg

t (ω)
+ (the essential supremum is taken with respect to the product measure

space ([0, T ] × Ω , P, λ × P), where λ denotes the Lebesgue measure on [0, T ]).
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(h̃3) For any ν ∈ S0,T and g1, g2 ∈ G ′, with gν defined in (5.10), it holds for any 0 ≤ s < t ≤ T
that

hgν

t = 1{ν≤t}h
g2
t + 1{ν>t}h

g1
t , dt × dP-a.s.

Then the triple

E ′, H ′ , {H g

}g∈G ′ , Y


satisfies all the conditions stated in Sections 2
and 3. Thus we can carry through the optimal stopping theory developed for F-expectations
to (E ′, H ′, Y ) as we will see next.

Theorem 5.1. The stable class E ′ satisfies (3.12), the family of processes H ′ satisfies (S1′)
(and thus (S1); see Remark 3.1), (S2) and (S3), while the process Y satisfies (Y1), (2.6) (and
thus (Y2′), again by Remark 3.1) and (Y3). Moreover, the family of processes


Y g

t , Yt +

H g
t , t ∈ [0, T ]


g ∈G ′ is both “E ′-uniformly-left-continuous” (and thus satisfies (3.2); see also

Remark 3.1) and “E ′-uniformly-right-continuous”.

5.2. Existence of an optimal prior in (2.1) for g-expectations

For certain collections of g-expectations, we can even determine an optimal generator g∗ in
the following sense:

Eg∗[Y
g∗

τ(0)] = sup
g∈G

Eg

Y g

τ(0)


= sup

(g,ρ)∈G×S0,T

Eg[Y
g
ρ ],

where the optimal stopping time τ(0) is defined as in Theorem 2.1.
Let S be a separable metric space with metric | · |S such that S is a countable union of non-

empty compact subsets. We denote by S the Borel σ -algebra of S and take H0
F([0, T ]; S) as the

space of admissible control strategies. For any U ∈ H0
F([0, T ]; S), we define the generator

gU (t, ω, z) , go(t, ω, z, Ut (ω)), (5.12)

where the function go(t, ω, z, u) : [0, T ] × Ω × Rd
× S → R satisfies:

(go1) go is P ⊗ B(Rd) ⊗ S/B(R)-measurable.
(go2) It holds dt × dP-a.s. that go(t, ω, 0, u) = 0 for any u ∈ S.
(go3) go is Lipschitz in z: For some Ko > 0, it holds dt × dP-a.s. that

|go(t, ω, z1, u) − go(t, ω, z2, u)| ≤ Ko|z1 − z2|, ∀z1, z2 ∈ Rd , ∀u ∈ S.

(go4) go is convex in z: It holds dt × dP-a.s. that

go(t, ω, λz1 + (1 − λ)z2, u) ≤ λgo(t, ω, z1, u) + (1 − λ)go(t, ω, z2, u),

∀λ ∈ (0, 1), ∀z1, z2 ∈ Rd , ∀u ∈ S.

Now fix a non-empty subset U of H0
F([0, T ]; S) that preserves “pasting”, i.e., for any ν ∈ S0,T

and U 1, U 2
∈ U,

U ν
t (ω) , 1{ν(ω)≤t}U

2
t (ω) + 1{ν(ω)>t}U

1
t (ω), (t, ω) ∈ [0, T ] × Ω , (5.13)

also belongs to U. Then it is easy to check that {EgU }U∈U ⊂ E Ko forms a stable class of g-
expectations.

Let Y still be a continuous F-adapted process satisfying (5.11) and (Y3). For any U ∈ U,
assume that the model-dependent reward process has a density which is given by

hU
t (ω) , h(t, ω, Ut (ω)), (t, ω) ∈ [0, T ] × Ω ,
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where h(t, ω, u) : [0, T ] × Ω × S → R is a P ⊗ S/B(R)-measurable function satisfying the
following assumptions:

(ĥ1) For some c < 0, it holds dt × dP-a.s. that h(t, ω, u) ≥ c for any u ∈ S.
(ĥ2) The random variable ω →

 T
0 ĥ(t, ω)dt belongs to L2(FT ) with ĥ(t, ω) ,


esssupU∈U hU

t

(ω)
+ (the essential supremum is taken with respect to the product measure space ([0, T ]×

Ω , P, λ × P), where λ denotes the Lebesgue measure on [0, T ]).

It is easy to see that {hU
t , t ∈ [0, T ]}U∈U is a family of predictable processes satisfying

(h̃1)–(h̃3). Hence, we can apply the optimal stopping theory developed for F-expectations to
the triple


{EgU }U∈U, {hU

}U∈U, Y


thanks to Theorem 5.1. Now let us construct a so-called
Hamiltonian function

H(t, ω, z, u) , go(t, ω, z, u) + h(t, ω, u), (t, ω, z, u) ∈ [0, T ] × Ω × Rd
× S.

We assume that for any (t, ω, z) ∈ [0, T ] × Ω × Rd , there exists a u = u∗(t, ω, z) ∈ S such that

sup
u∈S

H(t, ω, z, u) = H

t, ω, z, u∗(t, ω, z)


. (5.14)

(This is valid, for example, when the metric space S is compact and the mapping u →

H(t, ω, z, u) is continuous.) Then it can be shown (see [2, Lemma 1] or [7, Lemma 16.34])
that the mapping u∗

: [0, T ] × Ω × Rd
→ S can be selected to be P ⊗ B(Rd)/S-measurable.

The following theorem is the main result of this subsection.

Theorem 5.2. There exists a U∗
∈ U such that sup(U,ρ)∈U×S0,T

EgU


Y U

ρ


= EgU∗


Y U∗

τ(0)


, where

the stopping time τ(0) is as in Theorem 2.1.

5.3. The cooperative game of Karatzas and Zamfirescu [2006] revisited

In this subsection, we apply results of the last subsection to extend those of [10]. Let us first
recall their setting:

• Consider the canonical space (Ω , F ) =

C([0, T ]; Rd), B(C([0, T ]; Rd))


endowed with

Wiener measure P , under which the coordinate mapping process B(t, ω) = ω(t), t ∈ [0, T ]

becomes a standard d-dimensional Brownian motion. We still take the filtration F generated
by the Brownian motion B (see (5.1)) and let P denote the predictable σ -algebra with respect
to F.

• It is well-known (see e.g. [7, Theorem 14.6]) that given a x ∈ Rd , there exists a pathwise
unique, strong solution X (·) of the stochastic equation

X (t) = x +

∫ t

0
σ(s, X)dBs, t ∈ [0, T ],

where the diffusion term σ(t, ω) is a Rd×d -valued predictable process satisfying:
(σ1)

 T
0 |σ(t, 0⃗)|2dt < ∞ and σ(t, ω) is non-singular for any (t, ω) ∈ [0, T ] × Ω .

(σ2) There exists a K > 0 such that for any ω,ω ∈ Ω and t ∈ [0, T ]

‖σ−1(t, ω)‖ ≤ K and
σi j (t, ω) − σi j (t,ω)

 ≤ K‖ω −ω‖
∗
t ,

∀1 ≤ i, j ≤ n, (5.15)
where ‖ω‖

∗
t , sups∈[0,t] |ω(s)|.
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• Let f (t, ω, u) : [0, T ] × Ω × S → Rd be a P ⊗ S/B(Rd)-measurable function such that:
(f1) For any u ∈ S, the mapping (t, ω) → f (t, ω, u) is predictable (i.e. P-measurable).
(f2) With the same K as in (5.15), | f (t, ω, u)| ≤ K


1 + ‖ω‖

∗
t


for any (t, ω, u) ∈

[0, T ] × Ω × S.

For any U ∈ U , H0
F([0, T ]; S), [10, page 166] shows that

dPU

dP
, exp

∫ T

0
⟨σ−1(t, X) f (t, X, Ut ), dBt ⟩ −

1
2

∫ T

0
|σ−1(t, X) f (t, X, Ut )|

2dt


defines a probability measure PU . The objective of [10] is to find an optimal stopping time
τ ∗

∈ S0,T and an optimal control strategy U∗
∈ U that maximizes the expected reward

EU

ϕ(X


ρ)


+
 ρ

0 h(s, X, Us)ds


over (ρ, U ) ∈ S0,T × U. Here ϕ : Rd
→ R is a bounded

continuous function, and h(t, ω, u) : [0, T ] × Ω × S → R is a P ⊗ S/B(R)-measurable
function such that |h(t, ω, u)| ≤ K for any (t, ω, u) ∈ [0, T ] × Ω × S (with the same K as
appears in (5.15)).

Corollary 8 of [10] shows that under (f2), the process

Z(t) , esssup
(U,ρ)∈U×St,T

EU

[
ϕ

X (ρ)


+

∫ ρ

t
h(s, X, Us)ds|Ft

]
, t ∈ [0, T ]

admits an RCLL modification Z0, and that the first time that processes Z0 and

ϕ

X (t)


t∈[0,T ]

meet with each other, i.e. τ(0) , inf

t ∈ [0, T ] | Z0

t = ϕ

X (t)


, is an optimal stopping time.

That is,

sup
(U,ρ)∈U×S0,T

EU

[
ϕ

X (ρ)


+

∫ ρ

0
h(s, X, Us)ds

]

= sup
U∈U EU

[
ϕ

X (τ (0))


+

∫ τ(0)

0
h(s, X, Us)ds

]
. (5.16)

Moreover, if there is a function u∗
: [0, T ] × Ω × Rd

→ S such that for any (t, ω, z) ∈

[0, T ] × Ω × Rd

sup
u∈S

H(t, ω, z, u) = Ht, ω, z, u∗(t, ω, z)


(5.17)

with H(t, ω, z, u) ,

σ−1(t, ω) f (t, ω, u), z


+ h(t, ω, u) (u∗ can be chosen to be P ⊗

B(Rd)/S-measurable), then there exists an optimal control strategy U∗
∈ U (see Section 8

of [10]) such that

sup
(U,ρ)∈U×S0,T

EU

[
ϕ

X (ρ)


+

∫ ρ

0
h(s, X, Us)ds

]

= EU∗

[
ϕ

X (τ (0))


+

∫ τ(0)

0
h(s, X, U∗

s )ds

]
. (5.18)

In the main result of this subsection, we will show that the assumption of [10] that ϕ and h
are bounded from above by constants can be relaxed and replaced by linear-growth conditions.
This comes, however, at the cost of strengthening the assumption stated in (f2).
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Proposition 5.3. With the same K as in (5.15), we assume that

− K ≤ ϕ(x) ≤ K |x |, ∀x ∈ Rd (5.19)

and that for a.e. t ∈ [0, T ]

| f (t, ω, u)| ≤ K and − K ≤ h(t, ω, u) ≤ K‖ω‖
∗

T , ∀(ω, u) ∈ Ω × S. (5.20)

Then
Z(t)


t∈[0,T ]

has an RCLL modification Z0 such that the first time τ(0) when processesZ0 and

ϕ

X (t)


t∈[0,T ]

meet is an optimal stopping time; i.e., τ(0) satisfies (5.16). Moreover,

if there exists a measurable mapping u∗
: [0, T ] × Ω × Rd

→ S satisfying (5.17), then there is
an optimal control strategy U∗

∈ U such that (5.18) holds.

5.4. Quadratic g-expectations

Now we consider a quadratic generator ĝ = ĝ(t, ω, z) : [0, T ] × Ω × Rd
→ R that satisfies

(i) ĝ(t, ω, 0) = 0, dt × dP-a.s.
(ii) For some κ > 0, it holds dt × dP-a.s. that

∂ ĝ

∂z
(t, ω, z)

 ≤ κ(1 + |z|),

∀z ∈ Rd .
(iii) ĝis convex inzin the sense of (5.5).

(5.21)

Note that under (ii), (i) is equivalent to the following statement: It holds dt × dP-a.s. that

|ĝ(t, ω, z)| ≤ κ


|z| +

1
2
|z|2


, ∀z ∈ Rd . (5.22)

In fact, it is clear that (5.22) implies (i). Conversely, for dt × dP-a.s.(t, ω) ∈ [0, T ] × Ω , one

can deduce that for any z ∈ Rd , |ĝ(t, ω, z)| =
ĝ(t, ω, z) − ĝ(t, ω, 0)

 =

 1
0

∂ ĝ
∂z (t, λz)zdλ

 ≤

κ
 1

0 (1 + λ|z|)|z|dλ = κ

|z| +

1
2 |z|2


.

For any ξ ∈ Le(FT ), [4, Corollary 6] (where we take f = g, and thus α(t) ≡
κ
2 and

(β, γ ) = (0, 2κ)) shows that the quadratic BSDE(ξ, ĝ) admits a unique solution

Γ ξ,ĝ,Θξ,ĝ


∈ Ce

F([0, T ]) × MF([0, T ]; Rd). Hence we can correspondingly define the “quadratic” g-

expectation of ξ by Eĝ[ξ |Ft ] , Γ ξ,ĝ
t , ∀t ∈ [0, T ].

To show that the quadratic g-expectation Eĝ is an F-expectation with domain Dom(Eĝ) =

Le(FT ), we first note that Le(FT ) ∈ DT (clearly, Le(FT ) satisfies (D1) and (D3) and R ⊂

Le(FT ). For any ξ, η ∈ Le(FT ), A ∈ FT and λ > 0, we have E

eλ|1Aξ |


≤ E


eλ|ξ |


< ∞

and E

eλ|ξ+η|


≤ E


eλ|ξ |eλ|η|


≤

1
2 E

e2λ|ξ |


+

1
2 E

e2λ|η|


< ∞, and thus (D2) also

holds for Le(FT )). Like for the Lipschitz g-expectation case, the uniqueness of the solution
(Γ ξ,ĝ,Θξ,ĝ) to the quadratic BSDE(ξ, ĝ) implies that the family of operators


Eĝ[·|Ft ] :

Le(FT ) → Le(Ft )


t∈[0,T ]
satisfies (A2)–(A4) (cf. [13, Lemma 36.6] and [5, Lemma 2.1]),

while a comparison theorem for quadratic BSDEs (see e.g. [4, Theorem 5]) and the following
proposition show that (A1) also holds for the family


Eĝ[·|Ft ]


t∈[0,T ]

.

Proposition 5.4. Let ĝ satisfy (5.21). For any ξ1, ξ2
∈ Le(FT ), if ξ1

≥ ξ2, a.s., then it holds
a.s. that

Γ ξ1,ĝ
t ≥ Γ ξ2,ĝ

t , ∀t ∈ [0, T ]. (5.23)

Moreover, if Γ ξ1,ĝ
ν = Γ ξ2,ĝ

ν , a.s. for some ν ∈ S0,T , then ξ1
= ξ2, a.s.
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Therefore, the quadratic g-expectation Eĝ is an F-expectation with domain Dom(Eĝ) =

Le(FT ). Like for the Lipschitz g-expectation case, the convexity (5.21)(iii) of ĝ as well as
Theorem 5 of [4] determine that Eĝ[·|Ft ] is a convex operator on Le(FT ) for any t ∈ [0, T ].
Hence, Eĝ satisfies (H0) thanks to Lemma 3.1 of [1]. To see Eĝ also satisfying (H1)–(H3), we
need the following stability result.

Lemma 5.2. If ξn → ξ , a.s., and E

eλ|ξ |


+ supn∈N E


eλ|ξn |


< ∞ for any λ > 0, then

lim
n→∞

E

[
sup

t∈[0,T ]

Eĝ[ξn|Ft ] − Eĝ[ξ |Ft ]
] = 0. (5.24)

Proof. Taking fn ≡ g and f = g in Proposition 7 of [4] yields that

lim
n→∞

E

[
exp


p sup

t∈[0,T ]

Eĝ[ξn|Ft ] − Eĝ[ξ |Ft ]
] = 0, ∀p ≥ 1.

Then (5.24) follows since E[supt∈[0,T ] |Eĝ[ξn|Ft ]− Eĝ[ξ |Ft ]|] ≤ E[exp{supt∈[0,T ] |Eĝ[ξn|Ft ]−

Eĝ[ξ |Ft ]|}] for any n ∈ N. �

Proposition 5.5. Let ĝ satisfy (5.21). Then the quadratic g-expectation Eĝ satisfies (H0)–(H3).

Like for Remark 5.1, since Eĝ[ξ |F·] is a continuous process for any ξ ∈ Le(FT ), we see from
(2.6) of [1] that Eĝ[·|Fν] is just a restriction of Eĝ[·|Fν] to Le,#(FT ) , {ξ ∈ Le(FT ) : ξ ≥

c, a.s. for some c ∈ R} for any ν ∈ S0,T . Therefore, all results on F-expectations E and E in
Section 2 of [1] work for quadratic g-expectations.

The next result, which shows the existence of an optimal stopping time for a quadratic g-
expectation, is the main result of this subsection.

Theorem 5.3. Let ĝ satisfy (5.21). For any right-continuous F-adapted process Y with ζ ′

Y ,
esssupt∈DT

Yt
+

∈ Le(FT ) and satisfying (Y3), we have supρ∈S0,T
Eĝ[Yρ] = Eĝ[Yτ(0)], where

τ(0) is as in Theorem 2.1.

6. Proofs

Proof of Lemma 2.1. For any i ∈ I , it is clear that H i
0 = 0 and that (2.2) directly follows from

(h1). For any s, t ∈ DT with s < t , we can deduce from (h2) that

H i
s,t =

∫ t

s
hi

r dr ≥ c
∫ t

s
ds ≥ cT, a.s., (6.1)

which implies that essinfs,t∈DT ;s<t H i
s,t ≥ cT , a.s. Thus (S2) holds with CH = cT .

