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Abstract

Given p € (1,2), we study P solutions of a multi-dimensional backward stochastic differential
equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in (y, z)-variables. We
show that such a BSDEJ with p-integrable terminal data admits a unique L? solution by approximating
the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a
stability result.
© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Let p € (1,2) and T € (0, 00). In this paper, we study LL? solutions of a multi-dimensional
backward stochastic differential equation with jumps (BSDEJ)
T T N
=g [ rovezavods— [ zaas - [ [ voRydsdn,
t t @, T1J/X

te[0,T] (1.1
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over a probability space ({2, F, P) on which B is a Brownian motion and p is an X'-valued
Poisson point process independent of B. Practically speaking, if the Brownian motion stands for
the noise from the financial market, then the Poisson random measure can be interpreted as the
randomness of insurance claims. In the BSDEJ (1.1) with generator f and terminal data &, a
solution consists of an adapted cadlag process Y, a locally square-integrable predictable process
Z and a locally p-integrable predictable random field U.

The backward stochastic equation (BSDE) was introduced by Bismut [7] as the adjoint equa-
tion for the Pontryagin maximum principle in stochastic control theory. Later, Pardoux and
Peng [45] commenced a systematical research of BSDEs. Since then, the BSDE theory has
grown rapidly and has been applied to various areas such as mathematical finance, theoretical
economics, stochastic control and optimization, partial differential equations, differential geom-
etry and etc., (see the references in [25,20]).

Li and Tang [51] introduced into the BSDE a jump term that is driven by a Poisson random
measure independent of the Brownian motion. These authors obtained the existence of a unique
solution to a BSDEJ with a Lipschitz generator and square-integrable terminal data. Then Barles,
Buckdahn and Pardoux [13,5] showed that the wellposedness of BSDEJs gives rise to a viscosity
solution of a semilinear parabolic partial integro-differential equation (PIDE) and thus provides a
probabilistic interpretation of such a PIDE. Later, Pardoux [44] relaxed the Lipschitz condition of
the generator on variable y by assuming a monotonicity condition on variable y instead. Situ [50]
and Mao and Yin [57] even degenerated the monotonicity condition of the generator to a weaker
version so as to remove the Lipschitz condition on variable z.

During the development of the BSDE theory, some efforts were made in relaxing the square
integrability on the terminal data so as to be compatible with the fact that linear BSDEs are
well-posed for integrable terminal data or that linear expectations have L' domains: El Karoui
et al. [25] showed that for any p-integrable terminal data, the BSDE with a Lipschitz generator
admits a unique L.”-solution. Then Briand and Carmona [9] reduced the Lipschitz condition of
the generator on variable y by a strong monotonicity condition as well as a polynomial growth
condition on variable y. Later, Briand et al. [10] found that the polynomial growth condition is
not necessary if one uses the monotonicity condition similar to that of [44].

In the present paper, assuming that the generator f satisfies monotonicity conditions (H6)
and (H3) on (y, z); that f has a general growth condition (H2) on y, a linear growth condition
(H4) on z; and that f is Lipschitz continuous in #, we show in Theorem 2.1 that for any
p-integrable terminal data &, the BSDEJ (1.1) admits a unique LL”-solution (Y, Z, U) (see the
notations in Section 1.1). Consequently, we obtain a general martingale representation theorem
for p-integrable martingales in the jump case (Corollary 2.1).

To demonstrate Theorem 2.1, we start with an inequality (3.2) about the difference of two
local p-integrable solutions to BSDEJs with different parameters under a general monotonicity
condition (3.1). The basic inequality (3.2) gives rise to an a priori estimate (3.3) of the
LL?-norm of a solution (¥, Z, U) of a BSDEJ with parameter (£, f) in terms of the L? norms
of |&] + fOT | f(¢,0,0,0)|dz. The inequality (3.2) also leads to a stability result of L.”-solutions
of BSDEJs (Proposition 3.2), which claims that a sequence of solutions to BSDEJs is a Cauchy
sequence under the L”-norm if their terminal data is a Cauchy sequence under the L”-norm and
if the solutions satisfy an asymptotic monotonicity condition (3.4). Then the uniqueness of the
LL?-solution to BSDEJ (1.1) immediately follows.

For the existence of an ILLP-solution to BSDEJ (1.1), we first deal with the case when
the monotonic generator f has linear growth (H2) in y and when the random variable
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& + fOT | f(¢,0,0,0)|dt is bounded. In Proposition 3.3, we exploit convolution with mollifiers
to approach the monotonic generator f by a sequence of Lipschitz generators, and utilize
the stability result (Proposition 3.2) to show that the L>-solutions of the BSDEJs with the
approximating Lipschitz generators and the bounded terminal data are actually a Cauchy
sequence in S” whose limit solves the BSDEJ (1.1). Then by truncating the generator f and the
terminal data & respectively, we employ the stability result again to obtain the general existence
result in Theorem 2.1.

When the generator f is Lipschitz in (y, z, u), one can use the classic fixed-point argument
to demonstrate the existence of a unique L.”-solution of BSDEJ (1.1) with p-integrable terminal
data &, see Remark 4.1. Our ArXiv version [53] contains a detailed proof of this result as well as
the related generator representation.

Main contributions.
Given U € IU]OC, unlike the case of Brownian stochastic integrals, the Burkholder—Davis—
Gundy inequality is not applicable for the p/2th power of the Poisson stochastic integral

f(O,t] Jx YsUs (x)ﬁp (ds,dx), t € [0, T] (see e.g. Theorem VIL.92 of [22]): i.e.

P
E[SuPte[o,T](f(o,,]fX YSUS(x)Np(ds,dx))z] cannot be dominated by E[(f(o,T]fX|Ys|2

4
|U,(x)|2Np(dt,dx))4]. So to derive an a priori IL? estimate for BSDEJs, we could not
follow the classical argument in the proof of [10, Proposition 3.2], neither could we employ
the space U7 = {U : [fo [3 U (x)Pv(dx)dt) 2 ] < oo} or the space U7 =

[U : E[(f(o,T] [ Ui (x) >Ny (dt, dx)) 2] < oo} (Actually one may not be able to compare
E[(fiory Joe 00PNy (et d)) * | with E[(fy [ 1U:0) Putdnyde) £,

To address these technical difficulties, we first generalize the Poisson stochastic integral for
arandom field U € U” by constructing in Lemma 1.1 a cadlag uniformly integrable martingale
MU = f(o,z] [ Us(x)Np(ds, dx), t € [0, T], whose quadratic variation [MY, MY is still
f(o . [3 IUs(x)*Ny(ds, dx), t € [0, T]. Our inequality (5.1) shows that

T
E[[MU,MUﬁ] / /|U,(x)|pr(dt dx) = / /|U,(x)|1’v(dx)dt. (1.2)
0,T] X

In deriving the key LP-type inequality (3.2) about the difference ¥ = Y! — ¥? of two local
p-integrable solutions to BSDEJs with different parameters, our delicate analysis showed that

the variational jump part Zs(leI” — Y|P = pI¥s_ P71, AYS>) in the dynamics of |¥ |7 will

eventually boil down to the term E fOT f X |Utl (x) — Ut2 (x)|Pv(dx)dt, which justifies our choice
of UP over U%P or U as the space for jump diffusion. The estimation course of the variational
jump is full of analytical subtleties, but we manage to overcome them by leveraging Taylor’s
expansion, (1.2) and some new techniques (see (5.11)—(5.21) for details).

