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Abstract

We develop a theory for solving continuous time optimal stopping problems for non-linear expectations.
Our motivation is to consider problems in which the stopper uses risk measures to evaluate future rewards.
Our development is presented in two parts. In the first part, we will develop the stochastic analysis tools
that will be essential in solving the optimal stopping problems, which will be presented in Bayraktar and
Yao (2011) [1].
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

We solve continuous time optimal stopping problems in which the reward is evaluated
using non-linear expectations. Our purpose is to use criteria other than the expected value to
evaluate the present value of future rewards. Such criteria include risk measures, which are not
necessarily linear. Given a filtered probability space (Ω , F , P, F = {Ft }t∈[0,T ]) satisfying the
usual assumptions, we define a filtration-consistent non-linear expectation (F-expectation for
short) with domain Λ as a collection of operators


E [·|Ft ] : Λ → Λt , Λ ∩ L0(Ft )


t∈[0,T ]

satisfying “Monotonicity”, “Time-Consistency”, “Zero–one Law” and “Translation-Invariance”.
This definition is similar to the one proposed in [15]. A notable example of an F-expectation is
the so-called g-expectation, introduced by [14]. A fairly large class of convex risk measures (see
e.g. [6] for the definition of risk measures) are g-expectations (see [4,15,12,7]).
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We consider two optimal stopping problems. In the first one, the stopper aims to find an
optimal stopping time when there are multiple priors and the Nature is in cooperation with the
stopper; i.e., the stopper finds an optimal stopping time that attains

Z(0) , sup
(i,ρ)∈I×S0,T

Ei [Yρ + H i
ρ |F0], (1.1)

in which E = {Ei }i∈I is a stable class of F-expectations, S0,T is the set of stopping times
that take value in [0, T ]. The reward process Y is a right-continuous F-adapted process and for
any ν ∈ S0,T , Yν belongs to Λ# , {ξ ∈ Λ | ξ ≥ c, a.s. for some c ∈ R}, where Λ is the
common domain of the elements in E . On the other hand, the model-dependent reward processes
{H i

}i∈N is a family of right-continuous adapted processes with H i
0 = 0 that is consistent with

E . We will express the solution of this problem in terms of the E -upper Snell envelope Z0 of
Yt , the smallest RCLL F-adapted process dominating Y such that Z i,0 , {Z0

t + H i
t }t∈[0,T ] is anEi -supermartingale for each i ∈ I .

The construction of the Snell envelope is not straightforward. First, for any i ∈ I , the
conditional expectation Ei [ξ |Fν], ξ ∈ Λ and ν ∈ S0,T may not be well defined. However, we
show that t → Ei [ξ |Ft ] admits a right-continuous modification t → Ei [ξ |F·] for any ξ ∈ Λ and
that Ei is itself an F-expectation on Λ# such that Ei [·|Fν] is well defined on Λ# for any ν ∈ S0,T .
In terms of Ei we have that

Z(0) = sup
(i,ρ)∈I×S0,T

Ei [Yρ + H i
ρ |F0]. (1.2)

Finding a RCLL modification requires the development of an upcrossing theorem. This theorem
relies on the strict monotonicity of Ei and other mild hypotheses, one of which is equivalent
to having lower semi-continuity (i.e. Fatou’s lemma). Thanks to the right continuity of t →Ei [ξ |Ft ], we also have an optional sampling theorem for right-continuous Ei -supermartingales.
Another important tool in finding an optimal stopping time, the dominated convergence theorem
is also developed under another mild assumption. These developments are presented in Section 2.

The stability assumption we make on the family E is another essential ingredient in the
construction of the Snell envelope. It guarantees that the class E is closed under pasting: for
any i, j ∈ I and ν ∈ S0,T there exists a k ∈ I such that Ek[ξ |Fσ ] = Ei

E j [ξ |Fν∨σ ]|Fσ


,

for any σ ∈ S0,T . Under this assumption it can then be seen, for example, that the collection
of random variables

Ei

X (ρ) + H i

ρ − H i
ν |Fν


, (i, ρ) ∈ I × Sν,T


is directed upwards. When

the constituents of E are linear expectations, the notion of stability of this collection is given
by [6, Definition 6.44], who showed that pasting two probability measures equivalent to P at
a stopping time one will result in another probability measure equivalent to P . Our result in
Proposition 3.1 shows that we have the same pasting property for F-expectations. As we shall
see, the stability assumption is crucial in showing that the Snell envelope is a supermartingale.
This property of the Snell envelope is a generalization of time consistency, i.e.,

esssup
i∈I

Ei [ξ |Fν] = esssup
i∈I

Ei

[
esssup

i∈I
Ei [ξ |Fσ ]

Fν

]
,

a.s., ∀ ν, σ ∈ S0,T with ν ≤ σ, a.s. (1.3)

[5, Theorem 12] showed in the linear expectations case that the time consistency (1.3) is
equivalent to the stability.
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When the reward t → Yt + H i
t is “E -uniformly-left-continuous” and each non-linear

expectation in E is convex, we can find an optimal stopping time τ(0) for (1.1) in terms of
the Snell envelope. Then we can solve the problem

sup
ρ∈S0,T

Ei [Yρ + H i
ρ |F0], (1.4)

when Ei [·|Ft ] has among other properties strict monotonicity, lower semi-continuity, dominated
convergence theorem and the upcrossing lemma. Note that although, esssupi∈I Ei [·|Ft ] has sim-
ilar properties to Ei [·|Ft ] (and that might lead one to think that (1.1) can actually be considered
as a special case of (1.4)), the former does not satisfy strict monotonicity, the upcrossing lemma,
and the dominated convergence theorem. One motivation for considering optimal stopping with
multiple priors is to solve optimal stopping problems for “non-linear expectations” which do not
satisfy these properties.

We show that the collection of g-expectations with uniformly Lipschitz generators satisfy
the uniform left continuity assumption. Moreover, a g-expectation satisfies all the assumptions
we ask of each Ei for the upcrossing theorem, Fatou’s lemma and the dominated convergence
theorem to hold; and pasting of g-expectations results in another g-expectation. As a result
the case of g-expectations presents a non-conventional example in which we can determine an
optimal stopping time for (1.1). In fact, in the g-expectation example we can even find an optimal
prior i∗ ∈ I , i.e.,

Z(0) = Ei∗ [Yτ(0) + H i∗
τ(0)|F0]. (1.5)

In the second problem, the stopper tries to find a robust optimal stopping time that attains

V (0) , sup
ρ∈S0,T

inf
i∈I

Ei

Yρ + H i

ρ |F0

. (1.6)

Under the “E -uniform-right-continuity” assumption, we find an optimal stopping time in terms
of the E -lower Snell envelope. An immediate by-product is the following minimax theorem

V (0) = inf
i∈I

sup
ρ∈S0,T

Ei

Yρ + H i

ρ |F0

. (1.7)

Our work was inspired by [10,11], who developed a martingale approach to solving (1.1)
and (1.6), when E is a class of linear expectations. In particular, [10] considered the controller-
stopper problem

sup
ρ∈S0,T

sup
U∈U

Eu
[

g

X (ρ)


+

∫ ρ

0
h(s, X, Us)ds

]
, (1.8)

where X (t) = x +
 t

0 f (s, X, Us)ds +
 t

0 σ(s, X)dW U
s . In this problem, the stability condition

is automatically satisfied. Here, g and h are assumed to be bounded measurable functions. Our
results on g-expectations extend the results of [10] from bounded rewards to rewards satisfying
linear growth. [5,9] also considered (1.1) when the Ei ’s are linear expectations. The latter paper
made a convexity assumption on the collection of equivalent probability measures instead of
a stability assumption. On the other hand, the discrete time version of the robust optimization
problem was analyzed by [6]. Also see [3, Sections 5.2 and 5.3].

The rest of Part I is organized as follows: In Section 1.1 we will introduce some notations that
will be used in both Parts I and II. In Section 2, we define what we mean by an F-expectation
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E , propose some basic hypotheses on E and discuss their implications such as Fatou’s lemma,
dominated convergence theorem and upcrossing lemma. We show that t → E [·|Ft ] admits a
right-continuous modification which is also an F-expectation and satisfies Fatou’s lemma and
the dominated convergence theorem. This step is essential since E [·|Fν], ν ∈ S0,T may not be
well defined. We also show that the optional sampling theorem holds. The results in Section 2
will be the backbone of our analysis in Part II. In Section 3 we introduce the stable class of
F-expectations and review the properties of essential extremum. The proofs of our results are
presented in Section 4.

The optimal stopping problems (1.2) and (1.6) and their applications will be deferred to
Part II.

1.1. Notation

Throughout this paper, we fix a finite time horizon T > 0 and consider a complete probability
space (Ω , F , P) equipped with a right continuous filtration F , {Ft }t∈[0,T ], not necessarily
a Brownian one, such that F0 is generated by all P-null sets in F (in fact, F0 collects all
measurable sets with probability 0 or 1). Let S0,T be the collection of all F-stopping times ν

such that 0 ≤ ν ≤ T , a.s. For any ν, σ ∈ S0,T with ν ≤ σ , a.s., we define Sν,σ , {ρ ∈

S0,T | ν ≤ ρ ≤ σ, a.s.} and let S F
ν,σ denote the set of all finite-valued stopping times in Sν,σ .

We let D = {k2−n
| k ∈ Z, n ∈ N} denote the set of all dyadic rational numbers and set

DT ,

[0, T ) ∩ D


∪ {T }. For any t ∈ [0, T ] and n ∈ N, we also define

q−
n (t) ,


⌊2n t⌋ − 1

2n

+

and q+
n (t) ,

⌈2n t⌉

2n ∧ T . (1.9)

It is clear that q−
n (t), q+

n (t) ∈ DT .
In what follows we let F ′ be a generic sub-σ -field of F and let B be a generic Banach space

with norm | · |B. The following spaces of functions will be used in the sequel.

(1) For 0 ≤ p ≤ ∞, we define
• L p(F ′

; B) to be the space of all B-valued, F ′-measurable random variables ξ such that
E(|ξ |

p
B) < ∞. In particular, if p = 0, L0(F ′

; B) stands for the space of all B-valued,
F ′-measurable random variables; and if p = ∞, L∞(F ′

; B) denotes the space of all
B-valued, F ′-measurable random variables ξ with ‖ξ‖∞ , esssupω∈Ω |ξ(ω)|B < ∞.

• L p
F([0, T ]; B) to be the space of all B-valued, F-adapted processes X such that

E
 T

0 |X t |
p
Bdt < ∞. In particular, if p = 0, L0

F([0, T ]; B) stands for the space of all
B-valued, F-adapted processes; and if p = ∞, L∞

F ([0, T ]; B) denotes the space of all
B-valued, F-adapted processes X with ‖X‖∞ , esssup(t,ω)∈[0,T ]×Ω |X t (ω)|B < ∞.

• Cp
F([0, T ]; B) , {X ∈ L p

F([0, T ]; B) : X has continuous paths}.
• H p

F([0, T ]; B) , {X ∈ L p
F([0, T ]; B) : X is predictably measurable}.

(2) For p ≥ 1, we define a Banach space

M p
F ([0, T ]; B)

=

X ∈ H0
F([0, T ]; B) : ‖X‖M p ,


E

∫ T

0
|Xs |

2
Bds

p/21/p

< ∞

 ,

and denote MF([0, T ]; B) , ∩p≥1 M p
F ([0, T ]; B).
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(3) We further define

Le(F ′
; B) ,


ξ ∈ L0(F ′

; B) : E

eλ|ξ |B


< ∞ for all λ > 0


,

Ce
F([0, T ]; B) ,


X ∈ C0

F([0, T ]; B) : E


exp


λ sup

t∈[0,T ]

|X t |B


< ∞

for all λ > 0


.