If no member of E satisfies (2.5) of [1], then
 T

0 |h j
t | dt ∈ Dom(E ) for some j ∈ I is assumed.

For any s, t ∈ DT with s < t , we can deduce from (6.1) and (h2) that CH ≤ H j
s,t ≤

 t
s |h j

r |dr ≤ T
0 |h j

r |dr , a.s., which implies that CH ≤ esssups,t∈DT ;s<t H j
s,t ≤

 T
0 |h j

r |dr a.s. Then Lemma

3.2 of [1] shows that esssups,t∈DT ;s<t H j
s,t ∈ Dom(E ), i.e. (2.3). Moreover, we can derive (S3)

directly from (h3). �
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Proof of Lemma 2.2. For any i, j ∈ I ′ and ρ1, ρ2 ∈ U , we consider the event

A ,
Ei


X (ρ1) + H i

ν,ρ1
|Fν


≤ E j


X (ρ2) + H j

ν,ρ2
|Fν


∈ Fν,

and define stopping times ρ , ρ21A + ρ11Ac ∈ U and ν(A) , ν1A + T 1Ac ∈ Sν,T .
Since E ′

= {Ei }i∈I ′ is a stable subclass of E , Definition 3.2 of [1] assures the existence of
k = k


i, j, ν(A)


∈ I ′ such that Ek = E ν(A)

i, j . We can deduce from Proposition 2.7(5) of [1] and
(3.3) of [1] that for any ξ ∈ Dom(E )Ek[ξ |Fν] = E ν(A)

i, j [ξ |Fν] = Ei
E j [ξ |Fν(A)∨ν]|Fν


= Ei


1AE j [ξ |Fν] + 1AcE j [ξ |FT ]|Fν


= Ei


1AE j [ξ |Fν] + 1Acξ |Fν


= 1AE j [ξ |Fν] + 1AcEi [ξ |Fν], a.s. (6.2)

Moreover, (2.5) implies that H k
ν,ρ = H i

ν(A)∧ν,ν(A)∧ρ + H j
ν(A)∨ν,ν(A)∨ρ = 1Ac H i

ν,ρ1
+ 1A H j

ν,ρ2 ,
a.s. Then applying Proposition 2.7(2) of [1], we see from (6.2) thatEk


X (ρ) + H k

ν,ρ |Fν


= 1AE j


X (ρ) + H k

ν,ρ |Fν


+ 1AcEi


X (ρ) + H k

ν,ρ |Fν


= E j


1A X (ρ2) + 1A H j

ν,ρ2
|Fν


+ Ei


1Ac X (ρ1) + 1Ac H i

ν,ρ1
|Fν


= 1AE j


X (ρ2) + H j

ν,ρ2
|Fν


+ 1AcEi


X (ρ1) + H i

ν,ρ1
|Fν


= Ei


X (ρ1) + H i

ν,ρ1
|Fν


∨ E j


X (ρ2) + H j

ν,ρ2
|Fν


, a.s. (6.3)

Similarly, taking ρ′ , ρ11A + ρ21Ac and k′
= k


i, j, ν(Ac)


, we obtain

Ek′


X (ρ′) + H k′

ν,ρ′ |Fν


= Ei


X (ρ1) + H i

ν,ρ |Fν


∧ E j


X (ρ2) + H j

ν,ρ |Fν


, a.s.

Hence, the family
Ei


X (ρ) + H i

ν,ρ |Fν


(i,ρ)∈I ′×U

is closed under pairwise maximization

and pairwise minimization. Thanks to [11, Proposition VI-1-1], we can find two sequences
{(in, ρn)}n∈N and


(i ′n, ρ′

n)


n∈N in I ′
× U such that (2.9) and (2.10) hold. �

Proof of Lemma 2.3. We fix ν ∈ S0,T . For any (i, ρ) ∈ I × Sν,T , (2.7), (2.4) and Proposition
2.7(5) of [1] show that Ei


Yρ + H i

ν,ρ |Fν


≥ Ei [CY + CH |Fν] = C∗, a.s. Taking the essential

supremum over (i, ρ) ∈ I × Sν,T gives

Z(ν) = esssup
(i,ρ)∈I×Sν,T

Ei

Yρ + H i

ν,ρ |Fν


≥ C∗, a.s.

Then for any i ∈ I , (2.4) implies that Z i (ν) = Z(ν) + H i
ν ≥ C∗ + CH = CY + 2CH , a.s.

If no member of E satisfies (2.5) of [1] (and thus (2.6) is assumed), then for any (i, ρ) ∈

I × Sν,T , it holds a.s. that Ei

Y i

ρ |Ft


≤ ζY for any t ∈ DT . Since Ei

Y i

ρ |F·


is an RCLL process,

it holds except on a null set N = N (i, ρ) thatEi

Y i

ρ |Ft


≤ ζY , ∀t ∈ [0, T ], thus Ei

Y i

ρ |Fν


≤ ζY .

Moreover, Proposition 2.7(3) of [1] and (2.4) imply that

ζY ≥ Ei

Y i

ρ |Fν


= Ei


Yρ + H i

ν,ρ |Fν


+ H i

ν ≥ Ei

Yρ + H i

ν,ρ |Fν


+ CH , a.s.

Taking the essential supremum over (i, ρ) ∈ I × Sν,T yields that

Z(ν) = esssup
(i,ρ)∈I×Sν,T

Ei

Yρ + H i

ν,ρ |Fν


≤ ζY − CH , a.s.
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where ζY − CH ∈ Dom(E ) thanks to (2.6) and (D2). Hence, for any i ∈ I , we have Z i (ν) ≤

ζY − CH + H i
ν , a.s. And (2.2) together with (D2) implies that ζY − CH + H i

ν ∈ Dom(E ). �

Proof of Lemma 2.4. If no member of E satisfies (2.5) of [1], then we see from Lemma 2.3 that
C∗ ≤ Z(ν) ≤ ζY − CH , a.s., and that ζY − CH ∈ Dom(E ). Hence Z(ν) ∈ Dom(E ) thanks to
Lemma 3.2 of [1].

On the other hand, if E j satisfies (2.5) of [1] for some j ∈ I , letting (X, I ′, U ) = (Y, I, Sν,T )

in Lemma 2.2, we can find a sequence {(in, ρn)}n∈N in I × Sν,T such that

Z(ν) = esssup
(i,ρ)∈I×Sν,T

Ei

Yρ + H i

ν,ρ |Fν


= lim

n→∞
↑ Ein


Yρn + H in

ν,ρn
|Fν


, a.s.

For any n ∈ N, it follows from Definition 3.2 of [1] that there exists kn = k( j, in, ν) ∈ I such
that Ekn = E ν

j,in
. Applying Proposition 2.7(3) of [1] to Ekn , we can deduce from (2.4), (3.3) of [1]

and (2.5) thatEkn


Y kn

ρn


− CH = Ekn


Yρn + H kn

ν,ρn
+ H kn

ν − CH


≥ Ekn


Yρn + H kn

ν,ρn


= E ν

j,in


Yρn + H kn

ν,ρn


= E j

Ein


Yρn + H kn

ν,ρn
|Fν


= E j

Ein


Yρn + H in

ν,ρn
|Fν


,

which together with (Y2) shows that

lim
n→∞

E j

Ein


Yρn + H in

ν,ρn
|Fν


≤ sup

(i,ρ)∈I×S0,T

Ei

Y i

ρ


− CH < ∞.

For any n ∈ N, (2.7), (2.4) and Proposition 2.7(5) of [1] imply that Ein


Yρn + H in

ν,ρn |Fν


≥Ein [C∗|Fν] = C∗, a.s. Therefore, we can deduce from Remark 2.2(1) that

Z(ν) = lim
n→∞

↑ Ein


Yρn + H in

ν,ρn
|Fν


∈ Dom(E ).

For any i ∈ I , (2.2) and (D2) imply that Z i (ν) = Z(ν) + H i
ν ∈ Dom(E ). �

Proof of Proposition 2.1. To see (2.14), we first note that the event A , {ν = σ } belongs to
Fν∧σ thanks to [9, Lemma 1.2.16]. For any i ∈ I and ρ ∈ Sν,T , we define ρ(A) , ρ1A + T 1Ac ,
which clearly belongs to Sσ,T . Proposition 2.7(2)–(3) of [1] then implies that

1AEi

Yρ + H i

ν,ρ |Fν


= 1A

Ei

Yρ + H i

ρ |Fν


− H i

ν


= 1A

Ei

Yρ + H i

ρ |Fσ


− H i

σ


= 1AEi


Yρ + H i

σ,ρ |Fσ


= Ei


1A

Yρ(A) + H i

σ,ρ(A)


|Fσ


= 1AEi


Yρ(A) + H i

σ,ρ(A)|Fσ


≤ 1A esssup

(i,γ )∈I×Sσ,T

Ei

Yγ + H i

σ,γ |Fσ


= 1A Z(σ ), a.s.

Taking the essential supremum of the left-hand side over (i, ρ) ∈ I × Sν,T and applying Lemma
3.3(2) of [1], we obtain

1A Z(ν) = 1A esssup
(i,ρ)∈I×Sν,T

Ei

Yρ + H i

ν,ρ |Fν


= esssup

(i,ρ)∈I×Sν,T


1AEi


Yρ + H i

ν,ρ |Fν


≤ 1A Z(σ ), a.s.

Reversing the roles of ν and σ , we obtain (2.14).
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As regards (2.15), since Sγ,T ⊂ Sν,T , it is clear that

esssup
(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

ν,ρ |Fν


≤ esssup

(i,ρ)∈I×Sν,T

Ei

Yρ + H i

ν,ρ |Fν


= Z(ν), a.s.

Letting (X, ν, I ′, U ) = (Y, γ, I, Sγ,T ) in Lemma 2.2, we can find a sequence

(in, ρn)


n∈N in

I × Sγ,T such that

Z(γ ) = esssup
(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

γ,ρ |Fγ


= lim

n→∞
↑ Ein


Yρn + H in

γ,ρn
|Fγ


, a.s.

Now fix j ∈ I . For any n ∈ N, it follows from Definition 3.2 of [1] that there exists a kn =

k( j, in, γ ) ∈ I such that Ekn = E γ

j,in
. Applying Proposition 2.7(3) of [1] to Ein , we can deduce

from (3.3) of [1], (2.5) that

esssup
(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

ν,ρ |Fν


≥ Ekn


Yρn + H kn

ν,ρn
|Fν


= E γ

j,in


Yρn + H kn

ν,ρn
|Fν


= E j

Ein


Yρn + H kn

ν,ρn
|Fγ


|Fν


= E j

Ein


Yρn + H kn

γ,ρn
|Fγ


+ H kn

ν,γ |Fν


= E j

Ein


Yρn + H in

γ,ρn
|Fγ


+ H j

ν,γ |Fν


, a.s. (6.4)

For any n ∈ N, Proposition 2.7(5) of [1], (2.7) and (2.4) show that

CY + 2CH = Ein


C∗|Fγ


+ CH ≤ Ein


Yρn + H in

γ,ρn
|Fγ


+ H j

ν,γ ≤ Z(γ ) + H j
ν,γ , a.s.,

where Z(γ ) + H j
ν,γ ∈ Dom(E ) due to Lemma 2.4, (2.2) and (D2). Then Proposition 2.9 of [1]

and (6.4) imply that

E j

Z(γ ) + H j

ν,γ |Fν


= lim

n→∞

E j

Ein


Yρn + H in

γ,ρn
|Fγ


+ H j

ν,γ |Fν


≤ esssup

(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

ν,ρ |Fν


, a.s.

Taking the essential supremum of the left-hand side over j ∈ I , we obtain

esssup
j∈I

E j

Z(γ ) + H j

ν,γ |Fν


≤ esssup

(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

ν,ρ |Fν


, a.s. (6.5)

On the other hand, for any i ∈ I and ρ ∈ Sγ,T , Corollary 2.3 of [1] and Proposition 2.7(3) of [1]
imply thatEi


Yρ + H i

ν,ρ |Fν


= Ei

Ei

Yρ + H i

γ,ρ |Fγ


+ H i

ν,γ |Fν


≤ Ei


Z(γ ) + H i

ν,γ |Fν


≤ esssup

i∈I
Ei

Z(γ ) + H i

ν,γ |Fν


, a.s.

Taking the essential supremum of the left-hand side over (i, ρ) ∈ I × Sγ,T yields that

esssup
(i,ρ)∈I×Sγ,T

Ei

Yρ + H i

ν,ρ |Fν


≤ esssup

i∈I
Ei

Z(γ ) + H i

ν,γ |Fν


, a.s.,

which together with (6.5) proves (2.15). �
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Proof of Proposition 2.2. For any i ∈ I, ν ∈ S0,T and γ ∈ Sν,T , Proposition 2.7(3) of [1],
(2.15) imply thatEi


Z i (ρ)|Fν


= Ei


Z(ρ) + H i

ν,ρ |Fν


+ H i

ν ≤ esssup
i∈I

Ei

Z(ρ) + H i

ν,ρ |Fν


+ H i

ν

≤ Z(ν) + H i
ν = Z i (ν), a.s.,

which implies that


Z i (t)


t∈[0,T ]
is an Ei -supermartingale. Proposition 2.6 of [1], Theorem 2.3

of [1] and (2.12) then show that


Z i,+
t , limn→∞Z i


q+

n (t)


t∈[0,T ]

defines an RCLL process.

Moreover, (2.12) implies that

essinf
t∈[0,T ]

Z i (t) ≥ CY + 2CH , a.s. (6.6)

If E j satisfies (2.5) of [1] for some j ∈ I , Corollary 2.2 of [1] and (6.6) imply that

Z j,+
ν ∈ Dom#(E j ) = Dom(E ), ∀ν ∈ S0,T , (6.7)

and that Z j,+ is an RCLL E j -supermartingale such that for any

t ∈ [0, T ], Z j,+
t ≤ Z j (t), a.s. (6.8)

Otherwise, if no member of E satisfies (2.5) of [1], we suppose that (2.3) holds for some j ∈ I .
Then Lemma 2.3 and (2.3) imply that for any t ∈ DT , CY + 2CH ≤ Z j (t) = Z(t) + H j

t ≤

ζY − CH + ζ j , a.s. Taking the essential supremum of Z j (t) over t ∈ DT yields that

CY + 2CH ≤ esssup
t∈DT

Z j (t) ≤ ζY − CH + ζ j , a.s.,

where ζY −CH +ζ j
∈ Dom(E ) thanks to (2.6), (2.3) and (D2). Hence Lemma 3.2 of [1] implies

that esssupt∈DT
Z j (t) ∈ Dom(E ) = Dom#(E j ). Applying Corollary 2.2 of [1] and (6.6) again

yields (6.7) and (6.8).
To see that Z j,+ is a modification of


Z j (t)


t∈[0,T ]

, it suffices to show that for any t ∈

[0, T ], Z j,+
t ≥ Z j (t), a.s. Fix t ∈ [0, T ]. For any (i, ν) ∈ I × St,T , Definition 3.2 of [1] assures

that there exists a k = k( j, i, t) ∈ I such that Ek = E t
j,i . (S1) and (2.5) imply that

H k
t = H k

0,t = H j
0,t = H j

t , and H k
t,ν = H i

t,ν, a.s. (6.9)

For any n ∈ N, we set tn , q+
n (t) and define νn , (ν + 2−n) ∧ T ∈ St,T . Let m ≥ n; it is clear

that tm ≤ tn ≤ νn , a.s. Then Proposition 2.7(3) of [1] implies thatEk

Y k

νn
|Ftm


= Ek


Yνn + H k

tm ,νn
|Ftm


+ H k

tm ≤ Z(tm) + H k
tm

= Z j (tm) + H k
tm − H j

tm , a.s.

As m → ∞, (6.9) as well as the right-continuity of the processes Ek

Y k

νn
|F·


, H k and H j imply

that Ek

Y k

νn
|Ft


= lim
m→∞

Ek

Y k

νn
|Ftm


≤ lim

m→∞

Z j (tm) + H k
t − H j

t

= lim
m→∞

Z j (tm) = Z j,+
t , a.s.
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Since limn→∞ ↓ νn = ν, a.s., the right-continuity of the process Y k implies that Y k
νn

converges
a.s. to Y k

ν , which belongs to Dom(E ) due to assumption (Y1) and (2.2). Then (2.8) and
Theorem 2.1 of [1] imply thatEk


Y k

ν |Ft


≤ lim
n→∞

Ek

Y k

νn
|Ft


≤ Z j,+
t , a.s.