It is also worth mentioning that although our “convolution with mollifiers” approach seems
similar to that of [50], some special treatments are necessary along the way to overcome various
technical hurdles raising in the IL”-jump case; and some auxiliary results, like Lemmas A.2 and
A.6, are interesting in their own right.

The financial significance of the present paper lies in the fact that it allows us to study many
mathematical finance problems for a large class of p-integrable financial positions (which may
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not be square-integrable) under nonlinear evaluation criteria or risk measurement in a market
with jumps. In particular, the paper provides a solid technical ground for our accompanying
articles [55,56,54]:

Given a real-valued p-integrable &, the wellposedness result (Theorem 2.1 or Remark 4.1)
shows that the BSDEJ with a generator g and the terminal data £ admits a unique solution,
whose Y-component Y¢ can be regarded as the so-called “(conditional) g-expectation” of &:
EE1F] = Yf, t € [0, T]. In [55], we show that the g-expectations, as nonlinear expectations
with IL” domains under jump filtration, inherit many basic properties from the classic linear ex-
pectations and are closely related to axiom-based coherent and convex risk measures (see [2,26,
48]) in mathematical finance.

In [56], we study a general class of jump-filtration consistent nonlinear expectations £ with
LL?-domains, which includes many coherent or convex time-consistent risk measures p =
{pt}tef0.71- Under certain domination condition, we demonstrate that the nonlinear expectation
& can be represented by some g-expectation. Consequently, one can utilize the BSDEJ theory to
systematically analyze the risk measure p with L”-domains and employ numerical schemes of
BSDEIJs to run simulation for financial problems involving p in a financial market with jumps.

Moreover, we analyze in [54] a BSDEJ with a p-integrable reflecting barrier £ whose
generator g is Lipschitz continuous in (y, z, u). We show that such a reflected BSDEJ with
p-integrable parameters admits a unique L? solution, and thus solves the corresponding optimal
stopping problem under the g-expectation or some dominated risk measure with IL”-domain.

Relevant literature.

Besides the aforementioned works, we would like to outline some recent research on BSDEJs:
(1) Kruse and Popier [38] lately studied a similar L.”-solution problem of BSDE under a
right-continuous filtration which may be larger than the jump filtration:

T T
Y, =s+f £és. Ys,zs,uods—/ zsst—/ / Us () Ny (ds, dx)
t t @ T1JX

T
—/ dMs, te€]0,T], (1.3)
t

where M is a local martingale orthogonal to the jump filtration. However, their wellposedness
result requires a relatively stronger monotone condition and Lipschitz continuity of f in z (see
(H1) and (H3) therein).

Klimsiak studied IL? solutions of reflected BSDEs under a general right-continuous filtration
in [36], and analyzed IL” solutions to BSDEs with monotone generators and two irregular
reflecting barriers in [35].

(2) The researches on BSDEs over general filtered probability spaces have recently attracted
more and more attention. A series of works [12,23,25,11,14,39,15] are dedicated to the theory
of BSDEs (1.3) but driven by a cadlag martingale under a right-continuous filtration that is
also quasi-left continuous. Lately, [8,43] removed the quasi-left continuity assumption from the
filtration so that the quadratic variation of the driving martingale does not need to be absolutely
continuous. On the other hand, based on a general martingale representation result due to Davis
and Varaiya [21], Cohen and Elliott [16,17] discussed the case where the driving martingales are
not a priori chosen but imposed by the filtration; see Hassani and Ouknine [29] for a similar
approach on a BSDE in the form of a generic map from a space of semimartingales to the
spaces of martingales and those of finite-variation processes. Also, Mania and Tevzadze [40] and
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Jeanblanc et al. [31] studied BSDEs for semimartingales and their applications to mean—variance
hedging.

As to BSDEs driven by other discontinuous random sources, Xia [52] and Bandini [4] studied
BSDEs driven by a random measure; Confortola et al. [18,19] considered BSDEs driven by
a marked point process; [42,3,47,28] analyzed BSDEs driven by Lévy processes; [1,49,33]
discussed BSDEs driven by a process with a finite number of marked jumps.

(3) There are also plenty of researches on quadratic BSDEJs and BSDEJs in other interesting
directions, for example [6,41,24,32,34,37,27] among others. See [43] or our ArXiv version [53]
for a synopsis of these topics.

The rest of the paper is organized as follows: In Section 1, we list necessary notations, and we
generalize the Poisson stochastic integral for U € U? so as to define BSDEJs in L? sense. After
making some assumptions on generator f (including the monotonicity conditions in (y, z)), we
present in Section 2, the main result of our paper, the existence and uniqueness of an IL.”-solution
to a BSDEJ with p-terminal data, which gives rise to a general martingale representation theorem
for p-integrable martingales in the jump case. In Section 3, we give an inequality about the
difference of two local p-integrable solutions to BSDEJs as well as two consequences of it:
an a priori estimate and a stability result of IL”-solutions of BSDEJs, both are important to
prove Theorem 2.1. Section 3 also includes a basic existence result of L.”-solutions to BSDEJs
with bounded parameters, which is also crucial for Theorem 2.1. Section 4 further discusses the
wellposedness of BSDEJs with Lipschitz generators in L.” sense. The proofs of our results are
deferred to Section 5, and the Appendix contains some necessary technical lemmata.

1.1. Notation and preliminaries

Throughout this paper, we fix a time horizon 7' € (0, co) and consider a complete probability
space ({2, F, P) on which a d-dimensional Brownian motion B is defined.

For a generic cadlag process X, we denote its corresponding jump process by AX; =
X; — Xi—,t € [0, T] with Xo_ = X(. Given a measurable space (X, Fy), let p be an X'-valued
Poisson point process on ({2, F, P) that is independent of B. For any scenario @ € 2, let Dy(q)
collect all jump times of the path p(w), which is a countable subset of (0, 7] (see e.g.Section 1.9
of [30]). We assume that for some finite measure v on (X , F. X), the counting measure Ny (dt, dx)
of pon [0, T] x X has compensator E[N,J (dt, dx)] = v(dx)dt. The corresponding compensated
Poisson random measure ﬁp is ﬁp (dt,dx) == Nyp(dt,dx) — v(dx)dt.

For any ¢ € [0, T'], we define sigma-fields

FBi=o|Byss <t}, FN=o|N,(O0,s1,A);s <t,AeFx}, F=o(FPUF")

and augment them by all P-null sets in F. Clearly, the jump filtration F = {F;};¢[0, 1 is complete
and right-continuous (i.e. satisfies the usual hypotheses, see e.g., [46]). Let 22 (resp. ) denote
the F-progressively measurable (resp. F-predictable) sigma-field on [0, T'] x {2, and let 7 collect
all F-stopping times.

For a generic Euclidean space E with norm || - ||, we define:
1
PD(x) =1z00—x and 7.(x) = X, VxeE, Vre(,T]
aTY ARV

See Lemmas A.4 and A.6 for the properties of these two functions.
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Given/ € N, the following spaces of functions will be used in the sequel:
(1) For any p € [1, 00), let Lf_[O, T] be the space of all measurable functions v : [0, T] —
[0, 00) with [ (¥ (1))7dt < oo.
(2)For p € (1,2],let LY := LP(X, Fx, v; R!) be the space of all R!-valued, Fy-measurable
functions u with ||u||L5 = (f)( |u(x)|pv(dx))% < oo. Forany uy,us € LY, we say uj = uy if
u1(x) = uy(x) forv-as. x € X.
(3) For any sub-sigma-field G of F, let
° L(J)r (G) be the space of all real-valued non-negative G-measurable random variables;

1
oLV (G) = {g € LY@ ¢ IEl2 g = {E[E7]} 7 < oo} forall p € [1,2);
L3 = {6 € LG & ll13(g) = ess5upyeq €(@) < ool
° LO(Q) be the space of all R’-valued, G-measurable random variables;

o LP(G) = {g € L9G) : IEllLrig) = |E[IEIP]}7 < oo} for all p € [1,2);

o L2(@) = {§ € L%G) : & ]l1(q) = esssup,ep [6(@)] < oo.