If d = 1, we shall drop B = R from the above notations (e.g., L p
F([0, T ]) = L p

F([0, T ]; R),
L p(FT ) = L p(FT ; R)). In this paper, all F-adapted processes are supposed to be real-valued
unless specified otherwise.

2. F-expectations and their properties

We will define non-linear expectations on subspaces of L0(FT ) satisfying certain algebraic
properties, which are listed in the definition below.

Definition 2.1. Let DT denote the collection of all non-empty subsets Λ of L0(FT ) satisfying:

(D1) 0, 1 ∈ Λ;
(D2) Λ is closed under addition and under multiplication with indicator random variables.

Namely, for any ξ, η ∈ Λ and A ∈ FT , both ξ + η and 1Aξ belong to Λ;
(D3) Λ is positively solid: For any ξ, η ∈ L0(FT ) with 0 ≤ ξ ≤ η, a.s., if η ∈ Λ, then ξ ∈ Λ

as well.

Remark 2.1. (1) Each Λ∈ DT is also closed under maximization “∨” and under minimization
“∧”: In fact, for any ξ, η ∈ Λ, since the set {ξ > η} ∈ FT , (D2) implies that ξ ∨ η =

ξ1{ξ>η} + η1{ξ≤η} ∈ Λ. Similarly, ξ ∧ η ∈ Λ;
(2) For each Λ∈ DT , (D1)–(D3) imply that c ∈ Λ for any c ≥ 0;
(3) DT is closed under intersections: If {Λi }i∈I is a subset of DT , then ∩i∈I Λi ∈ DT ; DT is

closed under unions of increasing sequences: If {Λn}n∈N⊂ DT such that Λn ⊂ Λn+1 for any
n ∈ N, then ∪n∈N Λn ∈ DT ;

(4) It is clear that L p(FT ) ∈ DT for all 0 ≤ p ≤ ∞.

Definition 2.2. An F-consistent non-linear expectation (F-expectation for short) is a pair (E ,Λ)
in which Λ∈ DT and E denotes a family of operators


E [·|Ft ] : Λ → Λt , Λ ∩ L0(Ft )


t∈[0,T ]

satisfying the following hypothesis for any ξ, η ∈ Λ and t ∈ [0, T ]:

(A1) “Monotonicity (positively strict)”: E [ξ |Ft ] ≤ E [η|Ft ], a.s. if ξ ≤ η, a.s.; Moreover, if
0 ≤ ξ ≤ η a.s. and E [ξ |F0] = E [η|F0], then ξ = η, a.s.;

(A2) “Time Consistency”: E


E [ξ |Ft ]|Fs


= E [ξ |Fs], a.s. for any 0 ≤ s ≤ t ≤ T ;
(A3) “Zero–one Law”: E [1Aξ |Ft ] = 1A E [ξ |Ft ], a.s. for any A ∈ Ft ;
(A4) “Translation Invariance”: E [ξ + η|Ft ] = E [ξ |Ft ] + η, a.s. if η ∈ Λt .

We denote the domain Λ by Dom(E ) and define

Domν(E ) , Dom(E ) ∩ L0(Fν), ∀ ν ∈ S0,T .

For any ξ, η ∈ Dom(E ) with ξ = η, a.s., (A1) implies that E [ξ |Ft ] = E [η|Ft ], a.s. for any
t ∈ [0, T ], which shows that the F-expectation (E , Dom(E )) is well-defined. Moreover, since
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Dom0(E ) = Dom(E )∩ L0(F0) ⊂ L0(F0) = R, E [·|F0] is a real-valued function on Dom(E ). In
the rest of the paper, we will substitute E [·] for E [·|F0].

Remark 2.2. Our definition of F-expectations is similar to that of F X
t -consistent non-linear

expectations introduced in [15, page 4].

Example 2.1. The following pairs satisfy (A1)–(A4); thus they are F-expectations:

(1)

{E[·|Ft ]}t∈[0,T ], L1(FT )


: the linear expectation E is a special F-expectation with domain

L1(FT );
(2)


{Eg[·|Ft ]}t∈[0,T ], L2(FT )


: the g-expectation with generator g(t, z) Lipschitz in z (see

[14,4] or Section 5.1 of [1]);
(3)


{Eg[·|Ft ]}t∈[0,T ], Le(FT )


: the g-expectation with generator g(t, z) having quadratic

growth in z (see Section 5.4 of [1]).

F-expectations can alternatively be introduced in a more classical way:

Proposition 2.1. Let E o
: Λ → R be a mapping on some Λ∈ DT satisfying:

(a1) For any ξ, η ∈ Λ with ξ ≤ η, a.s., we have E o
[ξ ] ≤ E o

[η]. Moreover, if E o
[ξ ] = E o

[η],
then ξ = η, a.s.;

(a2) For any ξ ∈ Λ and t ∈ [0, T ], there exists a unique random variable ξt ∈ Λt such that
E o

[1Aξ + γ ] = E o

1Aξt + γ


holds for any A ∈ Ft and γ ∈ Λt .

Then {E o
[ξ |Ft ] , ξt , ξ ∈ Λ}t∈[0,T ] defines an F-expectation with domain Λ.

Remark 2.3. For a mapping E o on some Λ∈ DT satisfying (a1) and (a2), the implied operator
E o

[·|F0] is also from Λ to R, which, however, may not be equal to E o. In fact, one can only
deduce that E o

[ξ ] = E o


E o
[ξ |F0]


for any ξ ∈ Λ.

From now on, when we say an F-expectation E , we will refer to the pair


E , Dom(E )

. Besides

(A1)–(A4), the F-expectation E has the following properties:

Proposition 2.2. For any ξ, η ∈ Dom(E ) and t ∈ [0, T ], we have

(1) “Local Property”: E [1Aξ + 1Acη|Ft ] = 1A E [ξ |Ft ] + 1Ac E [η|Ft ], a.s. for any A ∈ Ft ;
(2) “Constant-Preserving”: E [ξ |Ft ] = ξ , a.s. if ξ ∈ Domt (E );
(3) “Comparison”: Let ξ, η ∈ L0(Fν) for some ν ∈ S0,T . If η ≥ c, a.s. for some c ∈ R, then

ξ ≤ (or =)η, a.s. if and only if E [1Aξ ] ≤ (or =)E [1Aη] for all A ∈ Fν .

The following two subsets of Dom(E ) will be of interest:

Dom+(E ) , {ξ ∈ Dom(E ) : ξ ≥ 0, a.s.},

Dom#(E ) , {ξ ∈ Dom(E ) : ξ ≥ c, a.s. for some c = c(ξ) ∈ R}.
(2.1)

Remark 2.4. The restrictions of E on Dom+(E ) and on Dom#(E ), namely


E , Dom+(E )


and
E , Dom#(E )


respectively, are both F-expectations: To see this, first note that Dom+(E ) and

Dom#(E ) both belong to DT . For any t ∈ [0, T ], (A1) and Proposition 2.2(2) imply that for any
ξ ∈ Dom#(E )

E [ξ |Ft ] ≥ E

c(ξ)|Ft


= c(ξ), a.s., thus E [ξ |Ft ] ∈ Dom#(E ),
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which shows that E [·|Ft ] maps Dom#(E ) into Dom#(E )∩L0(Ft ). Then it is easy to check that the
restriction of E =


E [·|Ft ]


t∈[0,T ]

on Dom#(E ) satisfies (A1)–(A4), thus it is an F-expectation.

Similarly,


E , Dom+(E )


is also an F-expectation.
We should remark that restricting E on any subset Λ′ of Dom(E ), with Λ′

∈ DT , may not
result in an F-expectation, i.e. (E ,Λ′) may not be an F-expectation.

Definition 2.3. (1) An F-adapted process X = {X t }t∈[0,T ] is called an “E -process” if X t ∈

Dom(E ), ∀ t ∈ [0, T ];
(2) An E -process X is said to be an E -supermartingale (resp. E -martingale, E -submartingale) if

for any 0 ≤ s < t ≤ T, E [X t |Fs] ≤ (resp. =, ≥) Xs , a.s.

Given a ν ∈ S F
0,T taking values in a finite set {t1 < · · · < tn}, if X is an E -process, (D2) implies

that Xν =
∑n

i=1 1{ν=ti } X ti ∈ Dom(E ), thus Xν ∈ Domν(E ). Since


X ξ
t , E [ξ |Ft ]


t∈[0,T ]

is an
E -process for any ξ ∈ Dom(E ), we can define an operator E [·|Fν] from Dom(E ) to Domν(E ) by

E [ξ |Fν] , X ξ
ν , for any ξ ∈ Dom(E ),

which allows us to state a basic Optional Sampling Theorem for E .

Proposition 2.3 (Optional Sampling Theorem). Let X be an E -supermartingale (resp.
E -martingale, E -submartingale). Then for any ν, σ ∈ S F

0,T , E [Xν |Fσ ] ≤ (resp. =, ≥)Xν∧σ ,
a.s.

In particular, applying Proposition 2.3 to each E -martingale {E [ξ |Ft ]}t∈[0,T ], in which ξ ∈

Dom(E ), yields the following result.

Corollary 2.1. For any ξ ∈ Dom(E ) and ν, σ ∈ S F
0,T , E


E [ξ |Fν]|Fσ


= E [ξ |Fν∧σ ], a.s.

Remark 2.5. Corollary 2.1 extends the “Time-Consistency” (A2) to the case of finite-valued
stopping times.

E [·|Fν] inherits other properties of E [·|Ft ] as well:

Proposition 2.4. For any ξ, η ∈ Dom(E ) and ν ∈ S F
0,T , it holds that

(1) “Monotonicity (positively strict)”: E [ξ |Fν] ≤ E [η|Fν], a.s. if ξ ≤ η, a.s.; Moreover, if
0 ≤ ξ ≤ η, a.s. and E [ξ |Fσ ] = E [η|Fσ ], a.s. for some σ ∈ S F

0,T , then ξ = η, a.s.;
(2) “Zero–one Law”: E [1Aξ |Fν] = 1A E [ξ |Fν], a.s. for any A ∈ Fν;
(3) “Translation Invariance”: E [ξ + η|Fν] = E [ξ |Fν] + η, a.s. if η ∈ Domν(E );
(4) “Local Property”: E [1Aξ + 1Acη|Fν] = 1A E [ξ |Fν] + 1Ac E [η|Fν], a.s. for any A ∈ Fν;
(5) “Constant-Preserving”: E [ξ |Fν] = ξ , a.s., if ξ ∈ Domν(E ).

We make the following basic hypotheses on the F-expectation E . These hypotheses will be
essential in developing Fatou’s lemma, the Dominated Convergence Theorem and the Upcrossing
Theorem.

Hypotheses.

(H0) For any A ∈ FT with P(A) > 0, we have limn→∞ E [n1A] = ∞;
(H1) For any ξ ∈ Dom+(E ) and any {An}n∈N ⊂ FT with limn→∞ ↑ 1An = 1, a.s., we have

limn→∞ ↑ E [1An ξ ] = E [ξ ];
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(H2) For any ξ, η ∈ Dom+(E ) and any {An}n∈N ⊂ FT with limn→∞ ↓ 1An = 0, a.s., we have
limn→∞ ↓ E [ξ + 1An η] = E [ξ ].

Remark 2.6. The linear expectation E on L1(FT ) clearly satisfies (H0)–(H2). We will show that
Lipschitz and quadratic g-expectations also satisfy (H0)–(H2) in Propositions 4.1 and 5.5 of [1]
respectively.

The F-expectation E satisfies the following Fatou’s Lemma and the Dominated Convergence
Theorem.