We can deduce from Proposition 2.7(5), (3) of [1] and (3.3) of [1] and (6.9) that

Z j,+
t ≥ Ek


Y k

ν |Ft


= E t
j,i


Y k

ν |Ft


= E j
Ei

Y k

ν |Ft

|Ft


= Ei

Y k

ν |Ft


= Ei

Yν + H i

t,ν |Ft

+ H j

t , a.s. (6.10)

Letting (i, ν) run throughout I × St,T yields that

Z j,+
t ≥ esssup

(i,ν)∈I×St,T

Ei

Yν + H i

t,ν |Ft

+ H j

t = Z(t) + H j
t = Z j (t), a.s.,

which implies that Z j,+ is an RCLL modification of


Z j (t)


t∈[0,T ]
. Correspondingly, Z0 ,

Z j,+
t − H j

t


t∈[0,T ]
is an RCLL modification of {Z(t)}t∈[0,T ]. Moreover, for any i ∈ I ,

Z i,0 ,


Z0
t + H i

t


t∈[0,T ]

defines an RCLL modification of


Z i (t)


t∈[0,T ]
; thus it is an Ei -

supermartingale. �

Proof of Proposition 2.3. For any t ∈ [0, T ], we know from (2.11) and Proposition 2.2 that
Yt ≤ Z(t) = Z0

t , a.s. Since the processes Y and Z0 are both right-continuous, it follows from
Remark 2.3(2) that Z0 dominates Y .

If ν ∈ S F
0,T takes values in a finite set {t1 < · · · < tn}, for any α ∈ {1 · · · n}, we can deduce

from (2.14) that

1{ν=tα}Z(ν) = 1{ν=tα}Z(tα) = 1{ν=tα}Z0
tα = 1{ν=tα}Z0

ν , a.s.

Summing the above expression over α, we obtain

Z0
ν = Z(ν), a.s. (6.11)

For general stopping time ν ∈ S0,T , we let {νn}n∈N be a decreasing sequence in S F
0,T such that

limn→∞ ↓ νn = ν, a.s. Thus for any i ∈ I , the right-continuity of the process Z i,0 shows that

Z i,0
ν = lim

n→∞
Z i,0

νn
, a.s. (6.12)

For any n ∈ N, (6.11) and (2.12) imply that

Z i,0
νn

= Z i (νn) ≥ CY + 2CH , a.s. (6.13)

If E j satisfies (2.5) of [1] for some j ∈ I , we can deduce from (2.16) and (Y2) thatE j

Z j,0

νn


= E j


Z j (νn)


≤ Z j (0) = Z(0) = sup

(i,ρ)∈I×S0,T

Ei

Yρ + H i

ρ


< ∞,

and thus limn→∞
E j

Z j,0

νn


< ∞. Then Remark 2.2(1) implies that Z j,0

ν ∈ Dom(E ).
On the other hand, if no member of E satisfies (2.5) of [1], we suppose that (2.3) holds for

some j ∈ I . In light of Proposition 2.2 and Lemma 2.3, it holds a.s. that

CY + 2CH ≤ Z j,0
t = Z0

t + H j
t = Z(t) + H j

t ≤ ζY − CH + ζ j , ∀t ∈ DT ,
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where ζY − CH + ζ j
∈ Dom(E ). Since Z j,0 is an RCLL process, it holds except on a null set

N that

CY + 2CH ≤ Z j,0
t ≤ ζY − CH + ζ j , ∀t ∈ [0, T ], thus

CY + 2CH ≤ Z j,0
ν ≤ ζY − CH + ζ j .

(6.14)

Lemma 3.2 of [1] then implies that Z j,0
ν ∈ Dom(E ). In both cases, we have seen that Z j,0

ν

∈ Dom(E ) for some j ∈ I .
Since Z j,0 is an RCLL E j -supermartingale by Proposition 2.2, (6.13) and Theorem 2.4 of [1]

imply that E j

Z j,0

νn |Fνn+1


≤ Z j,0

νn+1 , a.s. for any n ∈ N. Corollary 2.3 of [1] and Theorem 2.4
of [1] again show that

E j

Z j,0

νn
|Fν


= E j

E j

Z j,0

νn
|Fνn+1


|Fν


≤ E j


Z j,0

νn+1
|Fν


≤ Z j,0

ν , a.s., (6.15)

which implies that limn→∞ ↑ E j

Z j,0

νn |Fν


≤ Z j,0

ν , a.s. On the other hand, using (6.12) and
(6.13), we can deduce from Proposition 2.7(5) of [1] and Theorem 2.1 of [1] that

Z j,0
ν = E j


Z j,0

ν |Fν


≤ lim

n→∞
↑ E j


Z j,0

νn
|Fν


≤ Z j,0

ν , a.s.

Then (6.11) and (2.16) imply that

Z j,0
ν = lim

n→∞
↑ E j


Z j,0

νn
|Fν


= lim

n→∞
↑ E j


Z j (νn)|Fν


≤ Z j (ν), a.s., thus Z0

ν ≤ Z(ν) a.s. (6.16)

For any (i, ρ) ∈ I × Sν,T and n ∈ N, we define ρn , ρ ∨ νn ∈ Sνn ,T . Proposition 2.7(3)
of [1] implies thatEi


Y i

ρn
|Fνn


= Ei


Yρn + H i

νn ,ρn
|Fνn


+ H i

νn
≤ Z(νn) + H i

νn
= Z i (νn), a.s.

Taking Ei

·|Fν


on both sides, we see from Corollary 2.3 of [1] that Ei


Y i

ρn
|Fν


≤ Ei


Z i

(νn)|Fν


, a.s. It is easy to see that limn→∞ ↓ ρn = ρ, a.s. Using the right-continuity of processes

Y and H i , we can deduce from (2.8), Proposition 2.8 of [1] and (6.16) thatEi

Y i

ρ |Fν


≤ lim

n→∞

Ei

Y i

ρn
|Fν


≤ lim

n→∞
↑ Ei


Z i (νn)|Fν


= Z i,0

ν , a.s.

Then subtracting H i
ν from both sides and taking the essential supremum over (i, ρ) ∈ I × Sν,T

yields that Z(ν) ≤ Z0
ν , a.s., which together with (6.16) shows that Z0

ν = Z(ν), a.s. Hence
Z0

ν ∈ Dom(E ) by Lemma 2.4. For any i ∈ I ,

Z i,0
ν = Z0

ν + H i
ν = Z(ν) + H i

ν = Z i (ν), a.s.,

and thus Z i,0
ν ∈ Dom(E ); thanks to Lemma 2.4 once again, (2.17) is proved.

Now let X be another RCLL F-adapted process dominating Y such that X i , {X t +

H i
t }t∈[0,T ] is an Ei -supermartingale for any i ∈ I . We fix t ∈ [0, T ]. For any i ∈ I and ν ∈ St,T ,

we let {νn}n∈N be a decreasing sequence in S F
t,T such that limn→∞ ↓ νn = ν, a.s. For any n ∈ N,

since X i dominates Y i , Remark 2.3(1) shows that X i
νn

≥ Y i
νn

, a.s. Then (A4), Proposition 2.6
of [1] and Theorem 2.4 of [1] imply thatEi


Yνn + H i

t,νn
|Ft


= Ei

Y i

νn
|Ft

− H i

t ≤ Ei

X i

νn
|Ft

− H i

t ≤ X i
t − H i

t = X t , a.s.
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The right-continuity of the processes Y and H i shows that Yν + H i
t,ν = limn→∞


Yνn + H i

t,νn


,

a.s.; thus it follows from (2.7), (2.4) and Proposition 2.8 of [1] thatEi

Yν + H i

t,ν |Ft


≤ lim
n→∞

Ei

Yνn + H i

t,νn
|Ft


≤ X t , a.s.

Taking the essential supremum of the left-hand side over (i, ν) ∈ I × St,T , we can deduce from
Proposition 2.2 that

Z0
t = Z(t) = esssup

(i,ν)∈I×St,T

Ei

Yν + H i

t,ν |Ft


≤ X t , a.s.

Since both Z0 and X are RCLL processes, Remark 2.3(2) once again shows that X dominates
Z0. �

Proof of Lemma 2.5. For any i ∈ I , (2.18), (2.4), as well as Proposition 2.7(5) of [1], imply
that Ei


Z0

τδ(ν) + H i
ν,τδ(ν)|Fν


≥ Ei


C∗ + CH |Fν


= CY + 2CH , a.s.

Taking the essential supremum of the left-hand side over i ∈ I , we can deduce from (2.19) that

CY + 2CH ≤ esssup
i∈I

Ei

Z0

τδ(ν) + H i
ν,τδ(ν)|Fν


= Jδ(ν) ≤ Z(ν), a.s. (6.17)

Then Lemma 3.2 of [1] implies that Jδ(ν) ∈ Dom(E ). Let σ be another stopping time in S0,T .
By (2.17) and (2.14),

1{τδ(ν)=τδ(σ )}Z0
τδ(ν) = 1{τδ(ν)=τδ(σ )}Z(τδ(ν)) = 1{τδ(ν)=τδ(σ )}Z(τδ(σ ))

= 1{τδ(ν)=τδ(σ )}Z0
τδ(σ ), a.s.

Since {ν = σ } ⊂ {τδ(ν) = τδ(σ )}, multiplying by 1{ν=σ } on both sides yields that 1{ν=σ }Z0
τδ(ν)

= 1{ν=σ }Z0
τδ(σ ), a.s. For any i ∈ I , applying Proposition 2.7(2) of [1] and recalling how Ei [·|Fν]

and Ei [·|Fσ ] are defined in (2.6) of [1], we obtain

1{ν=σ }
Ei

Z0

τδ(ν) + H i
ν,τδ(ν)|Fν


= 1{ν=σ }

Ei

Z0

τδ(ν) + H i
ν,τδ(ν)|Fσ


= Ei


1{ν=σ }Z0

τδ(σ ) + 1{ν=σ } H i
σ,τδ(σ )|Fσ


= 1{ν=σ }

Ei

Z0

τδ(σ ) + H i
σ,τδ(σ )|Fσ


, a.s.,

where we use the fact that {ν = σ } ∈ Fν∧σ thanks to [9, Lemma 1.2.16]. Taking the essential
supremum of both sides over i ∈ I , we can deduce from Lemma 3.3(2) of [1] that a.s.

1{ν=σ } Jδ(ν) = esssup
i∈I

1{ν=σ }
Ei

Z0

τδ(ν) + H i
ν,τδ(ν)|Fν


= esssup

i∈I
1{ν=σ }

Ei

Z0

τδ(σ ) + H i
σ,τδ(σ )|Fσ


= 1{ν=σ } Jδ(σ ). �

Proof of Proposition 2.4.

Proof of (1). We fix i ∈ I and ν, ρ ∈ S0,T with ν ≤ ρ, a.s. Taking (ν, I ′, U ) =

ρ, I, {τδ(ρ)}


and X


τδ(ρ)


= Z0

τδ(ρ) in Lemma 2.2, we can find a sequence { jn}
∞

n=1 in I such that

Jδ(ρ) = esssup
j∈I

E j [Z0
τδ(ρ) + H j

ρ,τδ(ρ)|Fρ] = lim
n→∞

↑ E jn [Z0
τδ(ρ) + H jn

ρ,τδ(ρ)|Fρ], a.s.
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For any n ∈ N, it follows from Definition 3.2 of [1] that there exists a kn = k(i, jn, ρ) ∈ I such
that Ekn = E ρ

i, jn
. Applying Proposition 2.7(3) of [1] to E jn , we can deduce from (3.3) of [1] and

(2.5) thatEkn


Z0

τδ(ρ) + H kn
ν,τδ(ρ)|Fν


= Ei

E jn


Z0

τδ(ρ) + H kn
ν,τδ(ρ)|Fρ


|Fν


= Ei

E jn


Z0

τδ(ρ) + H jn
ρ,τδ(ρ)|Fρ


+ H i

ν,ρ |Fν


, a.s. (6.18)

Since ν ≤ ρ, a.s., we see that τδ(ν) ≤ τδ(ρ), a.s. Due to (2.17) and (2.15), we have thatEkn


Z0

τδ(ρ) + H kn
τδ(ν),τδ(ρ)|Fτδ(ν)


≤ esssup

j∈I
E j

Z(τδ(ρ)) + H j

τδ(ν),τδ(ρ)|Fτδ(ν)


≤ Z(τδ(ν)) = Z0

τδ(ν), a.s.

Then using Corollary 2.3 of [1] and applying Proposition 2.7(3) of [1], (1) of [1] to Ekn , we obtainEkn


Z0

τδ(ρ) + H kn
ν,τδ(ρ)|Fν


= Ekn

Ekn


Z0

τδ(ρ) + H kn
τδ(ν),τδ(ρ)|Fτδ(ν)


+ H kn

ν,τδ(ν)|Fν


≤ Ekn


Z0

τδ(ν) + H kn
ν,τδ(ν)|Fν


≤ esssup

j∈I
E j

Z0

τδ(ν) + H j
ν,τδ(ν)|Fν


= Jδ(ν), a.s. (6.19)

For any n ∈ N, we see from (2.18), (2.4) and Proposition 2.7(5) of [1] thatE jn


Z0

τδ(ρ) + H jn
ρ,τδ(ρ)|Fρ


+ H i

ν,ρ ≥ E jn


CY + 2CH |Fρ


+ CH = CY + 3CH , a.s.

Then Proposition 2.8 of [1], and (6.18) and (6.19) imply that a.s.Ei

Jδ(ρ) + H i

ν,ρ |Fν


≤ lim

n→∞
↑ Ei

E jn


Z0

τδ(ρ) + H jn
ρ,τδ(ρ)|Fρ


+ H i

ν,ρ |Fν


= lim

n→∞
↑ Ekn


Z0

τδ(ρ) + H kn
ν,τδ(ρ)|Fν


≤ Jδ(ν),

where we used the fact that Jδ(ρ)+ H i
ν,ρ ∈ Dom(E ), established thanks to Lemma 2.5, (2.2) and

(D2). Also, J i
δ (ρ) , Jδ(ρ) + H i

ρ ∈ Dom(E ). A simple application of Proposition 2.7(3) of [1]
yields thatEi


J i
δ (ρ)|Fν


= Ei


Jδ(ρ) + H i

ν,ρ |Fν


+ H i

ν ≤ Jδ(ν) + H i
ν = J i

δ (ν), a.s. (6.20)

In particular, for any 0 ≤ s < t ≤ T,Ei

J i
δ (t)|Fs


≤ J i

δ (s), a.s. Hence,


J i
δ (t)


t∈[0,T ]

is anEi -supermartingale.

Proof of (2). Proposition 2.6 of [1] and Theorem 2.3 of [1] then show that


J δ,i,+
t , limn→∞ J i

δ
q+

n (t)


t∈[0,T ]

defines an RCLL process. For any i ∈ I and ν ∈ S0,T , (6.17) and (2.4) imply

that

J i
δ (ν) = Jδ(ν) + H i

ν ≥ CY + 3CH , a.s. (6.21)

which implies that essinft∈[0,T ] J i
δ (t) ≥ CY + 3CH , a.s. Like in the discussion of (6.7) and (6.8),

one can show by means of two cases that for some j ∈ I, J δ, j,+
ν ∈ Dom(E ) for any ν ∈ S0,T ,

and J δ, j,+ is an RCLL E j -supermartingale such that for any t ∈ [0, T ]

J δ, j,+
t ≤ J j

δ (t), a.s. (6.22)
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To see the reverse of (6.22), we fix t ∈ [0, T ]. For any i ∈ I , Definition 3.2 of [1] assures that
there exists a k = k( j, i, t) ∈ I such that Ek = E t

j,i . Moreover, (S1) and (2.5) imply that

H k
t = H k

0,t = H j
0,t = H j

t , and H k
t,τδ(t) = H i

t,τδ(t), a.s. (6.23)

For any n ∈ N, we set tn , q+
n (t). Let m ≥ n; thus tm ≤ tn . Then (2.17), Corollary 2.3 of [1],

and Proposition 2.7(3) of [1] as well as (2.15) imply thatEk

Z k,0

τδ(tn)|Ftm


= Ek


Z k(τδ(tn))|Ftm


= Ek

Ek

Z k(τδ(tn))|Fτδ(tm )


|Ftm


= Ek

Ek

Z(τδ(tn)) + H k

τδ(tm ),τδ(tn)|Fτδ(tm )


+ H k

tm ,τδ(tm )|Ftm


+ H k

tm

≤ Ek

esssup

l∈I
El

Z(τδ(tn)) + H l

τδ(tm ),τδ(tn)|Fτδ(tm )


+ H k

tm ,τδ(tm )|Ftm


+ H k

tm

≤ Ek

Z(τδ(tm)) + H k

tm ,τδ(tm )|Ftm


+ H k

tm

≤ esssup
l∈I

El

Z0

τδ(tm ) + H l
tm ,τδ(tm )|Ftm


+ H k

tm

= Jδ(tm) + H k
tm = J j

δ (tm) + H k
tm − H j

tm , a.s.

As m → ∞, (6.23), as well as the right-continuity of the processes Ek

Z k,0

τδ(tn)|F·


, H k and H j ,

implies thatEk

Z k,0

τδ(tn)|Ft


= lim
m→∞

Ek

Z k,0

τδ(tn)|Ftm


≤ lim

m→∞

J j
δ (tm) + H k

t − H j
t

= lim
m→∞

J j
δ (tm) = J δ, j,+

t , a.s.

Since limn→∞ ↓ τδ(tn) = τδ(t) a.s., the right-continuity of process Z k,0, (2.18) and Theorem
2.1 of [1] imply thatEk


Z k,0

τδ(t)
|Ft


≤ lim
n→∞

Ek

Z k,0

τδ(tn)|Ft


≤ J δ, j,+
t , a.s.