(4) Let D be the space of all R!-valued, F-adapted cadlag processes, and let D be the space
of all R'-valued, F-adapted cadlag processes X with || X ||pe = eSSSUP(; w)e0.7x 2| Xt ()| =
esssup,,c 2 X«(w) < 0o, where X (w) := sup,¢(o, 1) |X, (a))|.

(5)Set Zi . == L ([0, T1x £2, P dt x dP: R/*d), the space of all R'*“-valued, F-predictable
processes Z with fOT |Z;|?dt < oo, P-as.

(6) For any p € [1, 2], we let

D7 = {X e D0 X |pr = [E[XP1)7 < oo}.

loc

1
NZlg2p = {E[(fOT 1Z|? dt)ﬂ } P < oo} We will simply denote Z2>2
by Z2. For any Z € 7Z>?, the Burkholder—Davis—Gundy inequality implies that

! P T2 \%
E|: sup ‘/ Z,dB, }gcp,,E[(f |7 ds) :|<oo (1.4)
te[0, 71" J0 0

for some constant ¢, ; > 0 depending on p and /. So {fot Zyd By}
martingale.

° Uf;c = Lf;c([O, Tl x 2 x X, ﬁ@ Fr,dt x dP x v(dx); Rl) be the space of all ﬁ@ Fx-
measurable random fields U : [0, 7] x 2 x X — R’ such that fOT S U 0)|Pvdx)dt =
fOT ||Ut||€5dt < 00, P-as. For any U € U” | it is clear that U(t,w) € L} for dt x dP-

loc?
as. (r,w) €[0,T] x 2.
o UP = [U e UP Ul = {E [T [y U Pvdn)di)? < oo} = LP([0,T] x 2 x

loc
X, ﬁ@ Fr,dt x dP x v(dx); Rl).
e Let us simply denote D? x Z>? x UP by SP.

In this paper, we use the convention inf@# := oo and let ¢, ; denote a generic constant

depending only on p and / (in particular, ¢; stands for a generic constant depending only on
[), whose form may vary from line to line.

o 727 = {z e 72

1e[0.7] is a uniformly integrable
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1.2. Generalization of Poisson stochastic integrals

The stochastic integral with respect to the compensated Poisson random measure ﬁp (dt, dx)
(or simply “Poisson stochastic integral”) is usually defined for locally square integrable random
fields U € [UIZOC. In this subsection, we will generalize such kind of stochastic integral for random

fields in Upe1,2) U” in spirit of [22, VIIL.75].

loc

Let M! be the space of all cadlag local martingales M = {M;}tero,m1 with |[M|lyp =

1
E{[M, M]3} < oo. According to [22, VIL81-VIL92], || - [y is a norm on M that is equivalent
to || - [lp1, thus (M, || - [lypt) is a Banach space.

Let p € [1,2) and U € UP. For any n € N, since EfOT [x 1(u, (x)1<m} | Us (0) [P (dx)ds <

n>PE [ [11Us@)Pv(dx)ds < oo, MU = Jon Jx v @i=mUs )Ny (ds, dx), t €
[0, T'] defines a square integrable martingale.

Lemma 1.1. Let p € [1,2). For any U € UP, (MY}, cx is a Cauchy sequence in (Ml, I -
||M1), whose limit MY is a cadlag uniformly integrable martingale with quadratic variation
(MY, MY, = f(O,t] fX |U5(x)|2Np(ds, dx), t € [0, T). The jump process of MY satisfies that
for P-a.s. w € (2,

AM (@) = 1yepy,, U(t. 0. pi (@), Vi€ (©,T]. (1.5)
Moreover, U — MY is a linear mapping on UP.

We shall assign MY as the Poisson stochastic integral
/ / Us(x)Ny(ds, dx), t€[0,T] (1.6)
r1Jx

of U € UP. Analogous to the classic extension of Poisson stochastic integrals from U? to Ulzoc,
one can define the stochastic integral (1.6) (or simply MY) for any U € Uff)c, which is a cadlag
local martingale with quadratic variation fé f x [Us (x)|2Np (ds,dx),t € [0, T] and whose jump

process satisfies (1.5) also. This generalized Poisson stochastic integral is still linearin U € Uﬁ)c.

1.3. BSDEs with jumps

From now on, let us fix p € (1,2). A mapping f : [0, T] x 2 x R/ x R/>d x LY — R/
is called a p-generator if itis 2 ® ZR') ® B(R'*?) ® B(L})/%R')-measurable. For any
teT,

St w,y,z,u) = 1{t<t(w)} ft, oy, z,u),
V(t,w,y,z,u) € [0,T] x 2 x Rl x R x LP

isalso 2 ® BR') @ BZR*?) @ #(LV)/B[R')-measurable.

Definition 1.1. Given p € (1,2), let £ € L°(F7) and f be a p-generator. A triplet of
processes (Y, Z,U) € DO x leoc X Uf;c is called a solution of a backward stochastic differential

equation with jumps that has terminal data £ and generator f (BSDEJ (&, f) for short) if
JL1£(s, Yy, Zy, Ug)lds < oo, P-a.s. and if (1.1) holds P-as.
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Remark 1.1. Let p € (1, 2).
(D) LetU € Uf;c. For any T € 7, since {l{tsr}};e[o T]

thus F-predictable), the process {1{,5r }U,} 1€[0.T] also belongs to IU{Z)C. By Section 1.2, integral
f((),r] Jx Us(x)Np(ds, dx) = f(O,T] f{,‘ 1<y} Us(x)Ny(ds, dx) is well defined. More general,
the stochastic integral f(r vl fX U (x)Ny(ds, dx) is valid forany 7,y € 7 with7 < y, P-as.

(2) Given & € LO(}'T) and a p-generator f, let (¥, Z, U) be a solution of BSDEJ (&, f) as
described in Definition 1.1. For P-a.s. w € {2, we see from (1.1) and (1.5) that

is an F-adapted caglad process (and

AYy (@) = AMY () = 1ep,, U (t, @, p: (@), Yt e[0,T], (1.7)
which implies that

{t €0, T]:Y;—(w) #Y; (a))} C Dy(w) is a countable subset of [0, T']. (1.8)

2. Main result

In the rest of this paper, we set g := %1 > 2 and let § be a [0, oo)-valued, F-progressively

p
measurable process with fOT Bidt € LT(Fr). We make the following assumptions on
p-generators f:
(H1) For each (t, w, u) € [0, T]1 x 2 x LY, the mapping (y, z) — f(t, w, y, z, u) is continuous.
(H2) For any 8 > 0, there exists a [0, co)-valued, F-progressively measurable process ¢° with
E [ ¢fdt < oo such that sup|, s | £ (1. y.0,0) — £(£,0,0,0)| < ¢}, dr x dP-as.
(H3) It holds for dt x d P-a.s.(t, w) € [0, T] x {2 that