Theorem 2.1 (Fatou’s lemma). (H1) is equivalent to the lower semi-continuity of E : If a
sequence {ξn}n∈N ⊂ Dom+(E ) converges a.s. to some ξ ∈ Dom+(E ), then for any ν ∈ S F

0,T ,
we have

E [ξ |Fν] ≤ lim
n→∞

E [ξn|Fν], a.s., (2.2)

where the right hand side of (2.2) could be equal to infinity with non-zero probability.

Remark 2.7. In the case of the linear expectation E , a converse to (2.2) holds: For any
non-negative sequence {ξn}n∈N ⊂ L1(FT ) that converges a.s. to some ξ ∈ L0(FT ), if
limn→∞E[ξn] < ∞, then ξ ∈ L1(FT ). However, this statement may not be the case for an
arbitrary F-expectation. That is, limn→∞E [ξn] < ∞ may not imply that ξ ∈ Dom+(E ) given
that {ξn}n∈N ⊂ Dom+(E ) is a sequence convergent a.s. to some ξ ∈ L0(FT ). (See Example 5.1
of [1] for a counterexample in the case of a Lipschitz g-expectation.)

Theorem 2.2 (Dominated Convergence Theorem). Assume (H1) and (H2) hold. Let {ξn}n∈N be
a sequence in Dom+(E ) that converges a.s. If there is an η ∈ Dom+(E ) such that ξn ≤ η a.s. for
any n ∈ N, then the limit ξ of {ξn}n∈N belongs to Dom+(E ), and for any ν ∈ S F

0,T , we have

lim
n→∞

E [ξn|Fν] = E [ξ |Fν], a.s.

Next, we will derive an Upcrossing Theorem for E -supermartingales, which is crucial in
obtaining an RCLL (right-continuous, with limits from the left) modification for the process
{E [ξ |Ft ]}t∈[0,T ] as long as ξ ∈ Dom(E ) is bounded from below. Obtaining a right continuous
modification is crucial, since otherwise the conditional expectation E [ξ |Fν] may not be well
defined for any ν ∈ S0,T .

Let us first recall what the “number of upcrossings” is: Given a real-valued process {X t }t∈[0,T ]

and two real numbers a < b, for any finite subset F of [0, T ], we can define the “number of
upcrossings” UF (a, b; X (ω)) of the interval [a, b] by the sample path {X t (ω)}t∈F as follows:
Set ν0 = −1, and for any j = 1, 2, . . . we recursively define

ν2 j−1(ω) , min{t ∈ F : t > ν2 j−2(ω), X t (ω) < a} ∧ T ∈ S F
0,T ,

ν2 j (ω) , min{t ∈ F : t > ν2 j−1(ω), X t (ω) > b} ∧ T ∈ S F
0,T ,

with the convention that min ∅ = ∞. Then UF (a, b; X (ω)) is defined to be the largest integer j
for which ν2 j (ω) < T . If I ⊂ [0, T ] is not a finite set, we define

UI (a, b; X (ω)) , sup{UF (a, b; X (ω)) : F is a finite subset of I }.
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It will be convenient to introduce a subcollection of DTDT , {Λ∈ DT : R ⊂ Λ} .

Clearly, DT contains all L p(FT ), 0 ≤ p ≤ ∞. In particular, L∞(FT ) is the smallest element ofDT in the following sense:

Lemma 2.1. For each Λ ∈ DT , L∞(FT ) ⊂ Λ.

Proof. For any ξ ∈ L∞(FT ), we have −‖ξ‖∞, 2‖ξ‖∞ ∈ R ⊂ Λ. Since 0 ≤ ξ + ‖ξ‖∞ ≤

2‖ξ‖∞, a.s., (D3) implies that ξ + ‖ξ‖∞ ∈ Λ. Then we can deduce from (D2) that ξ =

(ξ + ‖ξ‖∞) + (−‖ξ‖∞) ∈ Λ. �

For any F-adapted process X , we define its left-limit and right-limit processes as follows:

X−
t , lim

n→∞

Xq−
n (t) and X+

t , lim
n→∞

Xq+
n (t), for any t ∈ [0, T ],

where q−
n (t) and q+

n (t) are defined in (1.9). Since the filtration F is right-continuous, we see that
both X− and X+ are F-adapted processes.

It is now the time to present our Upcrossing Theorem for E -supermartingales.

Theorem 2.3 (Upcrossing Theorem). Assume that (H0), (H1) hold and that Dom(E ) ∈ DT .
For any E -supermartingale X, we assume either that XT ≥ c, a.s. for some c ∈ R or that the
operator E [·] is concave: For any ξ, η ∈ Dom(E )

E [λξ + (1 − λ)η] ≥ λE [ξ ] + (1 − λ)E [η], ∀ λ ∈ (0, 1). (2.3)

Then for any two real numbers a < b, it holds that P

UDT (a, b; X) < ∞


= 1. Thus we have

P


X−
t = lim

n→∞
Xq−

n (t) and X+
t = lim

n→∞
Xq+

n (t) for any t ∈ [0, T ]


= 1. (2.4)

As a result, X+ is an RCLL process.

In the rest of this section, we assume that the F-expectation E satisfies (H0)–(H2) and that
Dom(E ) ∈ DT . The following proposition will play a fundamental role throughout this paper.

Proposition 2.5. Let X be a non-negative E -supermartingale.
(1) Assume either that esssupt∈DT

X t ∈ Dom+(E ) or that for any sequence {ξn}n∈N ⊂ Dom+(E )

convergent a.s. to some ξ ∈ L0(FT ),

lim
n→∞

E [ξn] < ∞ implies ξ ∈ Dom+(E ). (2.5)

Then for any ν ∈ S0,T , X−
ν and X+

ν both belong to Dom+(E );
(2) If X+

t ∈ Dom+(E ) for any t ∈ [0, T ], then X+ is an RCLL E -supermartingale such that for
any t ∈ [0, T ], X+

t ≤ X t , a.s.;
(3) Moreover, if the function t → E [X t ] from [0, T ] to R is right continuous, then X+ is an RCLL

modification of X. Conversely, if X has a right-continuous modification, then the function
t → E [X t ] is right continuous.

Now we add one more hypothesis to the F-expectation E :

(H3) For any ξ ∈ Dom+(E ) and ν ∈ S0,T , X ξ,+
ν ∈ Dom+(E ).

In light of Proposition 2.5(1), (H3) holds if esssupt∈DT
E [ξ |Ft ] ∈ Dom+(E ) or if E satisfies

(2.5).
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For each ξ ∈ Dom#(E ), we define ξ ′ , ξ−c(ξ) ∈ Dom+(E ). Clearly X ξ ′

,


E [ξ ′
|Ft ]


t∈[0,T ]

is a non-negative E -martingale. By (A2), E

X ξ ′

t


= E


E [ξ ′
|Ft ]


= E [ξ ′

] for any t ∈ [0, T ],

which means that t → E

X ξ ′

t


is a continuous function on [0, T ]. Thanks to Proposition 2.5(2)

and (H3), the process X ξ ′,+
t , limn→∞ X ξ ′

q+
n (t)

, t ∈ [0, T ] is an RCLL modification of X ξ ′

. Then

for any ν ∈ S0,T , we define

E [ξ |Fν] , X ξ ′,+
ν + c(ξ) (2.6)

as the conditional F-expectation of ξ at the stopping time ν ∈ S0,T . Since we have assumed

Dom(E ) ∈ DT , Lemma 2.1, (H3), (D2) as well as the non-negativity of X ξ ′,+
ν imply that

E [ξ |Fν] ∈ Dom#(E ), (2.7)

which shows that E [·|Fν] is an operator from Dom#(E ) to Dom#
ν(E ) , Dom#(E ) ∩ L0(Fν). In

fact,
E [·|Ft ]


t∈[0,T ]

defines a F-expectation on Dom#(E ), as the next result shows.

Proposition 2.6. For any ξ ∈ Dom#(E ), E [ξ |F·] is an RCLL modification of E [ξ |F·].E [·|Ft ]


t∈[0,T ]
is an F-expectation with domain Dom(E ) = Dom#(E ) ∈ DT and satisfy-

ing (H0)–(H2); thus all preceding results are applicable to E .

Proof. As Dom(E ) ∈ DT is assumed, we see that Dom#(E ) also belongs to DT . Fix ξ ∈

Dom#(E ). Since X ξ ′,+ is an RCLL modification of X ξ ′

, (A4) implies that for any t ∈ [0, T ]

E [ξ |Ft ] = X ξ ′,+
t + c(ξ) = E [ξ ′

|Ft ] + c(ξ) = E [ξ ′
+ c(ξ)|Ft ] = E [ξ |Ft ], a.s. (2.8)

Thus E [ξ |F·] is actually an RCLL modification of E [ξ |F·]. Then it is easy to show that the pairE , Dom#(E )


satisfies (A1)–(A4) and (H0)–(H2); thus it is an F-expectation. �

We restate Proposition 2.5 with respect to E for future use.

Corollary 2.2. Let X be an E -supermartingale such that essinft∈[0,T ] X t ≥ c, a.s. for some
c ∈ R.

(1) If esssupt∈DT
X t ∈ Dom#(E ) or if (2.5) holds, then both X−

ν and X+
ν belong to Dom#(E ) for

any ν ∈ S0,T ;
(2) If X+

t ∈ Dom#(E ) for any t ∈ [0, T ], then X+ is an RCLL E -supermartingale such that for
any t ∈ [0, T ], X+

t ≤ X t , a.s.
(3) Moreover, if the function t → E [X t ] from [0, T ] to R is right continuous, then X+ is an RCLL

modification of X. Conversely, if X has a right-continuous modification, then the function
t → E [X t ] is right continuous.

The next result is the Optional Sampling Theorem of E for the stopping times in S0,T .

Theorem 2.4 (Optional Sampling Theorem 2). Let X be a right-continuous E -supermartingale
(resp. E -martingale, E -submartingale) such that essinft∈DT X t ≥ c, a.s. for some c ∈ R.
If Xν ∈ Dom#(E ) for any ν ∈ S0,T , then for any ν, σ ∈ S0,T , we haveE [Xν |Fσ ] ≤ (resp. =, ≥)Xν∧σ , a.s.
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Using the Optional Sampling Theorem, we are able to extend Corollary 2.1 and Proposi-
tion 2.4 to the operators E [·|Fν], ν ∈ S0,T .

Corollary 2.3. For any ξ ∈ Dom#(E ) and ν, σ ∈ S0,T , we have

E E [ξ |Fν]|Fσ


= E [ξ |Fν∧σ ], a.s. (2.9)

Proof. Since
E , Dom#(E )


is an F-expectation by Proposition 2.6, for any ξ ∈ Dom#(E ), (A2)

implies that the RCLL process X ξ ,
E [ξ |Ft ]


t∈[0,T ]

is an E -martingale. For any t ∈ [0, T ],
(2.8) and Proposition 2.2(2) show thatX ξ

t = E [ξ |Ft ] ≥ E [c(ξ)|Ft ] = E [c(ξ)|Ft ] = c(ξ), a.s.,

which implies that essinft∈[0,T ]
X ξ

t ≥ c(ξ), a.s. Then (2.7) and Theorem 2.4 give rise to (2.9). �

Proposition 2.7. For any ξ, η ∈ Dom#(E ) and ν ∈ S0,T , it holds that

(1) “Strict Monotonicity”: E [ξ |Fν] ≤ E [η|Fν], a.s. if ξ ≤ η, a.s.; Moreover, if E [ξ |Fσ ] =E [η|Fσ ], a.s. for some σ ∈ S0,T , then ξ = η, a.s.;
(2) “Zero–one Law”: E [1Aξ |Fν] = 1AE [ξ |Fν], a.s. for any A ∈ Fν;
(3) “Translation Invariance”: E [ξ + η|Fν] = E [ξ |Fν] + η, a.s. if η ∈ Dom#

ν(E );
(4) “Local Property”: E [1Aξ + 1Acη|Fν] = 1AE [ξ |Fν] + 1Ac E [η|Fν], a.s. for any A ∈ Fν;
(5) “Constant-Preserving”: E [ξ |Fν] = ξ , a.s., if ξ ∈ Dom#

ν(E ).