Then like for (6.10), one can deduce from (3.3) of [1] and (6.23) that J δ, j,+
t ≥ Ei


Z0

τδ(t)
+

H i
t,τδ(t)

|Ft


+ H j
t , a.s. Taking the essential supremum of the right-hand side over i ∈ I

yields that J δ, j,+
t ≥ J j

δ (t), a.s., which together with (6.22) implies that J δ, j,+ is an RCLL

modification of


J j
δ (t)


t∈[0,T ]

. Then we can draw similar conclusions to those at the end of
proof of Proposition 2.2.

Proof of (3). Like for (6.11), we can deduce from Lemma 2.5 that for any ν ∈ S F
0,T

J δ,0
ν = Jδ(ν), a.s. (6.24)

For a general stopping time ν ∈ S0,T , we let {νn}n∈N be a decreasing sequence in S F
0,T such that

limn→∞ ↓ νn = ν, a.s. Thus for any i ∈ I , the right-continuity of the process J δ,i,0 shows that

J δ,i,0
ν = lim

n→∞
J δ,i,0
νn

, a.s. (6.25)

In light of (6.24) and (6.21), it holds a.s. that J δ,i,0
t = J i

δ (t) ≥ CY + 3CH , ∀t ∈ DT . Since J δ,i,0

is an RCLL process, it holds except on a null set N that

J δ,i,0
t ≥ CY + 3CH , ∀t ∈ [0, T ], thus J δ,i,0

σ ≥ CY + 3CH , ∀σ ∈ S0,T . (6.26)
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Like in the discussion in Proof of Proposition 2.3, one can show by means of two cases that
J δ, j,0
ν ∈ Dom(E ) for some j ∈ I . And like in the arguments used in (6.15) through (6.16)

(with (6.24)–(6.26) replacing (6.11)–(6.13) respectively, and with (6.20) replacing (2.16)), we
can deduce that

J δ, j,0
ν = lim

n→∞
↑ E j


J δ, j,0
νn

|Fν


= lim

n→∞
↑ E j


J j
δ (νn)|Fν


≤ J j

δ (ν), a.s. thus, J δ,0
ν ≤ Jδ(ν), a.s. (6.27)

The right-continuity of the process J δ,0, and (6.24) and (6.17) show that J δ,0
ν = limn→∞ J δ,0

νn
=

limn→∞ Jδ(νn) ≥ CY + 2CH , a.s. Lemma 2.5 and Lemma 3.2 of [1] thus imply that J δ,0
ν ∈

Dom(E ).

For any i ∈ I and n ∈ N, since ν ≤ νn ≤ τδ(νn), a.s., Corollary 2.3 of [1], and (6.27) and
(6.20) imply thatEi


J δ,i,0
τδ(νn)|Fν


= Ei

Ei

J δ,i,0
τδ(νn)|Fνn


|Fν


≤ Ei

Ei

J i
δ


τδ(νn)


|Fνn


|Fν


≤ Ei


J i
δ (νn)|Fν


, a.s.

It is easy to see that limn→∞ ↓ τδ(νn) = τδ(ν), a.s. Using the right-continuity of the process
J δ,i,0, we can deduce from (6.26), Proposition 2.8 of [1] and (6.27) thatEi


J δ,i,0
τδ(ν)|Fν


≤ lim

n→∞

Ei

J δ,i,0
τδ(νn)|Fν


≤ lim

n→∞
↑ Ei


J i
δ (νn)|Fν


= J δ,i,0

ν , a.s.

Then subtracting H i
ν from both sides and taking the essential supremum over i ∈ I yields that

Jδ(ν) = esssup
i∈I

Ei

J δ,0
τδ(ν) + H i

ν,τδ(ν)|Fν


≤ J δ,0

ν , a.s.,

which together with (6.27) shows that J δ,0
ν = Jδ(ν), a.s. �

Proof of Theorem 2.1. We first show that for any δ ∈ (0, 1) and ν ∈ S0,T

Jδ(ν) = Z0
ν = Z(ν), a.s. (6.28)

Fix i ∈ I . Lemma 3.1 of [1] indicates that Ei is a convex F-expectation on Dom(E ). Since Z i,0

and J δ,i,0 are both Ei -supermartingales, we can deduce that for any 0 ≤ s < t ≤ T ,Ei

δZ0

t + (1 − δ)J δ,0
t + H i

t |Fs


= Ei

δZ i,0

t + (1 − δ)J δ,i,0
t |Fs


≤ δEi


Z i,0

t |Fs

+ (1 − δ)Ei


J δ,i,0

t |Fs


≤ δZ i,0
s + (1 − δ)J δ,i,0

s = δZ0
s + (1 − δ)J δ,0

s + H i
s , a.s.,

which shows that

δZ0

t + (1 − δ)J δ,0
t + H i

t


t∈[0,T ]

is an RCLL Ei -supermartingale.

Now we fix t ∈ [0, T ] and define A , {τδ(t) = t} ∈ Ft . Using Proposition 2.4(3), and
Lemma 3.3(2) of [1] as well as applying Proposition 2.7(2), (5) of [1] to each Ei , we obtain
that a.s.

1A J δ,0
t = 1A Jδ(t) = 1A esssup

i∈I
Ei

Z0

τδ(t) + H i
t,τδ(t)|Ft


= esssup

i∈I
Ei

1A

Z0

τδ(t) + H i
t,τδ(t)


|Ft


= esssup
i∈I

Ei

1A Z0

t |Ft


= 1A Z0
t .
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Then (2.17) and (2.11) imply that

1A

δZ0

t + (1 − δ)J δ,0
t


= 1A Z0
t = 1A Z(t) ≥ 1AYt , a.s. (6.29)

Moreover, we see from the definition of τδ(t) that for any ω ∈ Ac

Ys(ω) < δZ0
s (ω) + (1 − δ)(CY + 2CH ), ∀s ∈


t, τδ


t

(ω)


. (6.30)

Since both Z0 and Y are right-continuous processes, (6.30) and (6.17) imply that

Yt ≤ δZ0
t + (1 − δ)(CY + 2CH ) ≤ δZ0

t + (1 − δ)J δ,0
t a.s. on Ac,

which in conjunction with (6.29) and Remark 2.3(2) shows that the RCLL process δZ0
+ (1 −

δ)J δ,0 dominates Y , and thus dominates Z0 thanks to Proposition 2.3. It follows that J δ,0 also
dominates Z0. Then for any ν ∈ S0,T , Proposition 2.4(3), Remark 2.3(1) and (2.17) imply that
Jδ(ν) = J δ,0

ν ≥ Z0
ν = Z(ν), a.s. The reverse inequality comes from (2.19). This proves (6.28).

Next, we fix ν ∈ S0,T and set δn
=

n−1
n , n ∈ N. It is clear that the sequence


τδn (ν)


n∈N

increases a.s. to τ(ν). Since the family of processes {Y i
}i∈I is “E -uniformly-left-continuous”,

we can find a subsequence {δnk }k∈N of {δn
}n∈N such that

lim
k→∞

esssup
i∈I

Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν

 = 0, a.s. (6.31)

For any i ∈ I and k ∈ N, Remark 2.4(1) implies that Yτδnk (ν) ≥ δnk Z0
τδnk (ν) +


1 − δnk


(CY +

2CH ), a.s. Hence Proposition(3) of [1] shows that

Ei


Z0

τδnk (ν) + H i
ν,τδnk (ν)|Fν


+

1
nk − 1

(CY + 2CH )

≤ Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− H i

ν

= Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν


+ Ei


Yτ(ν) + H i

ν,τ (ν)|Fν


≤ esssup

i∈I

Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν


+Ei


Yτ(ν) + H i

ν,τ (ν)|Fν


≤ esssup

i∈I

Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν


+ esssup

i∈I
Ei


Yτ(ν) + H i

ν,τ (ν)|Fν


, a.s. (6.32)

Taking the esssup of the left-hand side over I , we see from (6.28) that

esssup
i∈I

Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν


+ esssup

i∈I
Ei


Yτ(ν) + H i

ν,τ (ν)|Fν


≥ Jδnk (ν) +

1
nk − 1

(CY + 2CH ) = Z(ν) +
1

nk − 1
(CY + 2CH ), a.s..
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As k → ∞, (6.31), (2.11) and (2.15) imply that

Z(ν) ≤ esssup
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


≤ esssup

i∈I
Ei

Z(τ (ν)) + H i

ν,τ (ν)|Fν


≤ Z(ν), a.s.,

which shows that

Z(ν) = esssup
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


= esssup

i∈I
Ei

Z(τ (ν)) + H i

ν,τ (ν)|Fν


, a.s. (6.33)

Now we fix ρ ∈ Sν,τ (ν). For any i ∈ I , Corollary 2.3 of [1] and (2.16) show that

Ei

Z i (τ (ν))|Fν


= Ei

Ei

Z i (τ (ν))|Fρ


|Fν


≤ Ei


Z i (ρ)|Fν


, a.s.

Then Proposition 2.7(3) of [1] implies thatEi

Z(τ (ν)) + H i

ν,τ (ν)|Fν


= Ei


Z i (τ (ν))|Fν


− H i

ν ≤ Ei

Z i (ρ)|Fν


− H i

ν

= Ei

Z(ρ) + H i

ν,ρ |Fν


, a.s.

Taking the essential supremum of both sides over I , we can deduce from (2.15) that

esssup
i∈I

Ei

Z(τ (ν)) + H i

ν,τ (ν)|Fν


≤ esssup

i∈I
Ei

Z(ρ) + H i

ν,ρ |Fν


≤ Z(ν), a.s.,

which together with (6.33) proves (2.22).
Finally, we will prove that τ(ν) = τ1(ν). For any i ∈ I and k ∈ N, (2.17), (2.15), and

Proposition 2.7(3) of [1] as well as Corollary 2.3 of [1] imply thatEi

Z0

τδnk (ν) + H i
ν,τδnk (ν)|Fν


= Ei


Z(τδnk (ν)) + H i

ν,τδnk (ν)|Fν


≥ Ei


esssup

j∈I
E j

Z(τ (ν)) + H j

τδnk (ν),τ (ν)|Fτδnk (ν)


+ H i

ν,τδnk (ν)|Fν


≥ Ei

Ei

Z(τ (ν)) + H i

τδnk (ν),τ (ν)|Fτδnk (ν)


+ H i

ν,τδnk (ν)|Fν


= Ei

Ei

Z(τ (ν)) + H i

ν,τ (ν)|Fτδnk (ν)


|Fν


= Ei


Z(τ (ν)) + H i

ν,τ (ν)|Fν


, a.s.,

which together with (6.32) shows that

esssup
i∈I

Ei

 nk

nk − 1
Yτδnk (ν) + H i

τδnk (ν)|Fν


− Ei


Y i

τ(ν)|Fν

+ Ei


Yτ(ν) + H i

ν,τ (ν)|Fν


≥ Ei


Z(τ (ν)) + H i

ν,τ (ν)|Fν


+

1
nk − 1

(CY + 2CH ), a.s.

As k → ∞, (6.31) implies that

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


≥ Ei


Z(τ (ν)) + H i

ν,τ (ν)|Fν


, a.s. (6.34)

The reverse inequality follows easily from (2.11); thus (6.34) is in fact an equality. Then the
second part of Proposition 2.7(1) of [1] and (2.17) imply that Yτ(ν) = Z(τ (ν)) = Z0

τ(ν),
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a.s., which shows that inf

t ∈ [ν, T ] : Z0

t = Yt


≤ τ(ν), a.s. For any δ ∈ (0, 1), since
t ∈ [ν, T ] : Z0

t = Yt


⊂

t ∈ [ν, T ] : Yt ≥ δZ0

t + (1 − δ)(CY + 2CH )

, one can deduce that

τ(ν) ≥ inf

t ∈ [ν, T ] : Z0

t = Yt


≥ inf

t ∈ [ν, T ] : Yt ≥ δZ0

t + (1 − δ)(CY + 2CH )


∧ T = τδ(ν), a.s.

Letting δ → 1 yields that

τ(ν) ≥ inf

t ∈ [ν, T ] : Z0

t = Yt


≥ lim
δ→1

τδ(ν) = τ(ν), a.s.,

which implies that τ(ν) = inf

t ∈ [ν, T ] : Z0

t = Yt

, a.s. �

Definition 6.1. A family {ξi }i∈I ⊂ L0(FT ) is said to be directed downwards if for any i, j ∈ I ,
there exists a k ∈ I such that ξk ≤ ξi ∧ ξ j , a.s.

Proof of Lemma 3.1. In light of [11, Proposition VI-1-1], it suffices to show that the family
{Ri (ν)}i∈I is directed downwards. To see this, we define the event A ,


Ri (ν) ≥ R j (ν)


and

the stopping times

ρ , τ j (ν)1A + τ i (ν)1Ac ∈ Sν,T and ν(A) , ν1A + T 1Ac ∈ Sν,T .

By Definition 3.2 of [1], there exists a k = k

i, j, ν(A)


∈ I such that Ek = E ν(A)

i, j . It follows
from (2.5) that

H k
ν,τ k (ν)

= H i
ν(A)∧ν,ν(A)∧τ k (ν)

+ H j
ν(A)∨ν,ν(A)∨τ k (ν)

= 1Ac H i
ν,τ k (ν)

+ 1A H j
ν,τ k (ν)

, a.s.

Like for (6.3) and (6.2), we can deduce from Proposition 2.7(2) of [1] and (3.7) that a.s.

Rk(ν) ≥ Ek

Yρ + H k

ν,ρ |Fν


= 1AE j


Yτ j (ν) + H j

ν,τ j (ν)
|Fν


+ 1AcEi


Yτ i (ν) + H i

ν,τ i (ν)
|Fν


= 1A R j (ν) + 1Ac Ri (ν)

≥ 1AE j

Yτ k (ν) + H j

ν,τ k (ν)
|Fν


+ 1AcEi


Yτ k (ν) + H i

ν,τ k (ν)
|Fν


= 1AE j


Yτ k (ν) + H k

ν,τ k (ν)
|Fν


+ 1AcEi


Yτ k (ν) + H k

ν,τ k (ν)
|Fν


= Ek


Yτ k (ν) + H k

ν,τ k (ν)
|Fν


= Rk(ν),

which shows that Rk(ν) = 1A R j (ν) + 1Ac Ri (ν) = Ri (ν) ∧ R j (ν), a.s. In light of the basic
properties of the essential infimum (e.g., [11, Proposition VI-1-1]), we can find a sequence
{in}n∈N in I such that (3.8) holds. �

Proof of Lemma 3.2. As in the proof of Lemma 3.1, it suffices to show that the family
{τ i (ν)}i∈I is directed downwards. To see this, we define the stopping time σ , τ i (ν) ∧ τ j (ν) ∈

Sν,T , and the event A , {Ri,0
σ ≥ R j,0

σ } ∈ Fσ as well as the stopping time σ(A) , σ1A +T 1Ac ∈

Sσ,T . By Definition 3.2 of [1], there exists a k = k

i, j, σ (A)


∈ I such that Ek = E σ(A)

i, j . Fix
t ∈ [0, T ]; it follows from (2.5) that for any ρ ∈ Sσ∨t,T

H k
σ∨t,ρ = H i

σ(A)∧(σ∨t),σ (A)∧ρ + H j
σ(A)∨(σ∨t),σ (A)∨ρ = 1Ac H i

σ∨t,ρ + 1A H j
σ∨t,ρ, a.s.

Like for (6.2), one can deduce from Proposition 2.7(2) of [1] thatEk

Yρ + H k

σ∨t,ρ |Fσ∨t


= 1AE j

Yρ + H k

σ∨t,ρ |Fσ∨t

+ 1AcEi


Yρ + H k

σ∨t,ρ |Fσ∨t


= E j

1AYρ + 1A H j

σ∨t,ρ |Fσ∨t

+ Ei


1Ac Yρ + 1Ac H i

σ∨t,ρ |Fσ∨t


= 1AE j

Yρ + H j

σ∨t,ρ |Fσ∨t

+ 1AcEi


Yρ + H i

σ∨t,ρ |Fσ∨t

, a.s.
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Then applying Proposition 2.7(3) of [1], and Lemma 3.3(2) of [1], as well as (3.6), we obtain

Rk,0
σ∨t = Rk(σ ∨ t) = esssup

ρ∈Sσ∨t,T

Ek

Yρ + H k

σ∨t,ρ |Fσ∨t


= 1A esssup
ρ∈Sσ∨t,T

E j

Yρ + H j

σ∨t,ρ |Fσ∨t

+ 1Ac esssup

ρ∈Sσ∨t,T

Ei

Yρ + H i

σ∨t,ρ |Fσ∨t


= 1A R j (σ ∨ t) + 1Ac Ri (σ ∨ t) = 1A R j,0
σ∨t + 1Ac Ri,0

σ∨t , a.s.

Since Ri,0, R j,0 and Rk,0 are all RCLL processes, it holds a.s. that Rk,0
σ∨t = 1A R j,0

σ∨t + 1Ac Ri,0
σ∨t

for any t ∈ [0, T ], which further implies that

τ k(ν) = inf


t ∈ [ν, T ] : Rk,0
t = Yt


≤ inf


t ∈ [σ, T ] : Rk,0

t = Yt


= 1A inf


t ∈ [σ, T ] : R j,0

t = Yt


+ 1Ac inf


t ∈ [σ, T ] : Ri,0

t = Yt


, a.s. (6.35)

Since Ri,0
τ i (ν)

= Yτ i (ν), R j,0
τ j (ν)

= Yτ j (ν), a.s. and since σ = τ i (ν) ∧ τ j (ν), it holds a.s. that Yσ is

equal either to Ri,0
σ or to R j,0

σ . Then the definition of the set A shows that R j,0
σ = Yσ a.s. on A

and that Ri,0
σ = Yσ a.s. on Ac, both of which further imply that

1A inf


t ∈ [σ, T ] : R j,0
t = Yt


= σ1A and

1Ac inf


t ∈ [σ, T ] : Ri,0
t = Yt


= σ1Ac , a.s.