(y. f(t..y.0.0) = f(t.»,0,0,0)) < Bt w)|y]>. VyeR.
(H4) For some ¢ (+) € L%F[O, T1, it holds for dt x d P-a.s. (t, w) € [0, T] x {2 that
|ft,0,5,2,0) = f(t,0,5,0,0] < B, @) +c1(Dlzl, ¥ (y,2) € R x R
(H5) For some ¢;,(+) € Lz_[O, T1, it holds for dt x dP-a.s. (t,w) € [0, T] x {2 that
[t 0,y z,u1) = f(t, 0,5, 2,u2)| < cx(O)|ur —uall
V(y,z,up,up) € REXRX 5 LP x LP
(H6) It holds for dt x dP-a.s.(t, w) € [0, T] x {2 that
v = 2207 H20n — y2), f(t o, 1,21, u) — f(t, 0, 2,22, w)) < () O(Iy1 — y2I7)

+ &(t, w)|y1 — y2|” + Alt, w)y1 — 2177z — 22l
V1.2 (2. 22) e RO x R Ve LD,

where A(:) € L}F[O, T]; 6 : [0,00) — [0,00) is an increasing concave function satisfying
f01+ e(l—t)dt = oo; and @, A are two [0, 0o)-valued, Z[0, T] ® Fr-measurable process such that
fOT(sﬁt v A?)dt € L (Fr) and E fOT A2* 4t < oo for some ¢ € (0, 1).

Remark 2.1. Given p € (1,2), let f be a p-generator satisfying (H2), (H4), (H5) and that
S 1£(1,0,0,0)dt < oo, P-as. Then it holds for any (Y, Z,U) € D' x Z2_ x U’ _ that
S, Ye, Zi, Upldt < oo, P-ass.
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For simplicity, set C = (fOT(cl(t))zdt> v (fOT(cz(t))th>, Cp = | fOT ﬂfdt”Lf(]—‘T)’

— | [T — | (T 42
Co:=| fy Pdr HLSf(]-‘T) and Cy = | [y A7de| L (Fr)*
Our main goal is the following existence and uniqueness result of BSDEJs for case “p €
1,2)".

Theorem 2.1. Given p € (1,2), let £ € LP(Fr) and let f be a p-generator satisfying
(HD)—(H6) such that fOT |£(£,0,0,0)|dt € LY (Fr) and that the parameter c>(-) € L1[0, T]
for some q' € (q, 00). Then the BSDEJ (&, f) admits a unique solution (Y, Z,U) € SP.

This wellposedness gives rise to a general martingale representation theorem in the jump case
as follows:

Corollary 2.1. Let p € (1,2). For any & € LP(Fr), there exists a unique pair (Z,U) €
7>P x UP such that P-a.s.

t
E[&|F;] = E[£] —|—/ Zsd By —i—/ / Us(x)ﬁp(ds, dx), tel0,T]. 2.1)
0 0,11 JX

3. A priori estimate and stability result

To prove Theorem 2.1, we started with an inequality about the difference of two local p-
integrable solutions to BSDEJs with different parameters under a general monotonicity condi-
tion.

Lemma 31 Let p € (1,2). Fori = 1,2, let & € LO(Fp), let fi be a p-generator, and let
(Y, Z, U e DO x Z2  x UP  be a solution of BSDEJ (&;, f;) such that Y' — Y% € DP,

loc loc
Assume that ds x d P-a.s.

JAED SLEN(ZVAED SN TCS AVAN IS BN FICS (4N /0)
<y - Y3|"‘1[g.g + &|Y) — Y2+ A|Z) — 22+ T | U, - USHLg] + 7. 3D
where g, &, A, T, I are five [0, 0o)-valued, P[0, T] @ Fr-measurable processes satisfying

fOT(Q, v A2 v Ihdt € LX(Fr) and E[(fOT gsds)? + fOT Yds| < oo. Then for some constant

€ depending on T, v(X), p, Cp, Cpand Cp = H fOT F,th ”L?f(fr)’

T 14 T
E|: sup |Y! —v2P + (/ = z§|2ds)2 +/ /X U (x) — Uf(x)|pv(dx)ds}
t t

selt,T1

T p T
< €E|:|%‘1 - &P+ (/ gsds> +/ Tsds], Vtel0,T] 3.2)
t t

This basic inequality gives rise to an a priori estimate and a stability result of IL”-solutions of
BSDEJs, both of which will play important roles in the demonstration of Theorem 2.1.

Proposition 3.1. Given p € (1,2), let £ € LP(Fr) and f be a p-generator satisfying
(H3)-(H5) and fOT |f(¢,0,0,0)|dt € Lﬁ(]—"T). If (Y,Z,U) e DP x 7?2 x UP solves BSDEJ

loc loc
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(&, f), then

T
Y5 + 12072 + 101G, < CE[l + 1§17 + (/0 1£(2.0,0, 0>|dr)”] <00 (33
for some constant C depending on T, v(X), p, C and Cg.

Proposition 3.2. Given p € (1,2), let {§,},en be a Cauchy sequence in LP (Fr). For each
n € N, let f, be a p-generator and let (Y",Z",U") € SP be a solution of BSDEJ (&, fn).
Assume that foranym,n € Nwithm > n, (Y™", K Z™" ™" .= (Y"-Y", Z"-2Z",U"-U")
satisfies that ds x d P-a.s.
1Y P D, fn(s, Y 20 UR) = fuls, Y0, Z2,UY))
<A 01X+ na) + SslYP
+ |Y;”*”|1’*1[AS|Z§”>”| + )| U ||L5] + 1, (3.4)

where
i) A() € L1+[0, T]and 6 : [0,00) — [0, 00) is an increasing concave function satisfying

I 1 .
f0+ mdt = 00,
(i) c(-) € Li[O, T)and &, A are two [0, 00)-valued, B[0, T Q Fr-measurable processes with

J (@ v APt € LY (Fr);
(>iil) n, € Llr(}"r) and T™" is a [0, 0o)-valued, P[0, T @ Fr-measurable process such that

T
lim E[n,] = lim sup E/ r""dt = 0. (3.5)
n—0oo n—00

m>n 0
If fOT r(@)dt > 0, we further assume that
sup (V" llow + 12" llz2.0 + 1U" ) < 0. (3.6)
neN
Then {(Y", z", U”)}nGN is a Cauchy sequence in SP.

The following result shows that a BSDEJ with bounded terminal data has a solution, which
will also play a key role in the proof of Theorem 2.1.

Proposition 3.3. Given p € (1,2), let & € L°°(Fr) and f be a p-generator satisfying (HI1),
(H3)—-(H6) and that
(H2') For some kg € (0, 00), it holds for dt x dP-a.s. (t, w) € [0, T] x 12 that

|ft,@,9,0,0) — f(t,,0,0,0)| <ko(1+yl), V¥yeR.

If fOT |f(,0,0,0)|dt € Li"(]—}), then the BSDEJ (&, f) has a solution (Y,Z,U) € D> x
Z>P x UP.

4. Wellposedness with Lipschitz generators

When the p-generator is Lipschitz continuous in (y, z, u), the condition (H1) is not necessary
to derive a unique solution for the corresponding BSDE with jump. One can demonstrate this
using a fixed-point argument, Theorem 2.1 as well as similar techniques to those developed in
the proof of Lemma 3.1:
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Remark 4.1. Given p € (1,2), let £ € LP(Fr) and let f be a p-generator with
fo |f(,0,0,0)|dt € Lt Y (Fr). If there exists two [0, oo)-valued, %[0, T] ® Fr-measurable

processes ,8, A with fo (,8, Alz)dt € L3°(Fr) such that for dt x dP-as. (t,w) € [0, T] x {2
|f(t o, y1.21.u1) = f(t, 0, y2, 22, u2)| < B(t, )yt — yal + llur — uallr)
+ At ®)z1 — 22l YOisziu) e RO R 1P i =1,2. (4.1)
Then BSDEJ (&, f) admits a unique solution (Y, Z, U) € SP.