Remark 2.8. Corollary 2.3, Proposition 2.7(2) and (2.8) imply that for any ξ ∈ Dom#(E ) and
ν ∈ S0,T ,

E [1Aξ ] = E [1Aξ ] = E E [1Aξ |Fν]


= E 
1AE [ξ |Fν]


= E


1AE [ξ |Fν]


, ∀ A ∈ Fν . (2.10)

In light of Proposition 2.2(3), E [ξ |Fν] is the unique element (up to a P-null set) in Dom#
ν(E )

that makes (2.10) hold. Therefore, we see that the random variable E [ξ |Fν] defined by (2.6) is
exactly the conditional F-expectation of ξ at the stopping time ν in the classical sense.

In light of Corollary 2.3 and Proposition 2.7, we can generalize Fatou’s Lemma (Theorem 2.1)
and the Dominated Convergence Theorem (Theorem 2.2) to the conditional F-expectationE [·|Fν], ν ∈ S0,T .

Proposition 2.8 (Fatou’s lemma 2). Let {ξn}n∈N be a sequence in Dom#(E ) that converges a.s.
to some ξ ∈ Dom#(E ) and satisfies essinfn∈Nξn ≥ c, a.s. for some c ∈ R, then for any ν ∈ S0,T ,
we haveE [ξ |Fν] ≤ lim

n→∞

E [ξn|Fν], a.s., (2.11)

where the right hand side of (2.11) could be equal to infinity with non-zero probability.

Proposition 2.9 (Dominated Convergence Theorem 2). Let {ξn}n∈N be a sequence in Dom#(E )

that converges a.s. and that satisfies essinfn∈Nξn ≥ c, a.s. for some c ∈ R. If there is an
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η ∈ Dom#(E ) such that ξn ≤ η a.s. for any n ∈ N, then the limit ξ of {ξn}n∈N belongs to
Dom#(E ) and for any ν ∈ S0,T , we have

lim
n→∞

E [ξn|Fν] = E [ξ |Fν], a.s. (2.12)

Proof of Propositions 2.8 and 2.9. In the proofs of Theorems 2.1 and 2.2, we only need to
replace {ξn}n∈N and E [·|Ft ] by {ξn − c}n∈N and E [·|Fν] respectively. Instead of (A1), (A3)
and (A4), we apply Proposition 2.7(1)–(3). Moreover, since (A2) is only used on Dom+(E ) in
the proofs of Theorems 2.1 and 2.2, we can substitute Corollary 2.3 for it. Eventually, a simple
application of Proposition 2.7(3) yields (2.11) and (2.12). �

3. Collections of F-expectations

In this section, we will show that pasting of two F-expectations at a given stopping time
is itself an F-expectation. Moreover, pasting preserves (H1) and (H2). We will then introduce
the concept of a stable class of F-expectations, which are collections closed under pasting.
We will solve the optimal stopping problems introduced in (1.1) and (1.6) over this class of
F-expectations. Before we show the pasting property of F-expectations, we introduce the concept
of convexity for an F-expectation and give one of the consequences of having convexity:

Definition 3.1. An F-expectation E is called “positively-convex” if for any ξ, η ∈ Dom+(E ), λ ∈

(0, 1) and t ∈ [0, T ]

E [λξ + (1 − λ)η|Ft ] ≤ λE [ξ |Ft ] + (1 − λ)E [η|Ft ], a.s.

Lemma 3.1. Any positively-convex F-expectation satisfies (H0). Moreover, an F-expectation E
is positively-convex if and only if the implied F-expectation

E , Dom#(E )


is convex, i.e., for any
ξ, η ∈ Dom#(E ), λ ∈ (0, 1) and t ∈ [0, T ]E [λξ + (1 − λ)η|Ft ] ≤ λE [ξ |Ft ] + (1 − λ)E [η|Ft ], a.s. (3.1)

Proposition 3.1. Let Ei , E j be two F-expectations with the same domain Λ ∈ DT and
satisfying (H1)–(H3). For any ν ∈ S0,T , we define the pasting of Ei , E j at the stopping time
ν to be the following RCLL F-adapted process

E ν
i, j [ξ |Ft ] , 1{ν≤t}E j [ξ |Ft ] + 1{ν>t}Ei

E j [ξ |Fν]|Ft

, ∀ t ∈ [0, T ] (3.2)

for any ξ ∈ Λ#
= {ξ ∈ Λ : ξ ≥ c, a.s. for some c = c(ξ) ∈ R}. Then E ν

i, j is an F-expectation

with domain Λ#
∈ DT and satisfying (H1) and (H2). Moreover, if Ei and E j are both positively-

convex, E ν
i, j is convex in the sense of (3.1).

In particular, for any σ ∈ S0,T , applying Proposition 2.7(4) and (5), we obtain

E ν
i, j [ξ |Fσ ] = 1{ν≤σ }

E j [ξ |Fσ ] + 1{ν>σ }
Ei

E j [ξ |Fν]|Fσ


= 1{ν≤σ }

Ei
E j [ξ |Fσ ]|Fσ


+ 1{ν>σ }

Ei
E j [ξ |Fν]|Fσ


= Ei


1{ν≤σ }

E j [ξ |Fσ ] + 1{ν>σ }
E j [ξ |Fν]|Fσ


= Ei

E j [ξ |Fν∨σ ]|Fσ


, a.s., (3.3)

where we used the fact that {ν > σ } ∈ Fν∧σ thanks to [8, Lemma 1.2.16].
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Remark 3.1. Pasting may not preserve (H0). From now on, we will replace assumption (H0)
by the positive convexity, which implies the former and is an invariant property under pasting
thanks to the previous two results. Positive convexity is also important in constructing an optimal
stopping time of (1.1) (see Theorem 2.1 of [1]).

All of the ingredients are in place to introduce what we mean by a stable class of F-
expectations. As we will see in Lemma 2.2 of [1], stability assures that the essential supremum
or infimum over the class can be approximated by an increasing or decreasing sequence in the
class.

Definition 3.2. A class E = {Ei }i∈I of F-expectations is said to be “stable” if

(1) All Ei , i ∈ I are positively-convex F-expectations with the same domain Λ ∈ DT and they
satisfy (H1)–(H3);

(2) E is closed under pasting: namely, for any i, j ∈ I, ν ∈ S0,T , there exists a k = k(i, j, ν) ∈ I
such that E ν

i, j coincides with Ek on Λ#.

We shall denote Dom(E ) , Λ#, thus Dom(E ) = Dom#(Ei ) ∈ DT for any i ∈ I . Moreover, if
E ′

= {Ei }i∈I ′ satisfies (2) for some non-empty subset I ′ of I , then we call E ′ a stable subclass
of E , clearly Dom(E ′) = Dom(E ).

Remark 3.2. The notion of “pasting” for linear expectations was given by [6, Definition 6.41].
The counterpart of Proposition 3.1 for the linear expectations, which states that pasting two
probability measures equivalent to P results in another probability measure equivalent to P ,
is given by [6, Lemma 6.43]. Note that in the case of linear expectations, (H1), (H2) and the
convexity are trivially preserved because pasting in that case gives us a linear expectation. On
the other hand, the notion of stability for linear expectations was given by [6, Definition 6.44].
The stability is also referred to as “fork convexity” in stochastic control theory, “m-stability”
in stochastic analysis or “rectangularity” in decision theory (see the introduction of [5,2] for
details).

Example 3.1. (1) Let P be the set of all probability measures equivalent to P , then EP ,
{EQ}Q∈P is a stable class of linear expectations; see [6, Proposition 6.45].

(2) Consider a collection U of admissible control processes. For any U ∈ U, let PU be the
equivalent probability measure defined via [11, (5)] (or [10, (2.5)]), then EU , {EPU }U∈U is
a stable class of linear expectations; see Section 5.3 of [1].

(3) For any M > 0, a family EM of convex Lipschitz g-expectations with Lipschitz coefficient
Kg ≤ M is an example of stable class of non-linear expectations; see Section 5.1 of [1].

The following lemma gives us a tool for checking whether a random variable is inside the
domain Dom(E ) of a stable class E .

Lemma 3.2. Given a stable class E of F-expectations, a random variable ξ belongs to Dom(E )

if and only if c ≤ ξ ≤ η, a.s. for some c ∈ R and η ∈ Dom(E ).

Proof. Consider a random variable ξ . If ξ ∈ Dom(E ), since Dom(E ) = Dom#(Ei ) for any i ∈ I ,
we know that there exists a c = c(ξ) ∈ R such that ξ ≥ c(ξ), a.s.

On the other hand, if c ≤ ξ ≤ η, a.s. for some c ∈ R and η ∈ Dom(E ), it follows that
0 ≤ ξ − c ≤ η − c, a.s. Since Dom(E ) ∈ DT , we see that −c, c ∈ R ⊂ Dom(E ). Then (D2)
shows that η − c ∈ Dom(E ) and thus (D3) implies that ξ − c ∈ Dom(E ), which further leads to
ξ = (ξ − c) + c ∈ Dom(E ) thanks to (D2) again. �
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We end this section by reviewing some basic properties of the essential supremum and
essential infimum (for their definitions, see e.g. [13, Proposition VI-1-1], or [6, Theorem A.32]).

Lemma 3.3. Let {ξ j } j∈J and {η j } j∈J be two families of random variables of L0(F ) with the
same index set J .

(1) If ξ j ≤ (=) η j , a.s. for any j ∈ J , then esssup j∈J ξ j ≤ (=) esssup j∈J η j , a.s.
(2) For any A ∈ F , it holds a.s. that esssup j∈J


1Aξ j + 1Acη j


= 1Aesssup j∈J ξ j +

1Ac esssup j∈J η j ; In particular, esssup j∈J

1Aξ j


= 1Aesssup j∈J ξ j , a.s.

(3) For any random variable γ ∈ L0(F ) and any α > 0, we have esssup j∈J (αξ j + γ ) =

αesssup j∈J ξ j + γ , a.s.

Moreover, (1)–(3) hold when we replace esssup j∈J by essinf j∈J .

4. Proofs

Proof of Proposition 2.1. For any ξ ∈ Λ and t ∈ [0, T ], let us define E o
[ξ |Ft ] , ξt . We will

check that the system


E o
[ξ |Ft ], ξ ∈ Λ


t∈[0,T ]

satisfies (A1)–(A4); thus it is an F-expectation
with domain Λ.
(1) For any η ∈ Λ with ξ ≤ η, a.s., we set A ,


E o

[ξ |Ft ] > E o
[η|Ft ]


∈ Ft , thus

1A E o
[ξ |Ft ] ≥ 1A E o

[η|Ft ]. It follows from (a1) and (a2) that

E o1A E o
[ξ |Ft ]


≥ E o1A E o

[η|Ft ]


= E o
[1Aη] ≥ E o

[1Aξ ] = E o1A E o
[ξ |Ft ]


,

which shows that E o

1A E o

[ξ |Ft ]


= E o

1A E o

[η|Ft ]

. Then the “strict monotonicity” of (a1)

further implies that 1A E o
[ξ |Ft ] = 1A E o

[η|Ft ], a.s., thus P(A) = 0, i.e., E o
[ξ |Ft ] ≤ E o

[η|Ft ],
a.s.

Moreover, if 0 ≤ ξ ≤ η, a.s. and E o
[ξ |F0] = E o

[η|F0], applying (a2) with A = Ω and γ = 0,
we obtain

E o
[ξ ] = E oE o

[ξ |F0]


= E oE o
[η|F0]


= E o

[η].