Hence, we see from (6.35) that τ k(ν) ≤ σ = τ i (ν)∧τ j (ν), a.s. Thanks to the basic properties of
the essential infimum (e.g., [11, Proposition VI-1-1]), we can find a sequence {in}n∈N in I such
that

τ(ν) = essinf
i∈I

τ i (ν) = lim
n→∞

↓ τ in (ν), a.s.

The limit limn→∞ ↓ τ in (ν) is also a stopping time; thus we have τ(ν) ∈ Sν,T . �

Proof of Theorem 3.1. In light of Lemma 3.2, there is a sequence { jn}n∈N in I such that
τ(ν) = limn→∞ ↓ τ jn (ν), a.s. Since the family of processes {Y i

}i∈I is “E -uniformly-right-
continuous”, we can find a subsequence of { jn}n∈N (we still denote it by { jn}n∈N) such that

lim
n→∞

esssup
i∈I

Ei

Y i

τ jn (ν)
|Fτ(ν)


− Y i

τ(ν)

 = 0, a.s. (6.36)

Fix i ∈ I and n ∈ N; we know from Definition 3.2 of [1] that there exists a kn = k(i, jn, τ (ν)) ∈

I such that Ekn = E τ(ν)

i, jn
. For any t ∈ [0, T ], Lemma 3.3 implies that Rkn ,0

τ(ν)∨t = R jn ,0
τ(ν)∨t , a.s. Since

Rkn ,0 and R jn ,0 are both RCLL processes, it holds a.s. that Rkn ,0
τ(ν)∨t = R jn ,0

τ(ν)∨t for any t ∈ [0, T ],

which together with the fact that τ(ν) ≤ τ kn (ν) ∧ τ jn (ν), a.s. implies that

τ kn (ν) = inf


t ∈

ν, T


: Rkn ,0

t = Yt


= inf


t ∈


τ(ν), T


: Rkn ,0

t = Yt


= inf


t ∈


τ(ν), T


: R jn ,0

t = Yt


= inf


t ∈


ν, T


: R jn ,0

t = Yt


= τ jn (ν), a.s. (6.37)
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Then (2.5), (6.37) and (3.3) of [1] show that a.s.

Rkn (ν) + H i
ν = Ekn


Yτ kn (ν) + H kn

ν,τ kn (ν)
|Fν


+ H kn

ν

= Ekn


Y kn

τ kn (ν)
|Fν


= Ei

E jn


Y kn

τ jn (ν)
|Fτ(ν)

Fν


= Ei

E jn


Yτ jn (ν) + H jn

τ(ν),τ jn (ν)
+ H i

τ(ν)|Fτ(ν)

Fν


= Ei

E jn


Y jn

τ jn (ν)
|Fτ(ν)


− H jn

τ(ν) + H i
τ(ν)|Fν


≤ Ei

E jn


Y jn

τ jn (ν)
|Fτ(ν)


− Y jn

τ(ν)

+ Y i
τ(ν)|Fν


≤ Ei


esssup

l∈I

El

Y l

τ jn (ν)
|Fτ(ν)


− Y l

τ(ν)

+ Y i
τ(ν)|Fν


. (6.38)

For any l ∈ I , Proposition 2.7(3) of [1], and (2.7), (2.4) and (3.3) imply thatEl

Y l

τ jn (ν)
|Fτ(ν)


− Y l

τ(ν)


=

El

Yτ jn (ν) + H l

τ(ν),τ jn (ν)
− C∗|Fτ(ν)


− (Yτ(ν) − CY ) + CH


≤ El


Yτ jn (ν) + H l

τ(ν),τ jn (ν)
− C∗|Fτ(ν)


+ (Yτ(ν) − CY ) − CH

= El

Y l

τ jn (ν)
+ H l

τ(ν),τ jn (ν)
|Fτ(ν)


+ Yτ(ν) − 2C∗ ≤ 2Rlτ(ν)


− 2C∗, a.s.

Taking the essential supremum over l ∈ I , we can deduce from (2.8) and (3.3) that

C∗ ≤ esssup
l∈I

El

Y l

τ jn (ν)
|Fτ(ν)


− Y l

τ(ν)

+ Y i
τ(ν) ≤ 3Rlτ(ν)


− 2C∗ + H i

τ(ν), a.s.,

where 3Rl

τ(ν)


− 2C∗ + H i

τ(ν) ∈ Dom(E ) thanks to Proposition 3.1(1), (S1′) and (D2).
Applying Proposition 2.9 of [1] and Proposition 2.7(3) of [1], we can deduce from (6.38) and
(6.36) that

V (ν) = essinf
j∈I

R j (ν) ≤ lim
n→∞

Rkn (ν)

≤ lim
n→∞

Ei


esssup

l∈I

El

Y l

τ jn (ν)
|Fτ(ν)


− Y l

τ(ν)

+ Y i
τ(ν)|Fν


− H i

ν

= Ei

Y i

τ(ν)|Fν


− H i

ν = Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


, a.s.

Taking the essential infimum of the right-hand side over i ∈ I yields that

V (ν) ≤ essinf
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


≤ esssup

ρ∈Sν,T


essinf

i∈I
Ei

Yρ + H i

ν,ρ |Fν


= V (ν) ≤ V (ν), a.s.

Hence, it follows from (3.3) that

V (ν) = essinf
i∈I

Ei

Yτ(ν) + H i

ν,τ (ν)|Fν


= V (ν) = essinf

i∈I
Ri (ν) ≥ Yν, a.s. �

Proof of Proposition 3.2. By Lemma 3.2, there is a sequence {in}n∈N in I such that σ , τ(ν) =

limn→∞ ↓ τ in (ν), a.s. For any n ∈ N, since σ ≤ τ in (ν), a.s., we have

τ in (ν) = inf{t ∈ [ν, T ] : Rin ,0
t = Yt } = inf{t ∈ [σ, T ] : Rin ,0

t = Yt } = τ in (σ ), a.s.
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Then (3.9) and (3.7) imply that

V (σ ) = V (σ ) ≤ Rin (σ ) = Ein [Yτ in (σ ) + H in
σ,τ in (σ )

|Fσ ] = Ein [Yτ in (ν) + H in
σ,τ in (ν)

|Fσ ]

= Ein [Y
in
τ in (ν)

|Fσ ] − H in
σ = Ein [Y

in
τ in (ν)

|Fσ ] − Y in
σ + Yσ

≤ esssup
i∈I

|Ei [Y
i
τ in (ν)

|Fσ ] − Y i
σ | + Yσ , a.s.

As n → ∞, the “E -uniform-right-continuity” of {Y i
}i∈I implies that V (σ ) ≤ Yσ , a.s., while the

reverse inequality is obvious from (3.9). �

Proof of Proposition 3.3. In light of Lemma 3.1 and (3.9), there exists a sequence { jn}n∈N in I
such that

V (ν) = V (ν) = lim
n→∞

↓ R jn (ν), a.s.

For any n ∈ N, Definition 3.2 of [1] assures a kn = k(i, jn, ν) ∈ I such that Ekn = E ν
i, jn

.

Applying Proposition 2.7(5) of [1] to Ei , we can deduce from (3.3) of [1] and (3.5) thatEkn


V (ρ) + H jn

ν,ρ |Fν


≤ Ekn


R jn (ρ) + H jn

ν,ρ |Fν


= E ν

i, jn


R jn (ρ) + H jn

ν,ρ |Fν


= Ei

E jn


R jn (ρ) + H jn

ν,ρ |Fν


|Fν


= E jn


R jn (ρ) + H jn

ν,ρ |Fν


≤ R jn (ν), a.s.

Then Proposition 2.7(3) of [1] and (2.5) imply that

essinf
k∈I

Ek

V k(ρ)|Fν


≤ Ekn


V kn (ρ)|Fν


= Ekn


V (ρ) + H jn

ν,ρ |Fν


+ H i

ν ≤ R jn (ν) + H i
ν , a.s.

Letting n → ∞ gives (3.10).
Now we assume that ν ≤ ρ ≤ τ(ν), a.s. Applying Lemma 3.1 and (3.9) once again, we can

find another sequence


j ′n


n∈N in I such that V (ρ) = V (ρ) = limn→∞ ↓ R j ′n (ρ), a.s. For
any n ∈ N, Definition 3.2 of [1] assures a k′

n = k(i, j ′n, ρ) ∈ I such that Ek′
n

= E ρ

i, j ′n
. Since

ρ ≤ τ(ν) ≤ τ k′
n (ν), a.s., using (3.7) with i = k′

n and applying Proposition 2.7(5) of [1] to E j ′n ,
we can deduce from (2.5), (3.3) of [1] as well as Lemma 3.3 that

V i (ν) = V (ν) + H i
ν = V (ν) + H

k′
n

ν ≤ Rk′
n (ν) + H

k′
n

ν = Ek′
n


Rk′

n (ρ) + H
k′

n
ρ |Fν


= E ρ

i, j ′n


Rk′

n (ρ) + H
k′

n
ρ |Fν


= Ei

E j ′n


Rk′

n (ρ) + H
k′

n
ρ |Fρ


|Fν


= Ei


Rk′

n (ρ) + H
k′

n
ρ |Fν


= Ei


R j ′n (ρ) + H i

ρ |Fν


, a.s. (6.39)

It follows from (3.3) that C∗ ≤ Yρ + H i
ρ ≤ R j ′n (ρ) + H i

ρ ≤ R j ′1(ρ) + H i
ρ , a.s., where

R j ′1(ρ) + H i
ρ ∈ Dom(E ) thanks to Proposition 3.1(1), (S1′) and (D2). As n → ∞ in (6.39),

Proposition 2.9 of [1] implies that

V i (ν) ≤ lim
n→∞

Ei

R j ′n (ρ) + H i

ρ |Fν


= Ei


V (ρ) + H i

ρ |Fν


= Ei


V i (ρ)|Fν


, a.s., proving (3.11).
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Finally, we show that


V i

τ(0) ∧ t


t∈[0,T ]

is an Ei -submartingale: Fix 0 ≤ s < t ≤ T ; we

set ν , τ(0)∧ s, ρ , τ(0)∧ t . Since ν ≤ ρ ≤ τ(0) ≤ τ(ν), a.s., (3.11), Corollary 2.3 of [1] and
Proposition 2.7(5) of [1] show that a.s.

V i τ(0) ∧ s


= V i (ν) ≤ Ei

V i (ρ)|Fν


= Ei


V i τ(0) ∧ t


|Fτ(0)∧s


= Ei

Ei

V i τ(0) ∧ t


|Fτ(0)


|Fs


= Ei


V i τ(0) ∧ t


|Fs


. �

Proof of Theorem 3.2.

Proof of (1). Step 1: For any ρ, ν ∈ S0,T , we define

Ψρ(ν) , essinf
i∈I

Ei

Yρ + H i

ρ∧ν,ρ |Fρ∧ν


+ H i ′

ρ∧ν ∈ Fρ∧ν .

It follows from (2.7), (2.4), and Proposition 2.7(5) of [1] that a.s.

CY + 2CH = essinf
i∈I

Ei [CY + CH |Fρ∧ν] + CH ≤ Ψρ(ν)

≤ Ei ′

Yρ + H i ′

ρ∧ν,ρ |Fρ∧ν


+ H i ′

ρ∧ν ≤ Ri ′(ρ ∧ ν) + H i ′
ρ∧ν, (6.40)

where Ri ′(ρ ∧ν)+ H i ′
ρ∧ν ∈ Dom(E ) due to Proposition 3.1(1), (S1′) and (D2). Then Lemma 3.2

of [1] implies that Ψρ(ν) ∈ Dom(E ). Applying Proposition 2.7(2)–(3) of [1] and Lemma 3.3
of [1], we can rewrite Ψρ(ν) as follows:

Ψρ(ν) − H i ′
ρ∧ν = essinf

i∈I
Ei

1{ρ≤ν}Yρ∧ν + 1{ρ>ν}(Yρ + H i

ν,ρ)|Fρ∧ν


= essinf

i∈I


1{ρ≤ν}Yρ∧ν + 1{ρ>ν}

Ei

Yρ + H i

ν,ρ |Fν


= 1{ρ≤ν}Yρ + 1{ρ>ν} essinf

i∈I
Ei

Yρ + H i

ν,ρ |Fν


, a.s.

Let σ ∈ S0,T . Lemma 3.3(2) of [1] and Proposition 2.7(2) of [1] once again imply that

1{ν=σ }Ψρ(ν) = 1{ρ≤ν=σ }Yρ + 1{ρ>ν=σ } essinf
i∈I

Ei

Yρ + H i

ν,ρ |Fν


+ 1{ν=σ } H i ′

ρ∧ν

= 1{ρ≤ν=σ }Yρ + 1{ρ>ν} essinf
i∈I

Ei

1{ν=σ }


Yρ + H i

σ,ρ


|Fν


+ 1{ν=σ } H i ′

ρ∧σ

= 1{ρ≤ν=σ }Yρ + 1{ρ>ν} essinf
i∈I

1{ν=σ }
Ei

Yρ + H i

σ,ρ |Fσ


+ 1{ν=σ } H i ′

ρ∧σ

= 1{ρ≤σ=ν}Yρ + 1{ρ>σ=ν} essinf
i∈I

Ei

Yρ + H i

σ,ρ |Fσ


+ 1{ν=σ } H i ′

ρ∧σ

= 1{ν=σ }Ψρ(σ ), a.s. (6.41)

Step 2: Fix ρ ∈ S0,T . For any ν ∈ S0,T and σ ∈ Sν,T , letting (ν, I ′, U ) = (ρ ∧ σ, I, {ρ}) and
X (ρ) = Yρ in Lemma 2.2, we can find a sequence { jn}n∈N in I such that

essinf
i∈I

Ei

Yρ + H i

ρ∧σ,ρ |Fρ∧σ


= lim

n→∞
↓ E jn


Yρ + H jn

ρ∧σ,ρ |Fρ∧σ


, a.s.

Definition 3.2 of [1] assures the existence of a kn = k(i ′, jn, ρ ∧ σ) ∈ I such that Ekn = E ρ∧σ

i ′, jn
.

Applying Proposition 2.7(3) of [1] to Ekn , we can deduce from (2.5) and (3.3) of [1] that a.s.

Ψρ(ν) ≤ Ekn


Yρ + H kn

ρ∧ν,ρ |Fρ∧ν


+ H i ′

ρ∧ν = Ekn


Yρ + H kn

ρ∧ν,ρ |Fρ∧ν


+ H kn

ρ∧ν

= Ekn


Y kn

ρ |Fρ∧ν


= Ei ′

E jn


Y kn

ρ |Fρ∧σ


|Fρ∧ν


.
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For any n ∈ N, Proposition 2.7(3) of [1], (5), and (2.8) as well as (2.5) imply that a.s.

C∗ ≤ E jn


Y kn

ρ |Fρ∧σ


= E jn


Yρ + H jn

ρ∧σ,ρ |Fρ∧σ


+ H i ′

ρ∧σ

≤ E j1


Yρ + H j1

ρ∧σ,ρ |Fρ∧σ


+ H i ′

ρ∧σ ≤ R j1(ρ ∧ σ) + H i ′
ρ∧σ ,

where R j1(ρ ∧ σ) + H i ′
ρ∧σ ∈ Dom(E ) thanks to Proposition 3.1(1), (S1′) and (D2). Then

Proposition 2.9 of [1], Corollary 2.3 of [1] and Proposition 2.7(5) of [1] show that

Ψρ(ν) ≤ lim
n→∞

↓ Ei ′
E jn


Y kn

ρ |Fρ∧σ


|Fρ∧ν


= lim

n→∞
↓ Ei ′

E jn


Yρ + H jn

ρ∧σ,ρ |Fρ∧σ


+ H i ′

ρ∧σ |Fρ∧ν


= Ei ′


lim

n→∞
↓ E jn


Yρ + H jn

ρ∧σ,ρ |Fρ∧σ


+ H i ′

ρ∧σ |Fρ∧ν


= Ei ′


essinf

i∈I
Ei

Yρ + H i

ρ∧σ,ρ |Fρ∧σ


+ H i ′

ρ∧σ |Fρ∧ν


= Ei ′


Ψρ(σ )|Fρ∧ν


= Ei ′

Ei ′

Ψρ(σ )|Fρ


|Fν


= Ei ′


Ψρ(σ )|Fν


, a.s., (6.42)

which implies that {Ψρ(t)}t∈[0,T ] is an Ei ′ -submartingale. Hence, {−Ψρ(t)}t∈[0,T ] is an E ′-
supermartingale by assumption (3.12). Since E ′ satisfies (H0), (H1), (2.3) of [1] and since
Dom(E ′) ∈ DT (which results from Dom(E ) ∈ DT and (3.12)), Theorem 2.3 of [1] shows
that Ψρ,+

t , limn→∞Ψρ

q+

n (t)

, t ∈ [0, T ] is an RCLL process and that

P

Ψρ,+

t = lim
n→∞

Ψρ

q+

n (t)


for any t ∈ [0, T ]


= 1. (6.43)

Step 3: For any ν ∈ S0,T and n ∈ N, q+
n (ν) takes values in a finite set Dn

T ,

[0, T ) ∩

{k2−n
}k∈Z


∪ {T }. Given an α ∈ Dn

T , it holds for any m ≥ n that q+
m (α) = α since Dn

T ⊂ Dm
T . It

follows from (6.43) that

Ψρ,+
α = lim

m→∞
Ψρ


q+

m (α)


= Ψρ(α), a.s.