As a consequence of Theorem 2.1 and Remark 4.1, we have the following result on BSDEJs
whose generator f is null after some stopping time t.

Corollary 4.1. Given p € (1,2), let f be a p-generator with fOT |f(,0,0,0)|dt € Li(}'T)

such that either (H1)—(H6) or (4.1) holds. For any t € T and & € LP(F;), the unique solution
Y, Z, U) of the BSDEJ (&, f;) in SP satisfies that P{Y, = Yin, t € [0, T]} = 1 and that
Z, Up) = 1y<t)(Z1, Uy), di x d P-a.s.

See our ArXiv version [53] for detailed proofs of Remark 4.1 and Corollary 4.1.
5. Proofs

Proof of Lemma 1.1. (1) Let U € U”. Given w € {2, we denote the countable set Dy, by
{ti(w)}ien. Forany j € N, Lemma A.1 shows that

(ZlU 1@ 0Py @) )’ Z|U (), 0, Pr o) (@)

< Y Ut op@)] = /«mfx|Ut<x>|PNp(dt,dx>)<w).

1€Dp(w)

Letting j — oo on the left-hand-side yields that

</(O,T]fX|UI(X)|2Np(dt’dx)>2(w) = ( Z |U(t,w,p,(w))|2)

tEDp(w)

S}

5(/ /|U,(x)|pr(dt,dx))(a)). (5.1)
©0,11JX

It follows that

1
E[(/ [|U,(x)|2Np(dt,dx)>2i|
0,T1]
1+E|: /m/ U, (x) 2N, (dt, dx))z]

1+ E/ / |U; (x)|Pv(dx)dt < oo, (5.2)
0 X

IA

IA

which implies that f(o Tl S 1U:(x)[*Np(dt, dx) < oo, P-ass.
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For any k,n € N with k > n, since [MU* — mUn MUk — MU’"]T =
T 2
fO fX 1< U, (o) <k} |Us (x)|“ Ny (ds, dx), one has

1
Sup E{[MU,k _MU,)’l’ MU,/{ _ MU,VL]%}

k>n

1
EE[(/ /1{|U,(x)|>n}|Ut(x)|2Np(dtvdx))2:|-
071 Jx

As n — 00, (5.2) and the monotone convergence theorem show that {M Uny oy is a Cauchy
sequence in (M, || - [lypr). Let MY be its limit.
(2) By Kunita—Watanabe inequality,
(Y, MY, — MY, MU |
— ’[MU,H _ MU, MU,H _ MU]I _ Z[MU,VI _ MU, MU,n]t’
S [MU,n _ MU, MU,n _ MU]t

1

+2<[MU,H _ MU,MU’n _ MU]t)j([MU’n,MU’n]t)j

— [MU,n _ MU, MU,n _ MU]I
1

1 1
+2<[MU’” MY, MU MU]t) . (f f 10, o< | Us () PN (ds., dx))z,
0,1 JX
Vielo0.T].

Then Lemma A.1 and Holder’s inequality imply that

1
E[ sup (MY, MY, — (MY, MU],|2}
t€[0,T]

< E{[MU,n —MU,MU’n _MU]T%‘]

+x/§E[([MU’” MY, MY — MU]T)%(/ f |U, (x) >Ny (dt, dx))“}
0,71/X

= [M% = MYy

l l
+ﬁHMU’”—M”H§m(E[(/ /|U,<x)|2Np<dr,dx>)2D2.
©,11/Xx

1
Letting n — oo yields that limn_>ooE|:suple[0’T] |[MU’", MYy, — MY, MU],|2i| = 0.

So there exists a subsequence of {MY"},cn (we still denote it by {MY"},cn) such that
limy— oo sUp,cpo. 77 |[[MY", MY"], — [MY, MY];| = 0, P-as., which together with the
monotone convergence theorem yields that for P-a.s. w € 2

(MY, MYy (w) = lim (M7, MO ()

n—oo

= lim 1 ( / f 10, o120 |Us (0) 2 Np(ds, d) ) (@)
0,11 Jx
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= lim t )" 10600 @pl<m U (5. 0. ps (@)

n—o0
$€Dyp()N(0,7]

= Y |Usopn@)

SE€Dp(w)N(0,1]

:(/ /|Us(x)|2Np(ds,dx))(w), Vi elo,Tl.
o.nJx

Then the Burkholder—Davis—Gundy inequality and (5.2) show that

£l s [MY)7] < ¢, [[u? V)]

t€[0,T]
: :
cp,,E[(/ / U, ()] Np(dt,dx)> :|<oo,
o,11Jx

which implies that MY is a uniformly integrable martingale.

(3) As |- ||y is equivalent to ||-||pr on M, we see that lim,,—, oo E[supte[O’T] |M,U’”—MIU |i| =0.

So there exists a subsequence of {MY"},cn (we still denote it by {MY"},cn) such that
limy,— 00 SUP; 0,77 |M,U’" — M,U| = 0 except on a P-null set V. We also assume that for any
w € N¢, the paths MY (w) and MU-"(w), n € N are cadlag.

Let w € N6t € (0,T] and ¢ > 0. One can find N = N(w) € N such that
SUP, (0. 7] |M,U” - MtU| < ¢g/2 for any n > N. Also, there exists § = §(t,w) € (0,1)
such that |M5U(w) — M,U_(a))| < ¢/2 for any s € (t+ — §,t). Then for any n > N, we have
(M7 (@) =M ()] < |MP" (@)= MY (0)|+]|MY (0) - MY ()| <&, Vs € (-5, 1). Letting
s /'t yields that [M”" () — MU (0)| < &, which shows that lim,—.co M"" (@) = MY (w). Tt
follows that

AMY () = MY (@) — MY (w) = 1im (M" (@) — M) (@) = lim AM”" (o)
n—oQ n—o0

= ll)“;o l{ter(w)}l{\U(t,w,p,(w))lgn}U(t,vat(w)) = 1{zer<w)}U(t, w, pi ().

n

(4) Let U, U?cUPandn e N.Fori = 1, 2, define

X;" ::/ /1{\u;(x>+u3<x>|5n}U§(x)ﬁp(ds’dx)and
0,11 JX

X" = /(0 ]/Xl{U;<x>+U3<x>|5n,|U;‘<x>|5n}Usi(x)ﬁp(dsvdx)’ tel0,T].
"t

We can deduce that

”MU1+U2,H _ MUl,n _ MUz,n — ”Xl,n +X2,l’l _ MUI,H _ MUZ,

[ "l

< 3 (I = R+ | R = )
i=1,2

— . i 2 2
- Z E[(/(.o,r] /X 1{|U,1(x)+U,2(x)\§n,|U,’(x)|>n}|Ut ()] Np(d’»dx)) }
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. 2 i
+ Z E[(/(O T]/X1{|U,‘<x>+vf(x)|>n,U,"(x>|sn}|Url(x)| Np(df’dx)) ]

i=1,2

1

<Y E / /1 oo UL 2Ny (dt, dx) )’
_Z [( 0.7 S Tt 1Y p )

i=1,2

1
i 2 2
+(/(O)T]/Xl{|ut1(x)+(]tz(x)>n}|Ut @) N,,(dz,dx)) }

As n — o0, (5.2) and the monotone convergence theorem show that lim,_, ||M Ul+u?n _
MULn — MU = 0, which implies that MU' +U° = MU' 4 mU”,
Next, let U € UP, « € R and n € N. One has