Then the strict monotonicity of (a1) implies that ξ = η, a.s., proving (A1).
(2) Let 0 ≤ s ≤ t ≤ T , for any A ∈ Fs ⊂ Ft and γ ∈ Λs ⊂ Λt , one can deduce that

E o

1A E oE o

[ξ |Ft ]|Fs

+ γ


= E o1A E o

[ξ |Ft ] + γ


= E o1Aξ + γ

.

Since E o


E o
[ξ |Ft ]|Fs


∈ Fs , (a2) implies that E o

[ξ |Fs] = ξs = E o


E o
[ξ |Ft ]|Fs


,

proving (A2).
(3) Fix A ∈ Ft , for any Ã ∈ Ft and γ ∈ Λt , we have

E o1 Ã


1A E o

[ξ |Ft ]

+ γ


= E o1 Ã∩A E o

[ξ |Ft ] + γ


= E o1 Ã∩Aξ + γ


= E o1 Ã(1Aξ) + γ

.

Since 1A E o
[ξ |Ft ] ∈ Ft , (a2) implies that E o

[1Aξ |Ft ] = 1A E o
[ξ |Ft ], proving (A3).

(4) For any A ∈ Ft and η, γ ∈ Λt , (D2) implies that 1Aη + γ ∈ Λt , thus we have

E o1A


E o
[ξ |Ft ] + η


+ γ


= E o1A E o

[ξ |Ft ] + (1Aη + γ )


= E o1Aξ + (1Aη + γ )


= E o1A(ξ + η) + γ

.

Then it follows from (a2) that E o
[ξ + η|Ft ] = E o

[ξ |Ft ] + η, proving (A4). �



E. Bayraktar, S. Yao / Stochastic Processes and their Applications 121 (2011) 185–211 199

Proof of Proposition 2.2. (1) For any A ∈ Ft , using (A3) twice, we obtain

E [1Aξ + 1Acη|Ft ] = 1A E [1Aξ + 1Acη|Ft ] + 1Ac E [1Aξ + 1Acη|Ft ]

= E [1A(1Aξ + 1Acη)|Ft ] + E [1Ac (1Aξ + 1Acη)|Ft ]

= E [1Aξ |Ft ] + E [1Acη|Ft ] = 1A E [ξ |Ft ] + 1Ac E [η|Ft ], a.s.

(2) Applying (A3) with a null set A and ξ = 0, we obtain E [0|Ft ] = E [1A0|Ft ] = 1A E [0|Ft ] =

0, a.s. If ξ ∈ Domt (E ), (A4) implies that E [ξ |Ft ] = E [0 + ξ |Ft ] = E [0|Ft ] + ξ = ξ , a.s.
(3) If ξ ≤ η, a.s., (A1) directly implies that for any A ∈ Fν, E [1Aξ ] ≤ E [1Aη]. On the other
hand, suppose that E [1Aξ ] ≤ E [1Aη] for any A ∈ Fν . We set Ã , {ξ > η} ∈ Fν , thus
1 Ãξ ≥ 1 Ãη ≥ c ∧ 0, a.s. Using (A1) we see that E [1 Ãξ ] ≥ E [1 Ãη]; hence E [1 Ãξ ] = E [1 Ãη].
Then (A4) implies that

E [1 Ãξ − c ∧ 0] = E [1 Ãξ ] − c ∧ 0 = E [1 Ãη] − c ∧ 0 = E [1 Ãη − c ∧ 0].

Applying the second part of (A1), we obtain that 1 Ãξ − c ∧ 0 = 1 Ãη − c ∧ 0, a.s., which implies
that P( Ã) = 0, i.e. ξ ≤ η, a.s. �

Proof of Proposition 2.3. We shall only consider the E -supermartingale case, as the other cases
can be deduced similarly. We first show that for any s ∈ [0, T ] and ν ∈ S F

0,T

E [Xν |Fs] ≤ Xν∧s, a.s. (4.1)

To see this, we note that since {ν ≤ s} ∈ Fs , (A3) and Proposition 2.2(2) imply that

E [Xν |Fs] = 1{ν>s}E [Xν |Fs] + 1{ν≤s}E [Xν |Fs]

= E

1{ν>s} Xν∨s |Fs


+ E


1{ν≤s} Xν∧s |Fs


= 1{ν>s}E


Xν∨s |Fs


+ 1{ν≤s}E


Xν∧s |Fs


= 1{ν>s}E


Xν∨s |Fs


+ 1{ν≤s} Xν∧s, a.s. (4.2)

Suppose that νs , ν ∨ s takes values in a finite subset {t1 < · · · < tn} of [s, T ]. Then (A4)
implies that

E [Xνs |Ftn−1 ] = E

1{νs=tn} X tn |Ftn−1


+

n−1−
i=1

1{νs=ti } X ti , a.s.

Since {νs = tn} = {νs > tn−1} ∈ Ftn−1 , (A3) shows that

E

1{νs=tn} X tn |Ftn−1


= 1{νs=tn}E [X tn |Ftn−1 ] ≤ 1{νs=tn} X tn−1 , a.s.

Thus it holds a.s. that E [Xνs |Ftn−1 ] ≤ 1{νs>tn−2} X tn−1 +
∑n−2

i=1 1{νs=ti } X ti . Applying E [·|Ftn−2 ]

on both sides, we can further deduce from (A2)–(A4) that

E

Xνs |Ftn−2


= E


E

Xνs |Ftn−1


|Ftn−2


≤ 1{νs>tn−2}E [X tn−1 |Ftn−2 ] +

n−2−
i=1

1{νs=ti } X ti

≤ 1{νs>tn−2} X tn−2 +

n−2−
i=1

1{νs=ti } X ti = 1{νs>tn−3} X tn−2 +

n−3−
i=1

1{νs=ti } X ti , a.s.

Inductively, it follows that E [Xνs |Ft1 ] ≤ X t1 , a.s. Applying (A2) once again, we obtain

E

Xνs |Fs


= E


E

Xνs |Ft1


|Fs


≤ E [X t1 |Fs] ≤ Xs, a.s.,

which together with (4.2) implies that E [Xν |Fs] ≤ 1{ν>s} Xs + 1{ν≤s} Xν∧s = Xν∧s , a.s.,
proving (4.1).
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Let σ ∈ S F
0,T taking values in a finite set {s1 < · · · < sm}, then

E [Xν |Fσ ] =

m−
j=1

1{σ=s j }E [Xν |Fs j ] ≤

m−
j=1

1{σ=s j } Xν∧s j = Xν∧σ , a.s. �

Proof of Proposition 2.4. Given ξ ∈ Dom(E ), we let ν ∈ S F
0,T take values in a finite set

{t1 < · · · < tn}.
(1) For any η ∈ Dom(E ) with ξ ≤ η, a.s., (A1) implies that

E [ξ |Fν] =

n−
i=1

1{ν=ti }E [ξ |Fti ] ≤

n−
i=1

1{ν=ti }E [η|Fti ] = E [η|Fν], a.s.

Moreover, if 0 ≤ ξ ≤ η, a.s. and E [ξ |Fσ ] = E [η|Fσ ], a.s. for some σ ∈ S F
0,T , we can apply

Corollary 2.1 to obtain

E [ξ ] = E


E [ξ |Fσ ]


= E


E [η|Fσ ]


= E [η].

The second part of (A1) then implies that ξ = η, a.s., proving (1).
(2) For any A ∈ Fν , it is clear that A ∩ {ν = ti } ∈ Fti for each i ∈ {1, . . . , n}. Hence we can
deduce from (A3) that

E [1Aξ |Fν] =

n−
i=1

1{ν=ti }E [1Aξ |Fti ] =

n−
i=1

E [1{ν=ti }∩Aξ |Fti ] =

n−
i=1

1{ν=ti }∩A E [ξ |Fti ]

= 1A

n−
i=1

1{ν=ti }E [ξ |Fti ] = 1A E [ξ |Fν], a.s., proving (2).

(3) For any η ∈ Domν(E ), since 1{ν=ti }η ∈ Domti (E ) for each i ∈ {1, . . . , n}, (A3) and (A4)
imply that

E [ξ + η|Fν] =

n−
i=1

1{ν=ti }E [ξ + η|Fti ] =

n−
i=1

E [1{ν=ti }ξ + 1{ν=ti }η|Fti ]

=

n−
i=1


E [1{ν=ti }ξ |Fti ] + 1{ν=ti }η


=

n−
i=1

1{ν=ti }E [ξ |Fti ] + η = E [ξ |Fν] + η, a.s., proving (3).

The proof of (4) and (5) is similar to that of Proposition 2.2(1) and (2) by applying the just
obtained “Zero–one Law” and “Translation Invariance”. �

Proof of Theorem 2.1. (H1) is an easy consequence of the lower semi-continuity (2.2). In fact,
for any ξ ∈ Dom+(E ) and any {An}n∈N ⊂ FT with limn→∞ ↑ 1An = 1 a.s., {1An ξ}n∈N is an
increasing sequence converging to ξ . Then applying the lower semi-continuity with ν = 0 and
using (A1), we obtain E [ξ ] ≤ limn→∞ ↑ E [1An ξ ] ≤ E [ξ ]; so (H1) follows.

On the other hand, to show that (H1) implies the lower semi-continuity, we first extend (H1)
as follows: For any ξ ∈ Dom+(E ) and any {An}n∈N ⊂ FT with limn→∞ ↑ 1An = 1, a.s., it
holds for any t ∈ [0, T ] that

lim
n→∞

↑ E [1An ξ |Ft ] = E [ξ |Ft ], a.s. (4.3)
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In fact, by (A1), it holds a.s. that


E [1An ξ |Ft ]


n∈N is an increasing sequence bounded from
above by E [ξ |Ft ]. Hence, limn→∞ ↑ E [1An ξ |Ft ] ≤ E [ξ |Ft ], a.s. Assuming that limn→∞ ↑

E [1An ξ |Ft ] < E [ξ |Ft ] with a positive probability, we can find an ε > 0 such that the set
Aε =


limn→∞ ↑ E [1An ξ |Ft ] ≤ E [ξ |Ft ] − ε


∈ Ft still has positive probability. Hence

for any n ∈ N, we have

1Aε E [1An ξ |Ft ] ≤ 1Aε lim
n→∞

↑ E [1An ξ |Ft ] ≤ 1Aε


E [ξ |Ft ] − ε


, a.s.

Then (A1)–(A4) imply that

E [1Aε 1An ξ ] + ε = E [1Aε 1An ξ + ε] = E


E [1Aε 1An ξ + ε|Ft ]


= E

1Aε E [1An ξ |Ft ] + ε


≤ E


1Aε E [ξ |Ft ] + ε1Ac

ε


= E


E [1Aεξ + ε1Ac

ε
|Ft ]


= E [1Aεξ + ε1Ac

ε
].

Using (A4), (H1) and (A1), we obtain

E [1Aεξ + ε] = E [1Aεξ ] + ε = lim
n→∞

↑ E [1An 1Aεξ ] + ε

≤ E [1Aεξ + ε1Ac
ε
] ≤ E [1Aεξ + ε],

thus E [1Aεξ + ε] = E [1Aεξ + ε1Ac
ε
]. Then the second part of (A1) implies that 1Aεξ + ε =

1Aεξ + ε1Ac
ε
, a.s., which can hold only if P(Aε) = 0. This results in a contradiction. Thus

limn→∞ ↑ E [1An ξ |Ft ] = E [ξ |Ft ], a.s., proving (4.3).
Next, we show that (2.2) holds for each deterministic stopping time ν = t ∈ [0, T ]. For any

j, n ∈ N, we define A j
n , ∩

∞

k=n{|ξ − ξk | < 1/j} ∈ FT . (A1) and (A4) imply that for any k ≥ n

E [1
A j

n
ξ |Ft ] ≤ E [1{|ξ−ξk |<1/j}ξ |Ft ] ≤ E [ξk + 1/j |Ft ] = E [ξk |Ft ] + 1/j, a.s.