Then one can deduce from (6.41) that

Ψρ,+

q+
n (ν)

=

−
α∈Dn

T

1
{q+

n (ν)=α}
Ψρ,+

α =

−
α∈Dn

T

1
{q+

n (ν)=α}
Ψρ(α)

=

−
α∈Dn

T

1
{q+

n (ν)=α}
Ψρ


q+

n (ν)


= Ψρ

q+

n (ν)

, a.s.

Thus the right-continuity of the process Ψρ,+ implies that

Ψρ,+
ν = lim

n→∞
Ψρ,+

q+
n (ν)

= lim
n→∞

Ψρ

q+

n (ν)

, a.s. (6.44)

We have assumed that esssupt∈DT
E j [Y

j
ρ |Ft ] ∈ Dom(E ) for some j = j (ρ) ∈ I . It holds a.s.

that E j

Y j

ρ |Ft


≤ esssup
s∈DT

E j

Y j

ρ |Fs

, ∀t ∈ DT .

Since E j

Y j

ρ |F·


is an RCLL process, it holds except on a null set N thatE j


Y j

ρ |Ft


≤ esssup
s∈DT

E j

Y j

ρ |Fs

, ∀t ∈ [0, T ], thus

E j

Y j

ρ |Fρ∧q+
n (ν)


≤ esssup

s∈DT

E j

Y j

ρ |Fs

, ∀n ∈ N.
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Then one can deduce from (6.40), (2.4) and Proposition 2.7(3) of [1] that

CY + 2CH ≤ Ψρ

q+

n (ν)


≤ E j

Yρ + H j

ρ∧q+
n (ν),ρ

|Fρ∧q+
n (ν)


+ ζ i ′

= E j

Y j

ρ − H j
ρ∧q+

n (ν)
|Fρ∧q+

n (ν)


+ ζ i ′

≤ E j

Y j

ρ − CH |Fρ∧q+
n (ν)


+ ζ i ′

= E j

Y j

ρ |Fρ∧q+
n (ν)


− CH + ζ i ′

≤ esssup
s∈DT

E j

Y j

ρ |Fs

− CH + ζ i ′ , a.s.,

where the right-hand side belongs to Dom(E ) due to (D2) and the assumption that ζ i ′
∈ Dom(E ).

Proposition 2.9 of [1], (6.44), (6.42) and Proposition 2.7(5) of [1] then imply that Ψρ,+
ν =

limn→∞ Ψρ

q+

n (ν)


∈ Dom(E ) and that

Ψρ(ν) ≤ lim
n→∞

Ei ′

Ψρ(q+

n (ν))|Fν


= Ei ′


Ψρ,+

ν |Fν


= Ψρ,+

ν , a.s. (6.45)

In the last equality, we used the fact that Ψρ,+
ν = limn→∞ Ψρ


q+

n (ν)


∈ Fν by the right-
continuity of the filtration F.
Step 4: Given ν ∈ S0,T , we set γ , τ(0) ∧ ν, γn , τ(0) ∧ q+

n (ν), ∀n ∈ N and let ρ ∈ Sγ,T .
Since limn→∞ ↑ 1

{τ(0)>q+
n (ν)} = 1{τ(0)>ν} and since

{τ(0) > ν} ⊂

q+

n (ν) = q+
n


τ(0) ∧ ν


,

{τ(0) > q+
n (ν)} ⊂


q+

n (ν) = τ(0) ∧ q+
n (ν)


, ∀n ∈ N,

one can deduce from (6.45), (6.44) and (6.41) that

1{τ(0)>ν}Ψρ(γ ) ≤ 1{τ(0)>ν}Ψρ,+
γ = 1{τ(0)>ν} lim

n→∞
Ψρ


q+

n (γ )


= lim
n→∞

1{τ(0)>ν}Ψρ

q+

n


τ(0) ∧ ν


= lim

n→∞
1{τ(0)>ν}Ψρ


q+

n (ν)


= lim
n→∞

1
{τ(0)>q+

n (ν)}Ψ
ρ

q+

n (ν)


= lim
n→∞

1
{τ(0)>q+

n (ν)}Ψ
ρ

τ(0) ∧ q+

n (ν)


= 1{τ(0)>ν} lim
n→∞

Ψρ

γn

, a.s. (6.46)

For any n ∈ N, we see from (3.9) that

V (γn) = V (γn) = esssup
σ∈Sγn ,T


essinf

i∈I
Ei

Yσ + H i

γn ,σ |Fγn


≥ essinf

i∈I
Ei

Yρ∨γn + H i

γn ,ρ∨γn
|Fγn


, a.s. (6.47)

Since {τ(0) ≤ ν} ⊂ {γn = γ = τ(0)}, Proposition 2.7(2)–(3) of [1] imply that for any i ∈ I

1{τ(0)≤ν}
Ei

Yρ + H i

ρ∧γn , ρ |Fγn


= Ei


1{τ(0)≤ν}


Yρ + H i

ρ∧γ, ρ


|Fγn


= 1{τ(0)≤ν}

Ei


Yρ + H i

ρ∧γ, ρ |Fγ


, a.s.,

and thatEi

Yρ∨γn + H i

γn , ρ∨γn
|Fγn


= Ei


1{ρ≤γn}Yγn + 1{ρ>γn}


Yρ + H i

ρ∧γn , ρ


|Fγn


= 1{ρ≤γn}Yγn + 1{ρ>γn}

Ei

Yρ + H i

ρ∧γn , ρ |Fγn


= 1{ρ≤γn}Yγn + 1{ρ>γn ,τ (0)>ν}

Ei

Yρ + H i

ρ∧γn , ρ |Fρ∧γn


+ 1{ρ>γn ,τ (0)≤ν}

Ei

Yρ + H i

ρ∧γ, ρ |Fρ∧γ


, a.s.
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Then it follows from (6.47) and Lemma 3.3 of [1] that

V (γn) ≥ 1{ρ≤γn}Yγn + 1{ρ>γn ,τ (0)>ν} essinf
i∈I

Ei

Yρ + H i

ρ∧γn , ρ |Fρ∧γn


+ 1{ρ>γn ,τ (0)≤ν} essinf

i∈I
Ei

Yρ + H i

ρ∧γ, ρ |Fρ∧γ


= 1{ρ≤γn}Yγn + 1{ρ>γn ,τ (0)>ν}


Ψρ(γn) − H i ′

ρ∧γn


+ 1{ρ>γn ,τ (0)≤ν}


Ψρ(γ ) − H i ′

ρ∧γ


, a.s.

As n → ∞, the right-continuity of processes Y and H i ′ , (6.46), and Lemma 3.3 of [1] as well as
Proposition 2.7(2)–(3) of [1] show that

lim
n→∞

V (γn) ≥ 1{ρ=γ }Yγ + 1{ρ>γ,τ(0)>ν}


lim

n→∞
Ψρ(γn) − H i ′

ρ∧γ


+ 1{ρ>γ,τ(0)≤ν}


Ψρ(γ ) − H i ′

ρ∧γ


≥ 1{ρ=γ }Yγ + 1{ρ>γ } essinf

i∈I
Ei

Yρ + H i

ρ∧γ,ρ |Fρ∧γ


= essinf

i∈I


1{ρ=γ }Yγ + 1{ρ>γ }

Ei

Yρ + H i

γ,ρ |Fγ


= essinf

i∈I
Ei

1{ρ=γ }Yγ + 1{ρ>γ }


Yρ + H i

γ,ρ


|Fγ


= essinf

i∈I
Ei

Yρ + H i

γ,ρ |Fγ


, a.s.

Taking the essential supremum of the right-hand side over ρ ∈ Sγ,T , we obtain

lim
n→∞

V (γn) ≥ esssup
ρ∈Sγ,T


essinf

i∈I
Ei

Yρ + H i

γ,ρ |Fγ


= V (γ ) = V (γ ), a.s. (6.48)

On the other hand, for any i ∈ I and n ∈ N we have that V (γn) = V (γn) = essinfl∈I Rl

(γn) ≤ Ri (γn), a.s. Then (3.6) and the right-continuity of the process Ri,0 imply that

limn→∞V (γn) ≤ lim
n→∞

Ri (γn) = lim
n→∞

Ri,0
γn

= Ri,0
γ = Ri (γ ), a.s.

Taking the essential infimum of Ri (γ ) over i ∈ I yields that

limn→∞V (γn) ≤ essinf
i∈I

Ri (γ ) = V (γ ) = V (γ ), a.s.

This together with (6.48) shows that limn→∞ V (γn) = V (γ ), a.s., which implies that for any
ν ∈ S0,T and i ∈ I

lim
n→∞

V i τ(0) ∧ q+
n (ν)


= lim

n→∞


V

τ(0) ∧ q+

n (ν)

+ H i

τ(0)∧q+
n (ν)


= V


τ(0) ∧ ν


+ H i

τ(0)∧ν = V i τ(0) ∧ ν

, a.s. (6.49)

Step 5: Proposition 3.3 shows that the stopped process


V i ′

τ(0) ∧ t


t∈[0,T ]

is an Ei ′ -submar-

tingale; thus

−V i ′


τ(0) ∧ t


t∈[0,T ]

is an E ′-supermartingale by (3.12). Then Theorem 2.3

of [1] implies that V i ′,+
t , limn→∞V i ′


τ(0) ∧ q+

n (t)

, t ∈ [0, T ] is an RCLL process and
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that P


V i ′,+
t = limn→∞ V i ′


τ(0) ∧ q+

n (t)


for any t ∈ [0, T ]


= 1. For any σ, ζ ∈ S0,T ,

Lemma 3.3 of [1] and (3.4) show that

1{σ=ζ }V (σ ) = 1{σ=ζ }V (σ ) = essinf
j∈I


1{σ=ζ } R j (σ )


= essinf

j∈I


1{σ=ζ } R j (ζ )


= 1{σ=ζ }V (ζ ) = 1{σ=ζ }V (ζ ), a.s.,

which implies that

1{σ=ζ }V
i ′(σ ) = 1{σ=ζ }V (σ ) + 1{σ=ζ } H i ′

σ = 1{σ=ζ }V (ζ ) + 1{σ=ζ } H i ′
ζ

= 1{σ=ζ }V
i ′(ζ ), a.s. (6.50)

Let σ ∈ S F
0,T take values in a finite set {t1 < · · · < tm}. For any α ∈ {1 · · · m} and n ∈ N, since

{σ = tα} ⊂ {τ(0) ∧ q+
n (σ ) = τ(0) ∧ q+

n (tα)}, (6.50) implies that 1{σ=tα}V i ′

τ(0) ∧ q+

n (σ )


=

1{σ=tα}V i ′

τ(0) ∧ q+

n (tα)

, a.s. As n → ∞, (6.49) shows that a.s.

1{σ=tα}V
i ′,+
σ = 1{σ=tα}V

i ′,+
tα = lim

n→∞
1{σ=tα}V

i ′ τ(0) ∧ q+
n (tα)


= lim

n→∞
1{σ=tα}V

i ′ τ(0) ∧ q+
n (σ )


= 1{σ=tα}V

i ′ τ(0) ∧ σ

.

Summing up the above expression over α ∈ {1 · · · m} yields that V i ′,+
σ = V i ′


τ(0) ∧ σ


, a.s.

Then the right-continuity of the process V i ′,+ and (6.49) imply that

V i ′,+
ν = lim

n→∞
V i ′,+

q+
n (ν)

= lim
n→∞

V i ′ τ(0) ∧ q+
n (ν)


= V i ′ τ(0) ∧ ν


, a.s. (6.51)

In particular, V i ′,+ is an RCLL modification of the stopped process


V i ′

τ(0) ∧ t


t∈[0,T ]

.

Therefore, V 0 ,


V i ′,+
t − H i ′

τ(0)∧t


t∈[0,T ]

is an RCLL modification of the stopped value process
V

τ(0) ∧ t


t∈[0,T ]

. For any ν ∈ S0,T , (6.51) implies that

V 0
ν = V i ′,+

ν − H i ′
τ(0)∧ν = V i ′τ(0) ∧ ν


− H i ′

τ(0)∧ν

= V

τ(0) ∧ ν


, a.s., proving (3.13). �

Proof of (2). (3.13) and Proposition 3.2 imply that V 0
τ(0) = V


τ(0)


= Yτ(0), a.s. Hence, we can

deduce from the right-continuity of processes V 0 and Y that τV in (3.14) is a stopping time in
S0,τ (0) and that YτV = V 0

τV
= V (τV ), a.s., where the second equality is due to (3.13). Then it

follows from (3.11) that for any i ∈ I

V (0) = V i (0) ≤ Ei

V i (τV )


= Ei


Y i

τV


= Ei


Y i

τV


.

Taking the infimum of the right-hand side over i ∈ I yields that

V (0) ≤ inf
i∈I

Ei

Y i

τV


≤ sup

ρ∈S0,T


inf
i∈I

Ei

Y i

ρ


= V (0) = V (0),

which implies that infi∈I Ei

Y i

τV


= supρ∈S0,T

infi∈I Ei

Y i

ρ


. �
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Proof of Proposition 4.1. Fix t ∈ [0, T ]. For any ξ ∈ Dom(E ) and i ∈ I , the definition of
Dom(E ) assures that there exists a c(ξ) ∈ R such that c(ξ) ≤ ξ , a.s. Then Proposition 2.7(5)
of [1] shows that

c(ξ) = Ei [c(ξ)|Ft ] ≤ Ei [ξ |Ft ], a.s. (6.52)

Taking the essential infimum of the right-hand side over i ∈ I , we obtain for an arbitrary i ′ ∈ I
that

c(ξ) ≤ E [ξ |Ft ] ≤ Ei ′ [ξ |Ft ], a.s.

Since Ei ′ [ξ |Ft ] ∈ Dom#(Ei ′) = Dom(E ), Lemma 3.2 of [1] implies that E [ξ |Ft ] ∈ Dom(E );
thus E [·|Ft ] is a mapping from Dom(E ) to Domt (E ) = Dom(E ) ∩ L0(Ft ).

A simple application of Lemma 3.3 of [1] shows that E satisfies (A3), (A4) and (4.1). Hence,
it only remains to show (A2) for E . Fix 0 ≤ s < t ≤ T . Letting (ν, I ′, U ) = (t, I, {T }) and
taking X (T ) = ξ in Lemma 2.2, we can find a sequence {in}n∈N in I such that

E [ξ |Ft ] = essinf
i∈I

Ei [ξ |Ft ] = lim
n→∞

↓ Ein [ξ |Ft ], a.s. (6.53)

Now fix j ∈ I . For any n ∈ N, it follows from Definition 3.2 of [1] that there exists a
kn = k( j, in, t) ∈ I such that Ekn = E t

j,in
. Applying (3.3) of [1] yields that

E [ξ |Fs] ≤ Ekn [ξ |Fs] = E t
j,in

[ξ |Fs] = E j
Ein


ξ |Ft


|Fs


, a.s. (6.54)

For any n ∈ N, (6.52) and (6.53) show that c(ξ) ≤ Ein


ξ |Ft


≤ Ei1


ξ |Ft


, a.s., whereEi1


ξ |Ft


∈ Dom#(Ei1) = Dom(E ). Proposition 2.9 of [1] and (6.54) then imply thatE j


E [ξ |Ft ]|Fs


= lim

n→∞

E j
Ein [ξ |Ft ]|Fs


≥ E [ξ |Fs], a.s.

Taking the essential infimum of the left-hand side over j ∈ I , we obtain

E

E [ξ |Ft ]|Fs


≥ E [ξ |Fs], a.s. (6.55)

On the other hand, for any i ∈ I and ρ ∈ St,T , applying Corollary 2.3 of [1], we obtainEi [ξ |Fs] = Ei
Ei [ξ |Ft ]|Fs


≥ Ei [E [ξ |Ft ]|Fs] ≥ E


E [ξ |Ft ]|Fs


, a.s.

Taking the essential infimum of the left-hand side over i ∈ I yields that E [ξ |Fs] ≥

E

E [ξ |Ft ]|Fs


, a.s., which together with (6.55) proves (A2) for E . �

Proof of Proposition 5.1. By (5.2), it holds dt × dP-a.s. that for any z ∈ Rd

|g(t, z)| = |g(t, z) − g(t, 0)| ≤ Kg|z|, thus g̃(t, z) , −Kg|z| ≤ g(t, z).

Clearly, g̃ is a generator satisfying (5.2). It is also positively homogeneous in z, i.e.

g̃(t, αz) = −Kg|αz| = −αKg|z| = αg̃(t, z), ∀α ≥ 0, ∀z ∈ Rd .

Then [13, Example 10] (or [16, Proposition 8]) and (5.6) imply that for any n ∈ N and any
A ∈ FT with P(A) > 0

nEg̃[1A] = Eg̃[n1A] ≤ Eg[n1A]. (6.56)
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Since Eg̃[1A] > 0 (which follows from the second part of (A1)), letting n → ∞ in (6.56) yields
(H0).