||MotU,n _ OlMU’n HMI

2 2
= E[(f(oﬂf)(lﬁwm')n<|Us<x>|s(IV|a1)n}|“Us(x)| Np(dt,dx)) }

1
2 2
< |a|E[(10’T] A1{‘Uy(}6)|>(1/\‘0{|_1)n}|U5(x)| Np(dt,d)()) }

Letting n — oo, using (5.2) and the monotone convergence theorem again yield that
lim,, 00 H MU _ U HMI = 0, which implies that M*Y = a MY Therefore U — MY is
a linear mapping on UP. [

x UP

loc*

Proof of Remark 2.1. Let (Y, Z, U) € D! x 72

loc

Fix n, k € N. Define
t t 2

Ty = inf{te [0, T]:/ |f(s,0,0,0)|ds+/ |Z|"ds
0 0

t
+/ f IUX(x)|pv(dx)ds>n}/\TeT
0 JX

and Ay == {Y, <k} € Fr.
Since |Y;| <k, Yt € [0, T] on A, (H2), (H4), (HS5) and Holder’s inequality imply that

E[1y, /0 v 2, Uplat]

T’l
< E/o (1£,0,0,0 + 6 + B + 1| Zi] + 2O Uyl )

1 1

T T 1 T 1
<n+Cp+ Ef ghdr + (E/ (1)) (E/ 1Z,dr)?
0 0 0

+(E/0 (cz(t))th>q(E/0 ||U,||€5dt)”
T T 2 % 1 T 1
Sn—i—C,g—l—E/ ¢fdt+ﬁ(/ (c1() d;) +nz(/ (cz(t))qdl‘)" < 00,
0 0 0

which shows that 1,4, fof" f@, Y, Zs, U,)|dt < 00, P-a.s. As Y, < oo, P-a.s., letting k — oo,

we see that [ | f(t, Y1, Z,, U,)|dt < oo excepton a P-null set \V,,. Since fOT | £(z,0,0,0)|dt <

00, P-a.s. and since (Z, U) € leoc X Uf;c, there exists a P-null set A such that for any w € NS,
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Tw(w) = T for some n = n(w) € N. Now, for any o € Nyenujo) N,f, one can deduce that
Iy £t 0, Yi(@), Zi), U))|dt = [{* | £, 0, Vi), Zi(), U)]d <oco. O

S =

Proof of Lemma 3.1. Set = (27~ p(p — 1)) ? and define processes

A2 p—1 _ .1 !
a; = $; + p + Tg,) 1r¢ + ;p”v(?() and A,:=p | ads, te€][0,T].
- 0

1

Then Cy = ||AT||LS§(}'T) <pCp+qCr+(p— 1D 9Cr + pPv(X)T. In this proof, we let

¢ denote a generic constant depending on T, v(X), p, Cg, C4 and Cp, whose form may vary

from line to line.

(1) Denote (Y, Z,U) = (Y' — Y2, 7' — 72, U" — U?). We first apply 1t6’s formula to derive
1

the dynamics of the approximate pth power of process Y : ¢.(Y;) := (|Y, 1> + 5) 2,

Letus fix typ € [0, T], n € N and define
t t
T, = inf{t e[0,T]: / |Z|%ds —|—/ / |Us(x)|Pv(dx)ds > n} AT eT. 5.3)
0 0 JX

1
For any ¢ € (0, 1], the function ¢, (x) := (|)c|2 + 5) 2, x € R has the following derivatives of its
pth power:

Digl(x)=pel2(x)xi and D ¢l (x) = ppl > (x)8ij + p(p — Dl (x) xix;,
Vi, jel{l, ... 1} 5.4

We also set & = &% 1= sup, ;1,1 9e(Ys). 1 € [10, T]. By Lemma A 1,

E[(Gfo)”]sE[ s[lgp]gof(m] SE[ S[gp]IYzlp}+eg=|IY||]§),;+8§ <00 (53
s€l0,T tel0,T

Now, let us fix (¢, €) € [to, T]1x (0, 1]. Applying Itd’s formula (see e.g. [22, Theorem VIII.27]
or [46, Theorem II1.32]) to process es <,0§7 (Y,) over the interval [t, A t, 7,] and using (1.8) yield
that

1 [
eAmn P (Yo ) + 3 f estrace(Z,Z!I D*? (Yy))ds
T AL

+ Z eA; ((pé’(ys) — (pé’(YS,) — (D(pé’(Ys,), AYS))
se(Ty AL, Ty ]

Tn

= el (V) + p f e[l 2(YYs, fi(s, Y}, Z U}

Tu AL
— (s, Y2, Z2, UD) — agpl (Y,)]ds

—p(M7p — M; + M7 — M,), P-as., (5.6)
where My = MS = [T 1poieM ol (Y, )(Y,—, Z,dB,) and M, = ME
f(O,tnAs] [ 1{r>t0}eAfg0§772(Yr,)(Yr,, Ur(x))Np(dr,dx), ¥s € [0, T]. Since an analogy to
(5.1) shows that for any ¢ € [0, T']
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P
E[(/ f|Us(x)|2Np(ds,dx))2} sE/ /IU;(x)Ipr(ds,dx)
(Tt Ty] J X (tant,Tu] J X

- Efr" / U (0)|Pv(dx)ds <n,  (5.7)
WAt JX

we can deduce from the Burkholder—Davis—Gundy inequality, Young’s inequality, (5.5) and (5.3)
that

E|: sup |Ms|+ sup |Ms|j|
5€[0,T] 5€[0,T]

kM 1 1
= ae“E|(&;)"!( f 1ZPds) " +(&5)" ! ( / f Us 0P Np(ds, dx) )
0 0,7,] J X
< Ca £\P " 2\? 2 5
< e E| (85)" + ( 12 ds) +( . Nt Np(ds, dx))

<cp1eCh(e? + 1YL, +n% +n) < co. (5.8)

So both M and M are uniformly integrable martingales.
(2) Next, we use Taylor’s expansion and some new analytic techniques to estimate the jump series

Y sconrn] € (wf (Ys) — @f (Ys—) — (Dol (Y5, AYS)) and thus Eq. (5.6).
Given s € [0, T], (5.4) implies that

d [ 2
trace(Z, Z{ D>l (Vo)) = p ol (V)| Zs* + p(p — el (Yo - Z(Z 8 Z;’)
j=1 Ni=l

v

PO 2(Y)IZs 1 + p(p — 2P~ (Yo) Y, 121 Zs)?
> p(p — Dl (Y| Zs |2 (5.9)

Setting Y = Ys_ + aAY;, a € [0, 1], we can deduce from Taylor’s Expansion Theorem and
(5.4) that

1
oL(1) = g2 (¥eo) = (Dol (¥,o). AY) = [ (1= AV, D! (1) A¥,Jda
0
1
= pf (1 —a)[gpg’—z(Y;’)|AYS|2+ (p — Dl (r%)(AYs, Y;’)Z]da
0

1
> p(p = DIALE [ (1= a0 de. (5.10)
0

P
I

_ p_
When |Y;_| < |AY,], one has o “>(Y®) > ((1Ys_|+alAY )2 +6)2 " = (41AY,2+¢)> ' >

14
2

2P2(JAY | + &) ! Va €0, 1]. So it follows from (5.10) and (1.7) that for P-a.s. w € 2

> O (1) — ¢l (Y- @) — (D! (Yi-(@), AV (@)

s€(tp(@)At, Ty (w)]

> 2" p(p—1) > Ly, i<iav, e

s€(tp(@)At, Ty (w)]

x| AY @) (| AV, @) + )
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=2 p(p—1) Z Ly, @I<lUs.op@)ne™
SE€Dy()N(Tn (@) AL, Tp ()]

x UG, @, 5@ ([UG, @, ps@)] +2) "

2
=2""p(p - 1)( ( ]Aluysws(xme/‘" Us (x)]
T AL Ty

% (U ()2 +s)5‘Np(ds,dx)>(w). (5.11)

2-p
Multiplying (wififlx)) < 1to (3.1) and applying Young’s inequality yield that P-a.s.