Hence, except on a null set N j
n , the above inequality holds for any k ≥ n. As k → ∞, it holds

on

N j

n
c that

E [1
A j

n
ξ |Ft ] ≤ lim

k→∞

E [ξk |Ft ] + 1/j.

(Here it is not necessary that limk→∞E [ξk |Ft ] < ∞, a.s.) Since ξn → ξ , a.s. as n → ∞, it is
clear that limn→∞ ↑ 1

A j
n

= 1, a.s. Then (4.3) implies that E [ξ |Ft ] = limn→∞ ↑ E [1
A j

n
ξ |Ft ]

holds except on a null set N j
0 . Let N j

= ∪
∞

n=0 N j
n . It then holds on


N j

c that

E [ξ |Ft ] = lim
n→∞

↑ E [1
A j

n
ξ |Ft ] ≤ lim

k→∞

E [ξk |Ft ] + 1/j.

As j → ∞, it holds except on the null set ∪
∞

j=1 N j that

E [ξ |Ft ] ≤ lim
n→∞

E [ξn|Ft ]. (4.4)

Let ν ∈ S F
0,T taking values in a finite set {t1 < · · · < tn}. Then we can deduce from (4.4) that

E [ξ |Fν] =

n−
i=1

1{ν=ti }E [ξ |Fti ] ≤

n−
i=1

1{ν=ti } lim
n→∞

E [ξn|Fti ] = lim
n→∞

n−
i=1

1{ν=ti }E [ξn|Fti ]

= lim
n→∞

E [ξn|Fν], a.s., (4.5)

which completes the proof. �
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Proof of Theorem 2.2. We first show an extension of (H2): For any ξ, η ∈ Dom+(E ) and any
{An}n∈N ⊂ FT with limn→∞ ↓ 1An = 0, a.s., it holds a.s. that

lim
n→∞

↓ E [ξ + 1An η|Ft ] = E [ξ |Ft ], a.s. (4.6)

In fact, by (A1), it holds a.s. that


E [ξ + 1An η|Ft ]


n∈N is a decreasing sequence bounded
from below by E [ξ |Ft ]. Hence, limn→∞ ↓ E [ξ + 1An η|Ft ] ≥ E [ξ |Ft ], a.s. Assume that
limn→∞ ↓ E [ξ + 1An η|Ft ] > E [ξ |Ft ] with a positive probability, then we can find an ε > 0
such that the set A′

ε =

limn→∞ ↓ E [ξ + 1An η|Ft ] ≥ E [ξ |Ft ] + ε


∈ Ft still has positive

probability. For any n ∈ N, (A4) implies that

1A′
ε

E [ξ + 1An η|Ft ] ≥ 1A′
ε

lim
n→∞

↓ E [ξ + 1An η|Ft ]

≥ 1A′
ε


E [ξ |Ft ] + ε


= 1A′

ε
E [ξ + ε|Ft ], a.s.

Applying (A1)–(A3), we obtain

E [1A′
ε
ξ + 1An 1A′

ε
η] = E


E [1A′

ε
ξ + 1An 1A′

ε
η|Ft ]


= E


1A′

ε
E [ξ + 1An η|Ft ]


≥ E


1A′

ε
E [ξ + ε|Ft ]


= E


E [1A′

ε
(ξ + ε)|Ft ]


= E


1A′

ε
(ξ + ε)


.

Thanks to (H2) we further have

E [1A′
ε
ξ ] = lim

n→∞
↓ E [1A′

ε
ξ + 1An 1A′

ε
η] ≥ E


1A′

ε
(ξ + ε)


≥ E


1A′

ε
ξ

,

thus E [1A′
ε
ξ ] = E [1A′

ε
(ξ + ε)


. Then the second part of (A1) implies that P(A′

ε) = 0, which
yields a contradiction. Therefore, limn→∞ ↓ E [ξ + 1An η|Ft ] = E [ξ |Ft ], a.s., proving (4.6).

Since the sequence {ξn}n∈N is bounded above by η, it holds a.s. that ξ = limn→∞ ξn ≤ η,
thus (D3) implies that ξ ∈ Dom(E ). Then Fatou’s Lemma (Theorem 2.1) implies that for any
ν ∈ S F

0,T ,

E [ξ |Fν] ≤ lim
n→∞

E [ξn|Fν], a.s. (4.7)

On the other hand, we first fix t ∈ [0, T ]. For any j, n ∈ N, define A j
n , ∩

∞

k=n{|ξ − ξk | < 1/j} ∈

FT . Then one can deduce that for any k ≥ n

E [ξk |Ft ] ≤ E [1
A j

n
(ξ + 1/j) + 1

(A j
n)cη|Ft ] ≤ E [ξ + 1/j + 1

(A j
n)c (η − ξ)|Ft ], a.s.

Hence, except on a null set N j
n , the above inequality holds for any k ≥ n. As k → ∞, it holds

on

N j

n
c that

lim
k→∞

E [ξk |Ft ] ≤ E [ξ + 1/j + 1
(A j

n)c (η − ξ)|Ft ].

Since ξ ∈ L0(FT ) and ξn → ξ , a.s. as n → ∞, it is clear that limn→∞ ↑ 1
A j

n
= 1, a.s. Then

(4.6) and (A4) imply that except on a null set N j
0 , we have

lim
n→∞

↓ E [ξ + 1/j + 1
(A j

n)c (η − ξ)|Ft ] = E [ξ + 1/j |Ft ] = E [ξ |Ft ] + 1/j.

Let N j
= ∪

∞

n=0 N j
n , thus it holds on


N j

c that

lim
k→∞

E [ξk |Ft ] ≤ E [ξ |Ft ] + 1/j.
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As j → ∞, it holds except on the null set ∪
∞

j=1 N j that limn→∞E [ξn|Ft ] ≤ E [ξ |Ft ]. Then for

any ν ∈ S F
0,T , using an argument similar to (4.5) yields that

lim
n→∞

E [ξn|Fν] ≤ E [ξ |Fν], a.s.,

which together with (4.7) proves the theorem. �

Proof of Theorem 2.3. Let F = {t1 < t2 < · · · < td} be any finite subset of DT . For

j = 1, . . . , d, we define A j = {ν j < T } ∈ Fν j , clearly, A j ⊃ A j+1. Let d ′
=


d
2


, one

can deduce that UF

a, b; X


=

∑d ′

j=1 1A2 j and that

1
∪

d′

j=1(A2 j−1\A2 j )
(XT − a) ≥ 1

∪
d′

j=1(A2 j−1\A2 j )
1{XT <a}(XT − a)

≥ 1{XT <a}(XT − a) = −(a − XT )+.

Since XT ∈ Dom(E ) and L∞(FT ) ⊂ Dom(E ) (by Lemma 2.1), we can deduce from (D2) that

(b − a)UF

a, b; X


− (a − XT )+ =

d ′−
j=1

1A2 j (b − a) + 1{XT <a}(XT − a) ∈ Dom(E ).

Then Proposition 2.4(1)–(3) and Proposition 2.3 imply that

E

(b − a)UF


a, b; X


− (a − XT )+|Fν2d′


≤ (b − a)

d ′−
j=1

1A2 j + E

1
∪

d′

j=1(A2 j−1\A2 j )
(XT − a)|Fν2d′


= (b − a)

d ′−
j=1

1A2 j + 1
∪

d′

j=1(A2 j−1\A2 j )


E [XT |Fν2d′ ] − a


≤ (b − a)

d ′−
j=1

1A2 j + 1
∪

d′

j=1(A2 j−1\A2 j )


Xν2d′ − a


, a.s.

Applying E [·|Fν2d′−1
] to the above inequality, using Proposition 2.4(1)–(3) and Proposition 2.3

again, we obtain

E

(b − a)UF


a, b; X


− (a − XT )+

 Fν2d′−1


≤ E


(b − a)

d ′
−1−

j=1

1A2 j +

1A2d′−1

+ 1
∪

d′−1
j=1 (A2 j−1\A2 j )


Xν2d′ − a

  Fν2d′−1



= (b − a)

d ′
−1−

j=1

1A2 j + E


1A2d′−1
+ 1

∪
d′−1
j=1 (A2 j−1\A2 j )


Xν2d′ − a

  Fν2d′−1


= (b − a)

d ′
−1−

j=1

1A2 j +

1A2d′−1

+ 1
∪

d′−1
j=1 (A2 j−1\A2 j )


E [Xν2d′ |Fν2d′−1

] − a


≤ (b − a)

d ′
−1−

j=1

1A2 j +

1A2d′−1

+ 1
∪

d′−1
j=1 (A2 j−1\A2 j )


(Xν2d′−1

− a)

≤ (b − a)

d ′
−1−

j=1

1A2 j + 1
∪

d′−1
j=1 (A2 j−1\A2 j )

(Xν2d′−1
− a), a.s.,
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where we used the fact that Xν2d′ > b on A2d ′ in the first inequality and the fact that Xν2d′−1
<

a on A2d ′−1 in the last inequality. Similarly, applying E [·|Fν2d′−2
] to the above inequality

yields that

E

(b − a)UF


a, b; X


− (a − XT )+|Fν2d′−2


≤ (b − a)

d ′
−1−

j=1

1A2 j + 1
∪

d′−1
j=1 (A2 j−1\A2 j )

(Xν2d′−2
− a), a.s.

Iteratively applying E [·|Fν2d′−3
], E [·|Fν2d′−4

] and so on, we eventually obtain that

E

(b − a)UF


a, b; X


− (a − XT )+


≤ 0. (4.8)

We assume first that XT ≥ c, a.s. for some c ∈ R. Since (a − XT )+ ≤ |a| + |c|, it directly
follows from (A4) that

0 ≥ E

(b − a)UF


a, b; X


− (a − XT )+


≥ E


(b − a)UF


a, b; X


− (|a| + |c|). (4.9)

Let {Fn}n∈N be an increasing sequence of finite subsets of DT with ∪n∈N Fn = DT , thus
limn→∞ ↑ UFn (a, b; X) = UDT (a, b; X). Fix M ∈ N, we see that

lim
n→∞

↑ 1{UFn (a,b;X)>M} = 1∪n{UFn (a,b;X)>M} = 1{UDT (a,b;X)>M}. (4.10)

For any n ∈ N, we know from (4.9) that E [(b−a)M1{UFn (a,b;X)>M}] ≤ E [(b−a)UFn (a, b; X)] ≤

|a| + |c|, thus Fatou’s Lemma (Theorem 2.1) implies that

E

(b − a)M1{UDT (a,b;X)=∞}


≤ E


(b − a)M1{UDT (a,b;X)>M}


≤ lim

n→∞
↑ E


(b − a)M1{UFn (a,b;X)>M}


≤ |a| + |c|. (4.11)

On the other hand, if E [·] is concave, then we can deduce from (4.8) that

0 ≥ E

(b − a)UF


a, b; X


− (a − XT )+


≥

1
2

E

2(b − a)UF


a, b; X


+

1
2

E

−2(a − XT )+


.

Mimicking the arguments in (4.10) and (4.11), we obtain that

E

(b − a)2M1{UDT (a,b;X)=∞}


≤ −E


−2(a − XT )+


where −2(a − XT )+ = 1{XT <a}2(XT − a) ∈ Dom(E ) thanks to (D2). Also note that (A1) and
Proposition 2.4(5) imply that E


−2(a − XT )+


≤ E [0] = 0.