Next, we consider a sequence {ξn}n∈N ⊂ L2(FT ) with supn∈N |ξn| ∈ L2(FT ). If ξn converges
a.s., it is clear that ξ , limn→∞ ξn ∈ L2(FT ). Applying Lemma 5.1 with µ = Kg , we obtain

Eg[ξn] − Eg[ξ ]
 ≤ Egµ


|ξn − ξ |


≤

 sup
t∈[0,T ]

Egµ


|ξn − ξ | |Ft


L2(FT )

≤ Ce(Kg+K 2
g )T

‖ξn − ξ‖L2(FT ),

where we used the fact that Kgµ = µ in the last inequality. As n → ∞, thanks to the Dominated
Convergence Theorem of the linear expectation E , we have that ‖ξn −ξ‖

2
L2(FT )

= E |ξn −ξ |
2

→

0; thus limn→∞ Eg[ξn] = Eg[ξ ]. Then (H1) and (H2) follow.
For any ν ∈ S0,T and ξ ∈ L2,+(FT ) , {ξ ∈ L2(FT ) : ξ ≥ 0, a.s.}, Lemma 5.1(1) shows that

supt∈[0,T ]

Eg[ξ |Ft ]
 ∈ L2,+(FT ); consequently Eg[ξ |Fν] ∈ L2,+(FT ). Since X ξ , Eg[ξ |F·] is

a continuous process, X ξ,+
ν = X ξ

ν = Eg[ξ |Fν] ∈ L2,+(FT ), which proves (H3). �

Proof of Proposition 5.2. Fix ν ∈ S0,T . It is easy to check that the generator gν satisfies (5.2)
with Lipschitz coefficient K1 ∨ K2. For any ξ ∈ L2(FT ), we set η , Γ ξ,g2

ν ∈ Fν and defineΘt , 1{ν≤t}Θ
ξ,g2
t + 1{ν>t}Θ

η,g1
t , ∀t ∈ [0, T ].

It follows that

gν(t, Θt ) = 1{ν≤t} g2(t, Θt ) + 1{ν>t}g1(t, Θt )

= 1{ν≤t} g2(t,Θ
ξ,g2
t ) + 1{ν>t}g1(t,Θ

η,g1
t ), ∀t ∈ [0, T ].

For any t ∈ [0, T ], since {ν ≤ t} ∈ Ft , one can deduce that

1{ν≤t}


ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs


= 1{ν≤t}ξ +

∫ T

t
1{ν≤t}g

ν(s, Θs)ds −

∫ T

t
1{ν≤t}ΘsdBs

= 1{ν≤t}ξ +

∫ T

t
1{ν≤t}g2(s,Θ

ξ,g2
s ) ds −

∫ T

t
1{ν≤t}Θ

ξ,g2
s dBs

= 1{ν≤t}


ξ +

∫ T

t
g2(s,Θ

ξ,g2
s ) ds −

∫ T

t
Θξ,g2

s dBs


= 1{ν≤t}Γ

ξ,g2
t , a.s. (6.57)

The continuity of processes
 T
·

gν(s, Θs)ds,
 T
·
ΘsdBs and Γ ξ,g2

· then implies that except on
a null set N

1{ν≤t}


ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs


= 1{ν≤t} Γ

ξ,g2
t , ∀t ∈ [0, T ].

Taking t = ν(ω) for any ω ∈ N c yields that

ξ +

∫ T

ν

gν(s, Θs)ds −

∫ T

ν

ΘsdBs = Γ ξ,g2
ν = η, a.s. (6.58)
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Now fix t ∈ [0, T ]. We can deduce from (6.58) that

1{ν>t}


ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs


= 1{ν>t}


η +

∫ ν

t
gν(s, Θs)ds −

∫ ν

t

ΘsdBs


= 1{ν>t}


η +

∫ ν

t
g1(s,Θ

η,g1
s )ds −

∫ ν

t
Θη,g1

s dBs


, a.s. (6.59)

Moreover, Proposition 2.7(5) of [1] implies that

Eg1 [η|Ft∧ν] = η +

∫ T

t∧ν

g1(s,Θ
η,g1
s )ds −

∫ T

t∧ν

Θη,g1
s dBs

= Eg1 [η|Fν] +

∫ ν

t∧ν

g1(s,Θ
η,g1
s )ds −

∫ ν

t∧ν

Θη,g1
s dBs

= η +

∫ ν

t∧ν

g1(s,Θ
η,g1
s )ds −

∫ ν

t∧ν

Θη,g1
s dBs, a.s.

Multiplying both sides by 1{ν>t} and using (6.59), we obtain

1{ν>t}


ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs


= 1{ν>t}Eg1 [η|Ft ] = 1{ν>t}Eg1 [Γ

ξ,g2
ν |Ft ], a.s.,

which in conjunction with (6.57) shows that for any t ∈ [0, T ]

ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs = 1{ν≤t}Γ
ξ,g2
t + 1{ν>t}Eg1 [Γ

ξ,g2
ν |Ft ]

= 1{ν≤t}Eg2 [ξ |Ft ] + 1{ν>t}Eg1


Eg2 [ξ |Fν]|Ft


= E ν

g1,g2
[ξ |Ft ], a.s.

Since
 T
·

gν(s, Θs)ds,
 T
·
ΘsdBs and E ν

g1,g2
[ξ |F·] are all continuous processes, it holds except

for a null set N ′ that

E ν
g1,g2

[ξ |Ft ] = ξ +

∫ T

t
gν(s, Θs)ds −

∫ T

t

ΘsdBs, ∀t ∈ [0, T ].

One can easily show that


E ν
g1,g2

[ξ |F·], Θ ∈ C2
F([0, T ]) × H2

F([0, T ]; Rd). Thus the pair is the
unique solution to the BSDE(ξ, gν), namely Egν [ξ |Ft ] = E ν

g1,g2
[ξ |Ft ] for any t ∈ [0, T ]. �

Proof of Theorem 5.1. We first note that for any g ∈ G ′, (5.7) implies that for every Eg-
submartingale X , −X is an Eg− -supermartingale although g− is concave (which means that Eg−

may not belong to E ′). Hence, condition (3.12) is satisfied.
Fix g ∈ G ′. Clearly H g

0 = 0. For any s, t ∈ DT with s < t , we can deduce from (h̃1) and (h̃2)
that

CH ′ , c′T ≤

∫ t

s
c′ds ≤

∫ t

s
hg

r dr = H g
s,t ≤

∫ t

s
h′(r)dr ≤

∫ T

0
h′(r)dr, a.s., (6.60)

which implies that CH ′ ≤ essinfs,t∈DT ;s<t H g
s,t ≤ esssups,t∈DT ;s<t H g

s,t ≤
 T

0 h′(r)dr , a.s.;

thus (S2) holds. Since
 T

0 h′(r)dr ∈ L2(FT ), it follows that esssups,t∈DT ;s<t H g
s,t ∈ L2,#(FT ) ,
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ξ ∈ L2(FT ) : ξ ≥ c, a.s. for some c ∈ R


= Dom(E ′). We can also deduce from (6.60) that

except on a null set N

CH ′ ≤ H g
s,t ≤

∫ T

0
h′(r)dr, ∀0 ≤ s < t ≤ T .

Hence, for any ν, ρ ∈ S0,T with ν ≤ ρ, a.s., we have CH ′ ≤ H g
ν,ρ ≤

 T
0 h′(r)dr , a.s., which

implies that H g
ν,ρ ∈ L2,#(FT ) = Dom(E ′); so we get (S1′). Moreover, (S3) directly follows from

(h̃3).
Next, we check that the process Y satisfies (Y1) and (2.6). By (5.11) and (Y3), it holds a.s.

that CY ≤ Yt ≤ ζ ′

Y for any t ∈ DT . The right-continuity of the process Y then implies that except
on a null set Ñ

CY ≤ Yt ≤ ζ ′

Y , ∀t ∈ [0, T ], thus CY ≤ Yρ ≤ ζ ′

Y , ∀ρ ∈ S0,T . (6.61)

Since ζ ′

Y ∈ L2(FT ), it follows that Yρ ∈ L2,#(FT ) = Dom(E ′) for any ρ ∈ S0,T ; thus (Y1)
holds. Moreover, for any g ∈ G ′, ρ ∈ S0,T and t ∈ DT , Proposition 2.2(2) of [1], (6.61) and
Lemma 5.1(2) show that a.s.

CY + c′T = Eg[CY + c′T |Ft ] ≤ Eg

[
Yρ +

∫ ρ

0
c′ds|Ft

]
≤ Eg[Y

g
ρ |Ft ] ≤ |Eg[Y

g
ρ |Ft ]| = |Eg[Y

g
ρ |Ft ] − Eg[0|Ft ]|

≤ EgM


|Y g

ρ | |Ft


≤ EgM

[Yρ

+ ∫ ρ

0
|hg

s |ds|Ft

]
≤ sup

t∈[0,T ]

EgM

[
ζ ′

Y ∨ (−CY ) +

∫ T

0
h′(s) ∨ (−c′) ds|Ft

]
.

Taking the essential supremum of Eg[Y
g
ρ |Ft ] over (g, ρ, t) ∈ G ′

×S0,T × DT , we can deduce
from (A4) that

CY + c′T ≤ esssup
(g,ρ,t) ∈G ′

×S0,T ×DT

Eg[Y
g
ρ |Ft ]

≤ sup
t∈[0,T ]

EgM

[
ζ ′

Y +

∫ T

0
h′(s)ds|Ft

]
− CY − c′T, a.s. (6.62)

Lemma 5.1(1) implies that sup
t∈[0,T ]

EgM

[
ζ ′

Y +

∫ T

0
h′(s)ds|Ft

]
L2(FT )

≤ Ce(M+M2)T
 ζ ′

Y +

∫ T

0
h′(s)ds


L2(FT )

< ∞.

Hence, we see from (6.62) that esssup(g,ρ,t) ∈G ′
×S0,T ×DT

Eg[Y
g
ρ |Ft ] ∈ L2,#(FT ) = Dom(E ′),

which is exactly (2.6).
Now we show that the family of processes


Y g

t , t ∈ [0, T ]


g ∈G ′ is both “E ′-uniformly-
left-continuous” and “E ′-uniformly-right-continuous”. For any ν, ρ ∈ S0,T with ν ≤ ρ, a.s.,
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let {ρn}n∈N ⊂ Sν,T be a sequence increasing a.s. to ρ. For any g ∈ G ′, Lemma 5.1(2) implies
that a.s.Eg

[
n

n − 1
Yρn + H g

ρn
|Fν

]
− Eg


Y g

ρ |Fν

 ≤ EgM

[ n

n − 1
Yρn − Yρ −

∫ ρ

ρn

hg(s)ds

 | Fν

]
≤ EgM

[ n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s)ds| Fν

]
,

where gM (z) , M |z|, z ∈ Rd andh′(t) , h′(t) − c′, t ∈ [0, T ]. Taking the essential supremum
of the left-hand side over g ∈ G ′ yields that

esssup
g ∈G ′

Eg

 n

n − 1
Yρn + H g

ρn
|Fν


− Eg


Y g

ρ |Fν


≤ EgM

[ n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s) ds| Fν

]
, a.s. (6.63)

Moreover, Lemma 5.1(1) implies thatEgM

[ n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s)ds| Fν

]
L2(FT )

≤

 sup
t∈[0,T ]

EgM

[ n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s)ds| Ft

]
L2(FT )

≤ Ce(M+M2)T
  n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s)ds


L2(FT )

. (6.64)

Since
 n

n−1 Yρn − Yρ

 ≤
n

n−1

Yρn − Yρ

 + 1
n−1

Yρ

 ≤ 2
Yρn − Yρ

 + 1
n−1

Yρ

 for any n ≥ 2,

the continuity of Y implies that limn→∞

 n
n−1 Yρn − Yρ

 +  ρ

ρn
h′(s)ds


= 0, a.s. It also holds

for any n ≥ 2 that n

n − 1
Yρn − Yρ

+ ∫ ρ

ρn

h′(s)ds ≤ 3

ζ ′

Y − CY

+

∫ T

0
h′(s)ds − c′T, a.s.,

where the right-hand side belongs to L2(FT ). Thus the Dominated Convergence Theorem
implies that the sequence {|

n
n−1 Yρn − Yρ | +

 ρ

ρn
h′(s)ds}n∈N converges to 0 in L2(FT ), which

together with (6.63) and (6.64) implies that the sequence {esssupg ∈G ′ |Eg[
n

n−1 Yρn + H g
ρn |Fν] −

Eg[Y
g
ρ |Fν]|}n∈N also converges to 0 in L2(FT ). Then we can find a subsequence {nk}k∈N of N

such that

lim
n→∞

esssup
g ∈G ′

Eg

 nk

nk − 1
Yρnk

+ H g
ρnk

|Fν


− Eg[Y

g
ρ |Fν]

 = 0, a.s.

Therefore, the family of processes {Y g
}g ∈G ′ is “E ′-uniformly-left-continuous”. The “E ′-

uniform-right-continuity” of {Y g
}g ∈G ′ can be shown similarly. �

Proof of Theorem 5.2. For any U ∈ U, Theorem 5.1 and Proposition 2.2 imply that ZU,0
=

Z0
t +

 t
0 hU

s ds


t∈[0,T ]

is an EgU -supermartingale. In light of the Doob–Meyer Decomposition
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of g-expectation (see e.g. [15, Theorem 3.3]), there exists an RCLL increasing process 1U null
at 0 and a process ΘU

∈ H2
F([0, T ]; Rd) such that

ZU,0
t = ZU,0

T +

∫ T

t
gU (s,ΘU

s )ds + ∆U
T − ∆U

t −

∫ T

t
ΘU

s dBs, t ∈ [0, T ] . (6.65)

In what follows we will show that U∗(t, ω) , u∗

t, ω,ΘU 0

t (ω)

, (t, ω) ∈ [0, T ] × Ω is the

optimal control desired, where U 0
≡ 0 denotes the null control. Recall that τ(0) = inf


t ∈

[0, T ] | Z0
t = Yt


. Taking t = τ(0) and t = τ(0) ∧ t respectively in (6.65) and subtracting the

former from the latter yields that

ZU,0
τ(0)∧t = ZU,0

τ(0) +

∫ τ(0)

τ (0)∧t
gU (s,ΘU

s )ds + ∆U
τ(0) − ∆U

τ(0)∧t −

∫ τ(0)

τ (0)∧t
ΘU

s dBs,

t ∈ [0, T ] , (6.66)

which is equivalent to

Z0
τ(0)∧t = Z0

τ(0) +

∫ τ(0)

τ (0)∧t
H(s,ΘU

s , Us)ds + ∆U
τ(0) − ∆U

τ(0)∧t −

∫ τ(0)

τ (0)∧t
ΘU

s dBs,

t ∈ [0, T ] . (6.67)

In particular, taking U = U 0, we obtain

Z0
τ(0)∧t = Z0

τ(0) +

∫ τ(0)

τ (0)∧t
H(s,ΘU 0

s , U 0
s )ds + ∆U 0

τ(0) − ∆U 0

τ(0)∧t −

∫ τ(0)

τ (0)∧t
ΘU 0

s dBs,

t ∈ [0, T ] . (6.68)

Comparing the martingale parts of (6.67) and (6.68), we see that for any U ∈ U,

ΘU
t = ΘU 0

t , dt × dP-a.s. (6.69)

on the stochastic interval [[0, τ (0)]] , {(t, ω) ∈ [0, T ] × Ω : 0 ≤ t ≤ τ(0)}. Plugging this back
into (6.67) yields that

Z0
τ(0)∧t = Z0

τ(0) +

∫ τ(0)

τ (0)∧t
H(s,ΘU 0

s , Us)ds + ∆U
τ(0) − ∆U

τ(0)∧t −

∫ τ(0)

τ (0)∧t
ΘU 0

s dBs,

t ∈ [0, T ] . (6.70)

Let us define gKo(z) , Ko|z|, z ∈ Rd . Note that it is not necessary that gKo = gU for some

U ∈ U. For any U ∈ U, we set Γt , EgU


ZU,0

τ(0)|Ft


and Γ̂t , EgKo


−1U∗

τ(0)|Ft


, t ∈ [0, T ],

which are the solutions to the BSDE

ZU,0

τ(0), gU


and the BSDE

−1U∗

τ(0), gKo


respectively, i.e.,

Γt = ZU,0
τ(0) +

∫ T

t
gU (s,Θs)ds −

∫ T

t
ΘsdBs and

Γ̂t = −∆U∗

τ(0) +

∫ T

t
Ko

Θ̂s

 ds −

∫ T

t
Θ̂sdBs, t ∈ [0, T ] ,
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where Θ, Θ̂ ∈ H2
F([0, T ]; Rd). Proposition 2.7(5) of [1] and Corollary 2.3 of [1] imply that for

any t ∈ [0, T ]

Γτ(0) − Γτ(0)∧t = EgU


ZU,0

τ(0)

Fτ(0)


− EgU


ZU,0

τ(0)|Fτ(0)∧t


= ZU,0

τ(0) − EgU


EgU


ZU,0

τ(0)|Fτ(0)

Ft


= ZU,0

τ(0) − EgU


ZU,0

τ(0)|Ft


= ZU,0

τ(0) − Γt , a.s.