P 2Y)Ys, fi(s, Y], 20, U = fals, Y2, 22, UD)
P2(Y)| Yl (gs + PslYsl) + Agl ™ 2(1m|Ys||zs|

+ Lol (Y)Y Ul o + 7
2

_ A2 -1
< gsoP 7N (Yy) + ByP (Yy) + - QP2 (YO)IY P+ ol T2 (Yy) | Z

1 4

+Fs(ﬂf_l(ys)”Us”Lf + 15
2

B A
< g I(Ys)‘i‘(@s-i- P

p—1 _ -
+ 5 e el (Y12,

+%6OP||US||ZE + 7 forae.s €[0,T].
Since
U117, _/ |Uy(x)|Pv(dx)</ Ly > v, eoned (Ys-)v(dx)
+ /X1{|YS_\5|Us<x>|}lUs(x)|"”(dx)
< wf(Ys-)v(X)+fX1{|Ys7\swx<x>|}IUs(X)I”V(dx), Vs el0,T], (5.12)

it then follows from (1.8) that P-a.s.

(Y 15, Y 20U = fols Y] Z5,UD))
< 8o ) + gl () + Lol 2012,
+ %5@” /;{ iy, 1<ju, o 1Us(x)1Pv(dx) + 15 forae.s € [0, T]. (5.13)
Plugging this inequality together with (5.9), (5.11) into (5.6) leads to that for any ¢ € [fo, T']
Al (Yo p) + E(p = 1) A e T2 (X)|Z | ds

ya
2

Uy ) (1Us ()12 + €) 2~ Ny (ds, dx)

+260”/( t ]fxl{|n|s|ux(x>|}€A°'
Ta N\, Ty
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T}l
<n; + KJ[’/ / Ly, 1<ju,cone™ |Us (x)[Pv(dx)ds
At JX
—p My — M, + Mr —M;), P-as., (5.14)

where nf = 1% = 4 (gof(YTn) + pf;"N ¢! (Yy)ds + pftOT Tsds). Young’s inequality
and (5.5) show that

T T

Elnf] < eCAE[(GfO)p er(Gfo)”‘1 / N gsds +p/t
Ta Nl 0

T p T
< ecAE[p(GfO)p + (/t gsds> + p/t Tsds] < 00. (5.15)
0 0

As M and M are uniformly integrable martingales, taking expectation in (5.14) gives that

Txds]

Tn

Bio-nE / et 9P 2(Y,)\Z, P ds
T

WA
n 2 2oy
+2@”Ef /X1{\Ys7|sws<x)\}e’4“|Us(x)| (1Us)? + )2 v(dx)ds

Ty AL

Tn

< E[T)f] + gopE ‘[X 1{|){v_|S|Ux(x)|}eAs|Us(x)|pv(dx)ds. (5.16)

Ta Nt

(3) We continue our deduction, in which the analysis of 1LP-norm of random field U is quite
technically involved.

p_
Clearly, lim o 1 |U(s, 0. 0)P(IUGs. 0.0 + €)% = UG 0.0, ¥(s.0.x) €
[0, T] x §2 x X, so the monotone convergence theorem implies that

. i Ay 2 2 £-1
lim 4 E Ly, 1<iu,cone™ 1Us )17 (1Us(0) 7 + &) 2~ v(dx)ds
e—>0 At J X

T)l
=E/ / Ly, i<uaone™ [Us ()P v(dx)ds.
At JX

On the other hand, since n; < ntl, Ve € (0,1] and since E[ntl] < oo by (5.15), the
dominated convergence theorem shows that lims_.o E[n{] = E[7;], where 7j; := ¢4 (|Yy, |P +

n - T
pfri/\t gslYs|P~ds + pf,o Tsds).
Then letting ¢ — 0 in (5.16) yields that

n
250”E/ /1{|Ys_|s|us<x>|}€AS
TNt J X
T A
fE[m]Jr@”Ef / Ly, 1<iuyone™
At JX

Us(x)|pv(dx)ds < e“AE [ [y |Us(x)|pv(dx)ds < e <

Us ()| v(dx)ds

Uy (x)|"v(dx)ds.

Tn Ay
AsE [, [x Ly, i=iv,ope’
00, we obtain that

Tn
@pE/ / Ly, <ty |Us ) [P v(dx)ds
At J X

Tn
< ppE/ /;Yl{\YS._|§|US.(x)\}eAS US(x)’pv(dx)ds < E[ﬁ,] 5.17)
oAt
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Now, fix & € (0, 1] again. As 7j; < n?, (5.16) and (5.17) show that

D e D tn _
S(p - 1)Ef QP2(Y)| ZsPds < = (p — I)Ef et P2 (Yy) | Zs | ds
4 Ty AL 4 Ty AL

E[# +nf] < 2E[nf].

A

(5.18)

IA

Also, (5.14) and (5.17) imply that

E[(Gf)p] < E|: sup eAS(pgp(Ys)j| < E[n/]

S€[ty AL, Ty ]

Tn
—i—KJpE/ / Ly, |<usoype™ [Us () [P v(dx)ds
At JX

+2pE|: sup |Ms|+ sup |Ms|i|
selt,T] s€(r,T]

]. (5.19)

< 2E[nf]+2pE[ sup |Mg|+ sup |M;]
selt,T] selt,T]

Similar to (5.8), one can deduce from the Burkholder-Davis—Gundy inequality, Young’s

inequality, (1.8), (5.7) and (5.18) that

Tn

P
2pE[ sup |M| 4+ sup |Ms|] SczpeCAE[(6f)2(/
selt,T] selt,T] Ty At

+ (Gf)”_l(/ / |Us(x)|2Np(ds,dx)>2i|
(Tant, Ty ] J X

QP2 (Y| Zs | ds

1
2
¢£2(Ys_)|zs|2ds)

n
< E[(Gf)p] +¢ pzechE/

Tp Nt

C 2 %
+cpyePCAE (/ / U, (x)] Np(ds,dx)>
(taAt,Ty] VX

" / |Us (x)|Pv(dx)ds.
X

N =

1
< 5E[(Gf)l’] + CE[nf]1+CE / (5.20)

T AL

By (5.17) again,

E/ / U, ()P v(dx)ds
At JX

IA

Tn
E/ / Ly, i<iuson [Us ()P v(dx)ds
At JX

Tn
+E/ / Lu,o1<1,- | Ys— 1P v(dx)ds
At JX

Tn
< 9 PE[W] +v(X)E/ |Ys—|Pds.
ToAL
Since (1.8) and Fubini’s Theorem imply that Ef;”M|YS,|Pds = Ef;”M|YS|1’ds <
E [7,(&5) ds < E [[(&5) ds = [ E[(&9)"]ds,
(5.21)

i T
E/ / |Us(0)|Pv(dx)ds < o PE[n}] + v(X)/ E[(&%)P]ds.
T X t

W AL
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(4) The remaining argument is relatively routine (c.f. Proposition 3.2 of [10]).