Using (H0) in both cases above yields that P(UDT (a, b; X) = ∞) = 0, i.e., UDT (a, b; X) <

∞, a.s. Then a classical argument (see e.g. [8, Proposition 1.3.14]) shows that

P


both lim
s↗t, s∈DT

Xs and lim
s↘t, s∈DT

Xs exist for any t ∈ [0, T ]


= 1.

This completes the proof. �

Proof of Proposition 2.5. We can deduce from (2.4) that except on a null set N

X−
t = lim

n→∞
Xq−

n (t) ≤ esssup
s∈DT

Xs and

X+
t = lim

n→∞
Xq+

n (t) ≤ esssup
s∈DT

Xs for any t ∈ [0, T ], (4.12)
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thus X−
ν = lim

n→∞
Xq−

n (ν) ≤ esssup
s∈DT

Xs and

X+
ν = lim

n→∞
Xq+

n (ν) ≤ esssup
s∈DT

Xs for any ν ∈ S0,T . (4.13)

Proof of (1): Case I. For any ν ∈ S0,T , if esssups∈DT
Xs ∈ Dom+(E ), (D3) and (4.13) directly

imply that both X−
ν and X+

ν belong to Dom(E ).
Case II. Assume that E satisfies (2.5). For any n ∈ N, since X is an E -supermartingale and since
q−

n (ν), q+
n (ν) ∈ S F

0,T , Corollary 2.1 and Proposition 2.3 imply that

E

Xq+

n (ν)


= E


E

Xq+

n (ν)|Fq+

n+1(ν)


≤ E


Xq+

n+1(ν)


≤ X0

and E

Xq−

n+1(ν)


= E


E

Xq−

n+1(ν)|Fq−
n (ν)


≤ E


Xq−

n (ν)


≤ X0.

Hence,


E

Xq+

n (ν)


n∈N is an increasing non-negative sequence and


E

Xq−

n (ν)


n∈N is a

decreasing non-negative sequence, both of which are bounded from above by X0 ∈ [0, ∞).
(2.5) and (4.13) then imply that both X−

ν and X+
ν belong to Dom(E ), proving statement (1).

Proof of (2): Now suppose that X+
t ∈ Dom+(E ) for any t ∈ [0, T ]. First, we show that for

t ∈ [0, T ] and A ∈ Ft

E

1A X+

t


= lim

n→∞
E

1A Xq+

n (t)


. (4.14)

Since the distribution function x → P{X+
t ≤ x} jumps up at most on a countable subset S of

[0, ∞), we can find a sequence {K j }
∞

j=1 ⊂ [0, ∞)\ S increasing to ∞. Fix m, j ∈ N, (A1)–(A3)
imply that for any n ≥ m

E

1A1{X

q+
n (t)

<K j }(Xq+
n (t) ∧ K j )


= E


1A1{X

q+
n (t)

<K j } Xq+
n (t)


≥ E


1A1{X

q+
n (t)

<K j }E

Xq+

m (t)|Fq+
n (t)


= E


E

1A1{X

q+
n (t)

<K j } Xq+
m (t)|Fq+

n (t)


= E


1A1{X

q+
n (t)

<K j } Xq+
m (t)


.

Since K j ∉ S, P{X+
t = K j } = 0, one can easily deduce from (4.12) that limn→∞ 1{X

q+
n (t)

<K j } =

1
{X+

t <K j }
, a.s. (In fact, for almost every ω ∈ {X+

t < K j } (resp. {X+
t > K j }), there

exists an N (ω) ∈ N such that Xq+
n (t) < (resp. >) K j for any n ≥ N (ω), which means

limn→∞ 1{X
q+

n (t)
<K j }(ω) = 1(resp. 0) = 1

{X+
t <K j }

(ω)). Applying the Dominated Convergence

Theorem (Theorem 2.2) twice, we obtain

E

1A1

{X+
t <K j }

X+
t


= E


1A1

{X+
t <K j }

(X+
t ∧ K j )


= lim

n→∞
E

1A1{X

q+
n (t)

<K j }(Xq+
n (t) ∧ K j )


≥ lim

n→∞
E

1A1{X

q+
n (t)

<K j } Xq+
m (t)


= E


1A1

{X+
t <K j }

Xq+
m (t)


.

Since lim j→∞ ↑ 1
{X+

t <K j }
= 1, a.s., the Dominated Convergence Theorem again implies that

E

1A X+

t


= lim

j→∞
E

1A1

{X+
t <K j }

X+
t


≥ lim

j→∞
E

1A1

{X+
t <K j }

Xq+
m (t)


= E


1A Xq+

m (t)


,

which leads to that E

1A X+

t


≥ limm→∞E

1A Xq+

m (t)


. Fatou’s Lemma (Theorem 2.1) gives the

reverse inequality, thus proving (4.14). Since X is an E -supermartingale, using (4.14), (A2) and
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(A3), we obtain

E

1A X+

t


= lim

n→∞
E

1A Xq+

n (t)


= lim

n→∞
E


E [1A Xq+
n (t)|Ft ]


= lim

n→∞
E

1A E


Xq+

n (t)|Ft


≤ E

1A X t


for any A ∈ Ft , which further implies that X+

t ≤ X t , a.s. thanks to Proposition 2.2(3).
Next, we show that X+ is an E -supermartingale: For any 0 ≤ s < t ≤ T , it is clear that

q+
n (s) ≤ q+

n (t) for any n ∈ N. For any A ∈ Fs , (A3) and Corollary 2.1 imply that for any n ∈ N

E

1A Xq+

n (s)


≥ E


1A E


Xq+

n (t)|Fq+
n (s)


= E


E

1A Xq+

n (t)|Fq+
n (s)


= E


1A Xq+

n (t)


.

As n → ∞, (4.14), (A2) and (A3) imply that

E

1A X+

s


= lim

n→∞
E

1A Xq+

n (s)


≥ lim

n→∞
E

1A Xq+

n (t)


= E


1A X+

t


= E


E [1A X+

t |Fs]


= E

1A E [X+

t |Fs]

.

Then Proposition 2.2(3) implies that X+
s ≥ E [X+

t |Fs], a.s., thus {X+
t }t∈[0,T ] is an RCLL E -

supermartingale.
Proof of (3): If t → E [X t ] is right continuous, for any t ∈ [0, T ], (4.14) implies that

E [X+
t ] = lim

n→∞
E

Xq+

n (t)


= E [X t ].

Then the second part of (A1) imply that X+
t = X t , a.s., which means that X+ is an RCLL

modification of X . On the other hand, if X is a right-continuous modification of X , we see from
(2.4) that except on a null set Ñ

X+
t = lim

n→∞
Xq+

n (t),
X t = lim

n→∞

Xq+
n (t),

X t = X t , andXq+
n (t) = Xq+

n (t) for any n ∈ N.

Putting them together, it holds on Ñ c that

X+
t = lim

n→∞
Xq+

n (t) = lim
n→∞

Xq+
n (t) = X t = X t . (4.15)

Since X is an E -supermartingale, (A2) implies that for any 0 ≤ t1 < t2 ≤ T, E [X t1 ] ≥

E


E [X t2 |Ft1 ]


= E [X t2 ], which shows that the function t → E [X t ] is decreasing. Then (4.14)
and (4.15) imply that for any t ∈ [0, T ]

E [X t ] ≥ lim
s↓t

E [Xs] = lim
n→∞

E

Xq+

n (t)


= E [X+

t ] = E [X t ],

thus lims↓t E [Xs] = E [X t ], i.e., the function t → E [X t ] is right continuous. �

Proof of Corollary 2.2. Since essinft∈[0,T ] X t ≥ c, a.s., we can deduce from (A4) that X c ,
{X t − c}t∈[0,T ] is a non-negative E -supermartingale. If esssupt∈DT

X t ∈ Dom#(E ) ((D2) implies
that esssupt∈DT

X t ∈ Dom#(E ) is equivalent to esssupt∈DT
X c

t ∈ Dom+(E )) or if (2.5) holds,
Proposition 2.5(1) shows that for any ν ∈ S0,T , both (X c)−ν and (X c)+ν belong to Dom+(E ).
Because

(X c)−t = X−
t − c and (X c)+t = X+

t − c, ∀ t ∈ [0, T ], (4.16)

(D2) and the non-negativity of (X c)−, (X c)+ imply that

X−
ν = (X c)−ν + c ∈ Dom#(E ) and X+

ν = (X c)+ν + c ∈ Dom#(E ).
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On the other hand, if X+
t ∈ Dom#(E ) for any t ∈ [0, T ], (D2) implies that the non-negative

random variable (X c)+t = X+
t − c belongs to Dom+(E ). Hence, Proposition 2.5(2) show

that (X c)+ is an RCLL E -supermartingale such that for any t ∈ [0, T ], (X c)+t ≤ X c
t , a.s.

Then (4.16), (2.8) and (A4) imply that X+ is an RCLL E -supermartingale such that for any
t ∈ [0, T ], X+

t ≤ X t , a.s. Moreover, if t → E [X t ] is a right-continuous function (which is
equivalent to the right continuity of t → E [X c

t ]), then we know from Proposition 2.5(2) that for
any t ∈ [0, T ], (X c)+t = X c

t , a.s., or equivalently, X+
t = X t , a.s. Conversely, if X has a right-

continuous modification, so does X c, then Proposition 2.5(2) once again shows that t → E [X c
t ]

is right continuous, which is equivalent to the right continuity of t → E [X t ]. This completes the
proof. �

Proof of Theorem 2.4. We shall only consider the E -supermartingale case, as the other cases
can be deduced easily by similar arguments. Fix t ∈ [0, T ], we let {νt

n}n∈N be a decreasing
sequence in S F

t,T such that limn→∞ νt
n = ν ∨ t . Since essinft∈DT X t ≥ c, a.s., it holds a.s. that

X t ≥ c for each t ∈ DT . The right-continuity of the process X then implies that except on a null
set N , X t ≥ c for any t ∈ [0, T ]. Thus we see from (A4) that X c , {X t − c}t∈[0,T ] is a
non-negative E -supermartingale. For any n ∈ N and A ∈ Ft ⊂ Fν∨t , (A2), (A3) and
Proposition 2.3 imply that

E [1A X c
νt

n
] = E


E [1A X c

νt
n
|Ft ]


= E


1A E [X c

νt
n
|Ft ]


≤ E [1A X c

t ]. (4.17)

We also have that E

1A X c

ν∨t


= limn→∞ E


1A X c

νt
n


. The proof is similar to that of (4.14). (We

only need to replace X+
t by X c

ν∨t and Xq+
n (t) by X c

νt
n

in the proof of (4.14)). As n → ∞ in (4.17),
(A2) and (A3) imply that

E [1A X c
t ] ≥ lim

n→∞
E

1A X c

νt
n


= E [1A X c

ν∨t ] = E


E [1A X c
ν∨t |Ft ]


= E


1A E [X c

ν∨t |Ft ]

.

Applying Proposition 2.2(3), we obtain that E [X c
ν∨t |Ft ] ≤ X c

t , a.s. Then (A4) and (2.8)
imply thatE [Xν∨t |Ft ] = E [Xν∨t |Ft ] = E [X c

ν∨t + c|Ft ] = E [X c
ν∨t |Ft ] + c ≤ X c

t + c = X t , a.s.

Since {ν ≤ t} ∈ Ft , we can deduce from (A3) and (A4) thatE [Xν |Ft ] = E 
1{ν>t} Xν∨t + 1{ν≤t} Xν∧t |Ft


= 1{ν>t}E 

Xν∨t |Ft

+ 1{ν≤t} Xν∧t

≤ 1{ν>t} X t + 1{ν≤t} Xν∧t = Xν∧t a.s.