Then the continuity of processes Γ· and ZU,0
· implies that

Γt − ZU,0
τ(0)∧t = ZU,0

τ(0) − ZU,0
τ(0)∧t + Γτ(0)∧t − Γτ(0)

= ZU,0
τ(0) − ZU,0

τ(0)∧t +

∫ τ(0)

τ (0)∧t
gU (s,Θs)ds −

∫ τ(0)

τ (0)∧t
ΘsdBs

= Z0
τ(0) − Z0

τ(0)∧t +

∫ τ(0)

τ (0)∧t
H(s,Θs, Us)ds −

∫ τ(0)

τ (0)∧t
ΘsdBs

= −∆U∗

τ(0) + ∆U∗

τ(0)∧t +

∫ τ(0)

τ (0)∧t


H(s,Θs, Us) − H(s,ΘU 0

s , U∗
s )


ds

−

∫ τ(0)

τ (0)∧t
(Θs − ΘU 0

s )dBs, t ∈ [0, T ],

where we used (6.70) with U = U∗ in the last inequality. Since it holds dt × dP-a.s. that

H(t,Θt , Ut ) − H(t,ΘU 0

t , U∗
t ) = H(t,Θt , Ut ) − H


t,ΘU 0

t , u∗(t,ΘU 0

t )


≤ H(t,Θt , Ut ) − H(t,ΘU 0

t , Ut )

= go(t,Θt , Ut ) − go(t,ΘU 0

t , Ut )

≤

go(t,Θt , Ut ) − go(t,ΘU 0

t , Ut )

 ≤ Ko

Θt − ΘU 0

t

 ,
the Comparison Theorem for BSDEs (see e.g. [13, Theorem 35.3]) implies that

Γ̂t ≥ Γt − ZU,0
τ(0)∧t − ∆U∗

τ(0)∧t , t ∈ [0, T ] .

In particular, when t = 0, we can deduce from (2.17) that EgKo


−∆U∗

τ(0)


≥ EgU


ZU

τ(0)


−

Z(0). Taking the supremum of the right-hand side over U ∈ U and applying Theorem 2.1 with
ν = 0, we obtain

0 ≥ EgKo


−∆U∗

τ(0)


≥ sup

U∈U

EgU


ZU τ(0)


− Z(0) = 0,

and thus EgKo


−∆U∗

τ(0)


= 0. The strict monotonicity of g-expectation (see e.g. [5, Proposition

2.2(iii)]) then implies that ∆U∗

τ(0) = 0, a.s. Plugging this back into (6.66) and using (6.69), we
obtain

ZU∗,0
τ(0)∧t = ZU∗,0

τ(0) +

∫ τ(0)

τ (0)∧t
gU∗(s,ΘU 0

s )ds −

∫ τ(0)

τ (0)∧t
ΘU 0

s dBs

= ZU∗,0
τ(0) +

∫ T

t
gU∗(s, 1{s≤τ(0)}ΘU 0

s )ds −

∫ T

t
1{s≤τ(0)}ΘU 0

s dBs,

t ∈ [0, T ] , (6.71)
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which implies that EgU∗


ZU∗,0

τ(0) |Ft


= ZU∗,0

τ(0)∧t , ∀t ∈ [0, T ]. Namely,


ZU∗,0
τ(0)∧t


t∈[0,T ]

is a gU∗ -

martingale. Eventually, letting t = 0 in (6.71), we can deduce from (2.17) and Theorem 2.1
that

Z(0) = ZU∗,0
0 = EgU∗


ZU∗,0

τ(0)


= EgU∗


Z

τ(0)


+

∫ τ(0)

0
hU∗

s ds



= EgU∗


Yτ(0) +

∫ τ(0)

0
hU∗

s ds


. �

Proof of Proposition 5.3. Because of its linearity in z, the primary generator

go(t, ω, z, u) ,

σ−1(t, X (ω)) f


t, X (ω), u


, z


∀(t, ω, z, u) ∈ [0, T ] × Ω × Rd
× S (6.72)

satisfies (go2) and (go4). Then (go1) follows from the continuity of the process {X (t)}t∈[0,T ] as
well as the measurability of the volatility σ and of the function f . Moreover, (5.15) and (5.20)
imply that for a.e. t ∈ [0, T ]

|go(t, ω, z1, u) − go(t, ω, z2, u)| =

⟨σ−1(t, X (ω)) f

t, X (ω), u


, z − z′

⟩


≤

σ−1(t, X (ω))

 ·
 f

t, X (ω), u

 · |z − z′
|

≤ K 2
|z − z′

|, ∀z1, z2 ∈ Rd , ∀(ω, u) ∈ Ω × S,

which shows that go satisfies (go4) with Ko = K 2. Clearly, U = H0
F([0, T ]; S) is closed under

the pasting in the sense of (5.13). Hence, we know from the last section that {EgU }U∈U is a stable
class of g-expectations, where gU is defined in (5.12).

Fix U ∈ U. For any ξ ∈ L2(F ), we see from (5.4) that

EgU [ξ |Ft ] = ξ +

∫ T

t
gU (s,Θs)ds −

∫ T

t
ΘsdBs

= ξ +

∫ T

t


σ−1(s, X) f


s, X, Us


,Θs


ds −

∫ T

t
ΘsdBs

= ξ −

∫ T

t
ΘsdBU

s , t ∈ [0, T ],

where BU
t , Bt −

 t
0 σ−1(s, X) f (s, X, Us) ds, t ∈ [0, T ] is a Brownian motion with respect to

PU . For any t ∈ [0, T ], taking EU [·|Ft ] on both sides above yields that

EgU [ξ |Ft ] = EU


EgU [ξ |Ft ]|Ft


= EU [ξ |Ft ] − EU

[∫ T

t
ΘsdBU

s |Ft

]
= EU [ξ |Ft ], a.s. (6.73)

Hence the g-expectation EgU coincides with the linear expectation EU on L2(FT ).
Clearly, the process Y ,


ϕ(X (t))


t∈[0,T ]

satisfies (Y3) since ϕ is bounded from below by
−K . We see from (5.19) that Yt = ϕ(X (t)) ≤ K |X (t)| ≤ K‖X‖

∗

T , ∀t ∈ [0, T ], which implies
that

ζ ′

Y ,


esssup
t∈DT

Yt

+

≤ K‖X‖
∗

T , a.s. (6.74)
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For any t ∈ [0, T ], the Burkholder–Davis–Gundy inequality, (σ1), and (5.15) as well as Fubini
Theorem imply that

E


‖X‖
∗
t

2
= E


sup

s∈[0,t]
|X (s)|2


≤ 2x2

+ 2E


sup

s∈[0,t]

∫ s

0
σ(r, X)dBr

2


≤ 2x2
+ 2C E

∫ t

0
|σ(s, X)|2ds

≤ 2x2
+ 4C

∫ t

0
|σ(s, 0⃗)|2ds + 4C E

∫ t

0
|σ(s, X) − σ(s, 0⃗)|2ds

≤ 2x2
+ 4C

∫ T

0
|σ(s, 0⃗)|2ds + 4Cn2 K 2

∫ t

0
E


‖X‖
∗
s

2ds.

Then applying Gronwall’s inequality yields that

E


‖X‖
∗

T

2
≤


2x2

+ 4C
∫ T

0
|σ(s, 0⃗)|2ds


e4Cn2 K 2T < ∞, (6.75)

which together with (6.74) shows that ζ ′

Y ∈ L2(FT ), proving (5.11).
Next, we define a function ho(t, ω, u) , h(t, X (ω), u), ∀(t, ω, u) ∈ [0, T ] × Ω × S. The

continuity of the process {X (t)}t∈[0,T ] and the measurability of the function h imply that ho is
P ⊗ S/B(R)-measurable. We see from (5.20) that ho satisfies (ĥ1). It also follows from (5.20)
that for a.e. t ∈ [0, T ] and for any ω ∈ Ω ,

hU
t (ω) , ho(t, ω, Ut (ω)) = h(t, X (ω), Ut (ω)) ≤ K‖X (ω)‖∗

T , ∀U ∈ U.

Taking the essential supremum of hU
t (ω) over U ∈ U with respect to the product measure space

([0, T ]×Ω , P, λ× P) yields that ĥ(t, ω) ,


esssupU∈U hU
t (ω)

+

≤ K‖X (ω)‖∗

T , dt ×dP-a.s.,

which leads to the relation
 T

0 ĥ(t, ω)dt ≤ K T ‖X (ω)‖∗

T , a.s. Hence, (6.75) implies that T
0 ĥ(t, ω)dt ∈ L2(FT ), proving (ĥ2) for ho.

We can apply the optimal stopping theory developed in Section 2 to the triple

{EgU }U∈U,

{hU
}U∈U, Y


and use (6.73) to obtain (5.16). In addition, if there exists a measurable mapping

u∗
: [0, T ] × Ω × Rd

→ S satisfying (5.17), then (6.72) indicates that for any (t, ω, z) ∈

[0, T ] × Ω × Rd

sup
u∈S


go(t, ω, z, u) + ho(t, ω, u)


= sup

u∈S

H(t, X (ω), z, u)

= Ht, X (ω), z, u∗(t, X (ω), z)


= go(t, ω, z, u∗(t, X (ω), z)) + ho(t, ω, u∗(t, X (ω), z)),

which shows that (5.14) holds for the mappingu∗(t, ω, z) = u∗(t, X (ω), z), (t, ω, z) ∈ [0, T ]×

Ω × Rd . Therefore, an application of Theorem 5.2 yields (5.18) for some U∗
∈ U. �

Proof of Proposition 5.4. (5.23) directly follows from [4, Theorem 5]. To see the second state-
ment, we set 1Γ , Γ ξ1,ĝ − Γ ξ2,ĝ and 1Θ , Θξ1,ĝ − Θξ2,ĝ; then (5.21)(i) implies that

d1Γt = −

ĝ(t,Θ

ξ1,ĝ

t ) − ĝ(t,Θ
ξ2,ĝ

t )

dt + 1Θt dBt

= −

∫ 1

0

∂ ĝ

∂z
(t, λ1Θt + Θ

ξ2,ĝ

t )1Θt dλ dt + 1Θt dBt

= 1Θt

−at dt + dBt


, t ∈ [0, T ],
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where at ,
 1

0
∂ ĝ
∂z (λ1Θt + Θξ2,ĝ

t ), dλ, t ∈ [0, T ]. Since MF([0, T ]; Rd) ⊂ M2
F([0, T ]; Rd) =

H2
F([0, T ]; Rd), one can deduce from (5.21)(ii) that

E
∫ T

0
|at |

2dt ≤ E
∫ T

0

∫ 1

0

∂ ĝ

∂z
(λ1Θt + Θξ2,ĝ

t )

2 dλ dt

≤ 2κ2T + 2κ2 E
∫ T

0

∫ 1

0
|λΘξ1,ĝ

t + (1 − λ)Θξ2,ĝ
t |

2dλ dt

≤ 2κ2T +
4
3
κ2 E

∫ T

0

Θξ1,ĝ
t

2 +

Θξ2,ĝ
t

2dt < ∞.

Moreover, Doob’s martingale inequality shows that

E


sup

t∈[0,T ]

∫ t

0
asdBs

2


≤ 4E

∫ T

0
asdBs

2


= 4E
∫ T

0
|at |

2dt < ∞. (6.76)

Thus, we can define the process Qt , exp

−

1
2

 t
0 |as |

2ds +
 t

0 asdBs


, t ∈ [0, T ] as well as the

stopping times

νn , inf

t ∈ [ν, T ] : Qt ∨ |1Γt | > n


∧ T, ∀n ∈ N.

It is clear that limn→∞ ↑ νn = T , a.s., and (6.76) assures that there exists a null set N such that
for any ω ∈ N c, T = νm(ω) for some m = m(ω) ∈ N.

For any n ∈ N, integrating by parts on [ν, νn] yields that

Qνn 1Γνn = Qν1Γν −

∫ νn

ν

Qt1Θt at dt +

∫ νn

ν

Qt1Θt dBt +

∫ νn

ν

1Γt Qt at dBt

+

∫ νn

ν

Qt1Θt at dt

=

∫ νn

ν


Qt1Θt + 1Γt Qt at


dBt

which implies that E

Qνn 1Γνn


= 0. Thus we can find a null set Nn such that 1Γνn(ω)(ω) =

0, ∀ω ∈ N c
n . Eventually, for any ω ∈


N ∪


∪n∈N Nn

c
, we have

ξ1(ω) = Γ ξ1,ĝ
T (ω) = lim

n→∞
Γ ξ1,ĝ

νn(ω)(ω) = lim
n→∞

Γ ξ2,ĝ
νn(ω)(ω) = Γ ξ2,ĝ

T (ω) = ξ2(ω). �

Proof of Proposition 5.5. Let {An}n∈N be any sequence in FT such that limn→∞ ↓ 1An = 0,
a.s. For any ξ, η ∈ Le,+(FT ) , {ξ ∈ Le(FT ) : ξ ≥ 0, a.s.}, since E


eλ|ξ |


< ∞ and since

supn∈N E

eλ|ξ+1An η|


≤ E


eλ|ξ |eλ|η|


≤

1
2 E

e2λ|ξ |


+

1
2 E

e2λ|η|


< ∞ holds for each λ > 0,

Lemma 5.2 implies that

0 = lim
n→∞

E

[
sup

t∈[0,T ]

Eĝ[ξ + 1An η|Ft ] − Eĝ[ξ |Ft ]
] ≥ lim

n→∞

Eĝ[ξ + 1An η] − Eĝ[ξ ]
 ≥ 0,

and thus Eĝ satisfies (H2). Similarly, we can show that (H1) also holds for Eĝ .
Moreover, for any ν ∈ S0,T and ξ ∈ Le,+(FT ), since the process Γ ξ,ĝ belongs to Ce

F([0, T ]),

one can deduce that Eĝ[ξ |Fν] = Γ ξ,ĝ
ν ∈ Le,+(FT ). Then the continuity of the process

X ξ , Eĝ[ξ |F·] implies that X ξ,+
ν = X ξ

ν = Eĝ[ξ |Fν] ∈ Le,+(FT ), which proves (H3). �
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Proof of Theorem 5.3. This proof is just an application of the optimal stopping theory
developed in Section 2 to the singleton {Eĝ}. Hence, it suffices to check that Y satisfies (Y1),
(Y2) and (2.21).

Like for (6.61), it holds except on a null set N that

CY ≤ Yt ≤ ζ ′

Y , ∀t ∈ [0, T ], thus CY ≤ Yρ ≤ ζ ′

Y , ∀ρ ∈ S0,T . (6.77)

Since ζ ′

Y ∈ Le(FT ), it holds for any ρ ∈ S0,T that

E

eλ|Yρ |


≤ E


eλ(ζ ′

Y −CY )


= e−λCY E

eλζ ′

Y


< ∞, ∀λ > 0, (6.78)

which implies that Yρ ∈ Le,#(FT ) = Dom

{Eĝ}


. Hence (Y1) holds.

Next, for any ρ ∈ S0,T and t ∈ DT , Proposition 2.2(2) of [1], (6.77) show that

CY = Eĝ[CY |Ft ] ≤ Eĝ[Yρ |Ft ] ≤ Eĝ[ζ
′

Y |Ft ] = Γ
ζ ′

Y ,ĝ
t ≤ sup

t∈[0,T ]

Γ ζ ′
Y ,ĝ

t

 , a.s.

Taking the essential supremum of Eĝ[Yρ |Ft ] over (ρ, t) ∈ S0,T × DT yields that

CY ≤ esssup
(ρ,t)∈S0,T ×DT

Eĝ[Yρ |Ft ] ≤ sup
t∈[0,T ]

Γ ζ ′
Y ,ĝ

t

 , a.s.

Since Γ ζ ′
Y ,ĝ

∈ Ce
F([0, T ]), or equivalently supt∈[0,T ]

Γ ζ ′
Y ,ĝ

t

 ∈ Le(FT ), we can deduce that

esssup(ρ,t)∈S0,T ×DT
Eĝ[Yρ |Ft ] ∈ Le,#(FT ) = Dom


{Eĝ}


, which together with Remark 2.2(2)

proves (Y2).
Moreover, for any ν, ρ ∈ S0,T with ν ≤ ρ, a.s. and any sequence {ρn}n∈N ⊂ Sν,T increasing

a.s. to ρ, the continuity of the process Y implies that n
n−1 Yρn converges to Yρ a.s. By (6.77), one

can deduce that

sup
n∈N

E


exp


λ

 n

n − 1
Yρn




≤ sup
n∈N

E

e2λ|Yρn |


≤ E


e2λ(ζ ′

Y −CY )


= e−2λCY E

e2λζ ′

Y


< ∞, ∀λ > 0,

which together with (6.78) allows us to apply Lemma 5.2:

0 = lim
n→∞

E


sup

t∈[0,T ]

Eĝ

[
n

n − 1
Yρn |Ft

]
− Eĝ[Yρ |Ft ]




≥ lim
n→∞

E

Eĝ

[
n

n − 1
Yρn |Fν

]
− Eĝ[Yρ |Fν]




≥ 0.

Hence, limn→∞ E
Eĝ


n

n−1 Yρn |Fν


− Eĝ[Yρ |Fν]

 = 0. Then we can find a subsequence

{nk}k∈N of N such that

lim
n→∞

Eĝ

[
nk

nk − 1
Yρnk

|Fν

]
− Eĝ[Yρ |Fν]

 = 0, a.s., proving (2.21) forY . �
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