Hence, we can find a null set N such that except on N c

E [Xν |Ft ] ≤ Xν∧t , for any t ∈ DT and the paths of E [Xν |F·] and Xν∧· are all RCLL.

As a result, on N c

E [Xν |Ft ] ≤ Xν∧t , ∀ t ∈ [0, T ], thus E [Xν |Fσ ] ≤ Xν∧σ , ∀ σ ∈ S0,T . �

Proof of Proposition 2.7. (1) If ξ ≤ η, a.s., by (A1), it holds except on a null set N thatE [ξ |Ft ] ≤ E [η|Ft ],

for any t ∈ DT and that the paths of E [ξ |F·] and E [η|F·] are all RCLL,

which implies that on N c

E [ξ |Ft ] ≤ E [η|Ft ], ∀ t ∈ [0, T ], thus E [ξ |Fν] ≤ E [η|Fν].
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Moreover, if E [ξ |Fσ ] = E [η|Fσ ], a.s. for some σ ∈ S0,T , we can apply (2.8) and Corollary 2.3
to get

E [ξ ] = E [ξ ] = E E [ξ |Fσ ]


= E E [η|Fσ ]


= E [η] = E [η].

Then (A4) implies that E [ξ − c(ξ)] = E [ξ ] − c(ξ) = E [η] − c(ξ) = E [η − c(ξ)]. Clearly,
0 ≤ ξ − c(ξ) ≤ η − c(ξ), a.s. The second part of (A1) then implies that ξ − c(ξ) = η − c(ξ),
a.s., i.e. ξ = η, a.s., proving (1).
(2) For any A ∈ Fν and η ∈ Dom#

ν(E ), we let {νn}n∈N be a decreasing sequence in S F
0,T such that

limn→∞ ↓ νn = ν, a.s. For any n ∈ N, since A ∈ Fνn and η ∈ Dom#
νn

(E ), Proposition 2.4(2)
and (3) imply thatE [1Aξ |Fνn ] = 1AE [ξ |Fνn ], and E [ξ + η|Fνn ] = E [ξ |Fνn ] + η, a.s. (4.18)

Then we can find a null set N ′ such that except on N ′

(4.18) holds for any n ∈ N and the paths of E [1Aξ |F·], E [ξ |F·] andE [ξ + η|F·] are all RCLL.

As n → ∞, it holds on (N ′)c thatE [1Aξ |Fν] = lim
n→∞

E [1Aξ |Fνn ] = lim
n→∞

1AE [ξ |Fνn ] = 1AE [ξ |Fν],

and that E [ξ + η|Fν] = lim
n→∞

E [ξ + η|Fνn ] = lim
n→∞

E [ξ |Fνn ] + η = E [ξ |Fν] + η,

proving (2) and (3). Proofs of (4) and (5) are similar to those of Proposition 2.2(1) and (2).
The proofs can be carried out by applying the just obtained “Zero–one Law” and “Translation
Invariance”. �

Proof of Lemma 3.1. (1) Let E be a positively-convex F-expectation. For any A ∈ FT and
n ∈ N, (D1) and (D2) imply that 1A, n1A ∈ Dom(E ). Then the positive-convexity of E and
Proposition 2.2(2) show that

E [1A] = E
[

1
n


n1A

]
≤

1
n

E [n1A] +


1 −

1
n


E [0]

=
1
n

E [n1A] +


1 −

1
n


· 0 =

1
n

E [n1A]. (4.19)

Since P(A) > 0, one can deduce from the second part of (A1) that E [1A] > 0. Letting n → ∞

in (4.19) yields that

lim
n→∞

E [n1A] ≥ lim
n→∞

nE [1A] = ∞,

thus E satisfies (H0). Moreover, for any ξ, η ∈ Dom#(E ), λ ∈ (0, 1) and t ∈ [0, T ], we can
deduce from (2.8), (A4) and the positive-convexity of E thatE [λξ + (1 − λ)η|Ft ] = E [λξ + (1 − λ)η|Ft ]

= E [λ

ξ − c(ξ)


+ (1 − λ)


η − c(η)


|Ft ] + λc(ξ) + (1 − λ)c(η)

≤ λE [ξ − c(ξ)|Ft ] + λc(ξ) + (1 − λ)E [η − c(η)|Ft ] + (1 − λ)c(η)

= λE [ξ |Ft ] + (1 − λ)E [η|Ft ] = λE [ξ |Ft ] + (1 − λ)E [η|Ft ], a.s.,

which shows that E is convex in the sense of (3.1). On the other hand, if E satisfies (3.1), since
Dom+(E ) ⊂ Dom#(E ), one can easily deduce from (2.8) that E is positively-convex. �
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Proof of Proposition 3.1. We first check that E ν
i, j satisfies (A1)–(A4). Let ξ, η ∈ Λ# and

t ∈ [0, T ].
(1) If ξ ≤ η, a.s., applying Proposition 2.7(1) to E j yields that E j [ξ |Fν∨t ] ≤ E j [η|Fν∨t ], a.s.
Then (A1) of Ei and (3.3) imply that

E ν
i, j


ξ |Ft


= Ei

E j [ξ |Fν∨t ]|Ft


≤ Ei
E j [η|Fν∨t ]|Ft


= E ν

i, j


η|Ft


, a.s.

Moreover, if 0 ≤ ξ ≤ η a.s. and E ν
i, j [ξ ] = E ν

i, j [η] (i.e. Ei [E j [ξ |Fν]] = Ei [E j [η|Fν]] by (3.3)),

the second part of (A1) implies that E j [ξ |Fν] = E j [η|Fν], a.s. Further applying the second part
of Proposition 2.7(1), we obtain ξ = η, a.s., proving (A1) for E ν

i, j .

(2) Next, we let 0 ≤ s ≤ t ≤ T and set Ξt , E ν
i, j


ξ |Ft


. Applying Proposition 2.7(2) to Ei andE j , we obtain

E ν
i, j


Ξt |Fs


= 1{ν≤s}E j


Ξt |Fs


+ 1{ν>s}Ei

E j

Ξt |Fν


|Fs


= E j


1{ν≤s}Ξt |Fs


+ Ei

E j

1{ν>s}Ξt |Fν


|Fs


, a.s.,

where we used the fact that {ν > s} ∈ Fν∧s thanks to [8, Lemma 1.2.16]. Then (A3) and (A2)
imply thatE j


1{ν≤s}Ξt |Fs


= E j


1{ν≤s}E j


ξ |Ft


|Fs


= 1{ν≤s}E j

E j

ξ |Ft


|Fs


= 1{ν≤s}E j


ξ |Fs


, a.s. (4.20)

On the other hand, we can deduce from (3.2) that

1{ν>s}Ξt = 1{s<ν≤t}E j

ξ |Ft


+ 1{ν>t}Ei

E j [ξ |Fν]|Ft


= 1{s<ν≤t}E j

ξ |Ft


+ 1{ν>t}Ei

E j [ξ |Fν]|Fν∧t

, a.s.

Since both {s < ν ≤ t} = {ν > s} ∩ {ν > t}c and {ν > t} belong to Fν∧t , Proposition 2.7(3)
and (2) as well as Corollary 2.3 imply thatE j


1{ν>s}Ξt |Fν


= E j


1{s<ν≤t}E j [ξ |Ft ]|Fν


+ 1{ν>t}Ei

E j [ξ |Fν]|Fν∧t


= 1{s<ν≤t}E j
E j [ξ |Ft ]|Fν


+ 1{ν>t}Ei

E j [ξ |Fν]|Ft


= 1{s<ν≤t}E j [ξ |Fν∧t ] + Ei

1{ν>t}E j [ξ |Fν]|Ft


= Ei


1{s<ν≤t}E j [ξ |Fν∧t ] + 1{ν>t}E j [ξ |Fν]|Ft


= Ei


1{s<ν}

E j [ξ |Fν]|Ft

, a.s.

Taking Ei

·|Fs


of both sides as well as using (A2) and (A3) of Ei , we obtain

Ei
E j [1{ν>s}Ξt |Fν]|Fs


= Ei

Ei

1{s<ν}

E j [ξ |Fν]|Ft

|Fs


= Ei


1{s<ν}

E j [ξ |Fν]|Fs


= 1{ν>s}Ei
E j [ξ |Fν]|Fs


, a.s.,

which together with (4.20) yields that

E ν
i, j


E ν

i, j [ξ |Ft ]|Fs


= 1{ν≤s}E j

ξ |Fs


+ 1{ν>s}Ei

E j [ξ |Fν]|Fs


= E ν
i, j


ξ |Fs


,

a.s., proving (A2) for E ν
i, j .

(3) For any A ∈ Ft , using (3.3), (A3) of Ei as well as applying Proposition 2.7(2) to E j , we
obtain

E ν
i, j


1Aξ |Ft


= Ei


1AE j [ξ |Fν∨t ]|Ft


= 1AEi

E j [ξ |Fν∨t ]|Ft


= 1A E ν
i, j


ξ |Ft


,

a.s., proving (A3) for E ν
i, j .
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Similarly, we can show that (A4) holds for E ν
i, j as well. Therefore, E ν

i, j is an F-expectation with

domain Λ#. Since Λ ∈ DT , i.e. R ⊂ Λ, it follows easily that R ⊂ Λ#, which shows that Λ#
∈ DT .

(4) Now we show that E ν
i, j satisfies (H1) and (H2): For any ξ ∈ Λ+ and any {An}n∈N ⊂ FT with

limn→∞ ↑ 1An = 1, a.s., the Dominated Convergence Theorem (Proposition 2.9) implies that
limn→∞ ↑ E j [1An ξ |Fν] = E j [ξ |Fν], a.s. Furthermore, using (3.3) and applying the Dominated
Convergence Theorem to Ei yield that

lim
n→∞

↑ E ν
i, j


1An ξ


= lim

n→∞
↑ Ei

E j

1An ξ |Fν


= Ei

E j [ξ |Fν]


= E ν
i, j


ξ

, proving (H1) for E ν

i, j .

With a similar argument, we can show that E ν
i, j also satisfies (H2).

(5) If both Ei and E j are positively-convex, so are Ei and E j thanks to (2.8). To see that E ν
i, j is

convex in the sense of (3.1), we fix ξ, η ∈ Λ#, λ ∈ (0, 1) and t ∈ [0, T ]. For any s ∈ [0, T ], we
have E j [λξ + (1 − λ)η|Fs] ≤ λE j [ξ |Fs] + (1 − λ)E j [η|Fs], a.s.

Since E j [λξ + (1 − λ)η|F·], E j [ξ |F·] and E j [η|F·] are all RCLL processes, it holds except on a
null set N thatE j [λξ + (1 − λ)η|Fs] ≤ λE j [ξ |Fs] + (1 − λ)E j [η|Fs], ∀ s ∈ [0, T ],

thus E j [λξ + (1 − λ)η|Fν∨t ] ≤ λE j [ξ |Fν∨t ] + (1 − λ)E j [η|Fν∨t ].

Then (3.3) implies that

E ν
i, j [λξ + (1 − λ)η|Ft ] = Ei

E j [λξ + (1 − λ)η|Fν∨t ]|Ft


≤ Ei

λE j [ξ |Fν∨t ] + (1 − λ)E j [η|Fν∨t ]|Ft


,

≤ λEi
E j [ξ |Fν∨t ]|Ft


+ (1 − λ)Ei

E j [η|Fν∨t ]|Ft


= λE ν
i, j [ξ |Ft ] + (1 − λ)E ν

i, j [η|Ft ], a.s. �
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[4] F. Coquet, Y. Hu, J. Mémin, S. Peng, Filtration-consistent nonlinear expectations and related g-expectations, Probab.

Theory Related Fields 123 (1) (2002) 1–27.
[5] Freddy Delbaen, The structure of m-stable sets and in particular of the set of risk neutral measures, in: Memoriam
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