As E[(Gf)p] < E[(Gfo)”] < 00 by (5.5), plugging (5.21) back into (5.20) and (5.19), we
can deduce from Lemma A.l and Young’s inequality that

T
E[(&)?] < €E[n] +¢/ E[(&5)P]ds
t

4 Tn T
< ¢E[(|Ym|2+8)'2+(6f)’”/ gds+ [ Tsds]
0]

Ty AL

T
+€/ E[(&)"]ds
1
T
< %E[(Gf)l’] +¢ 7 +¢/ E[(&%)P]ds, (5.22)
t

where ¢, = J] = et 4+ E[|an|P + (ftg gsds)” + szT Tsds] < 00. So an application of
Gronwall’s inequality shows that

E[(&) 1 <€ 7T =¢ 7., Vieln, Tl
Then we see from (5.22) and (5.21) that

E[ sup |YS|P}5E[<650)P]5¢/€,

se[t, Aty,Th]
T
E[n; ] < CE[(S;)P]+ € 7: + ¢/ E[(&%)F]ds <€ 7 and

0]
o
E/ / |Us (x)|Pv(dx)ds < € 7.
Aty J X
These inequalities together with Young’s inequality and (5.18) imply that

Z 3 pep) ([ 5
E[([ |Zs|2ds)2]sE[(6f0) : (f wf‘z(mzsﬁds”
Th AL Ta NI

2 _ Tn
== pE[(GfO)”] + EE/ PP (V)| ZsPds < € 7. (5.23)

2 n /A

Letting ¢ — 0, we obtain that

n Tn

4
E[ sop i+ ([ jzpas) e [ |Us<x)|1’v(dx)ds}
s€[ty Ay, Tn] Ta AL Al J X

T » T
< @E[|Y,n|” n (/ gsds) +f Tsds}. (5.24)
1) Iy
As (Z,U) € leoc X U{;C, it holds for all w € {2 except on a P-null set N that t,(w) = T for

some n = n(w) € N. Then
Jim Y (7 (@), 0) = Y(T,0) = §1(@) - &), Yoe NE.

(One can alternatively show this statement as follows: Since the compensator v(dx)dt of the
counting measure Np(df, dx) is absolutely continuous with respect to dr, P-almost surely
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process Y does not have a jump at time 7. Thus lim,,, o Y7, = Y7— = Y7, P-a.s.) Eventually,
letting n — oo in (5.24), we can derive (3.2) from the monotone convergence theorem and the
dominated convergence theorem. [

Proof of Proposition 3.1. By (H3)-(H5), it holds ds x d P-a.s. that
Y|P~ H2(Ys), f(s, Y5, Zy, Uy))
- |YS|p_1 ((@(YY)v f(S, 07 0, 0)) + (@(Yv)a f(S, YS» 07 O) - f(sa 07 07 0))

(P, f (5, Ys, 25, U) = £(5,¥5,0,0))
< |YlP7H(1£(5.0,0,0)| + Bs|Ysl + | £ (5. Y5, Zs, Uy) — f(s. Y5, 0,0)])
< 1Y P71 (5.0,0,0)] + Bl Yyl + Bs + c1 ()| Zs| + ca() Ul .r).-

Clearly, (0,0, 0) is the solution to the BSDEJ (0, 0), applying Lemma 3.1 with (&1, f1, Y,
UY = (. £Y.Z.0), (2 f2.Y?, 22U = (0,0,0,0,0) and (g, By, 4, [, T) =
(,35 +1f(s,0,0,0)], Bs, c1(s), c2(s), O), s € [0, T] yields the inequality (3.3). [

Proof of Proposition 3.2. Given m, n € N with m > n, we set

Etm,n — sup |Ymn|p+(/ |Zmn2ds / / |Um"(x)|pv(dx)ds

selt,T1
te[0,T].

Applying Lemma 3.1 with (&1, f1, Y1, Z1, U = &n, fu, Y™, Z", U™), (&2, >, Y2, Z2,U?)
= (&, fu, Y", 2", U") and (g5, I, Ty) = (0, ¢(s), A(s) 01V 1P + ) + 15", s € [0, T,
we can deduce from Fubini Theorem, the concavity of § and Jensen’s inequality that for some
constant € depending on 7', v(X), p, Cg, C4 and fOT (c))?dt

T
E[Z""] = @(E[|sm — & ] +/ MS)E[O(E" + na)]ds + E/
T T
€<E[|Sm - Sn|p] “l‘/ )\(S)Q(E[Esm’n] + E[n,,])ds + Ef

t 0
t €0, T].
Hence, it holds for any n € N and ¢ € [0, T'] that

T
Tsm’"ds)

Tsm’"ds),

T
sup E[5""] < ¢<sup E[1&m — &n17] +f A(s) 9<sup E[Z""] + E[nn]>ds
'

m>n m>n m>n

T
+ sup E/ Tf”"ds). (5.25)
0

m>n

Since {£,},en is a Cauchy sequence in L? (Fr), one has
lim sup E[|&, — & ] =0. (5.26)
n—>oo m>n
If /OT A(#)dt = 0, then /OT A(s) 9(supm>n E[ES'"’"] + E[n,,])ds = 0. Taking ¢ = 0 and letting
n — oo in (5.25), we see from (5.26) and (3.5) that
lim sup E [5""] =0. (5.27)

n—>o0 msn
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On the other hand, suppose that fOT A(t)dt > 0. Lemma A.1 implies that

p
sup E[Z""] < sup E[Z5""] < sup (1Y e + 127" liz2,p + 1U™" 1u» )

m>n m>n m>n
< {2 sup (IIY’IIDP +11Z" 1720 + IIU’Ilw)} <00, V(s,n)el[0,T]xN. (528)
ieN

Since A € L_li_[O, T] and since sup, .y E[n.] < oo by (3.5), Fatou’s Lemma, the monotonicity
and the continuity of 6 (real-valued concave functions are continuous) imply that for any
tel0,T]

. T
lim,,_mof A(s)@(sup E[ES’""] + E[nn]>ds
t

m>n

T
< / M)l e
t

T
5 / 1) 0 (T sup E[Z"])ds.
t

m>n

sup E[E’:""] + E[r)n])ds

m>n

Letting n — oo in (5.25), we can deduce from (5.26) and (3.5) that

T
lim,_ o sup E[5""] < 6/ A(s)@(mn%oo sup E[Esm'”])ds, te[0,T].
m>n t m>n

As 60 : [0,00) — [0,00) is an increasing concave function, it is easy to see that either
6 = 0or6() > 0 for any t > 0. Moreover, one can deduce from (5.28) that the function
x(@®) = limy,o sup,., E[5""]. t € [0,T] is bounded. Then Bihari’s inequality (see
Lemma A.3) and (5.28) imply that lim, o sup,,-, [:;”’"] = 0, V¢ € [0, T]. Therefore,
(5.27) always holds, which shows that {(Y nznu ”)} is a Cauchy sequence in SP. [J

Proof of Proposition 3.3. Let us make the following settings first:

2—p
o Set Cp = | f 1£(1,0,0,00ldt] . Cpxe = ((A)) 7 and

T 2 T 2
R :=2+exp{T+Cf +4c,9+2/0 (c1(6)) dt+C12,’X/O (c2(1)) dt}

X JIER iy + 5T +Cp/2+7C4 /2. (5.29)

Let i : R! — [0, 1] be a smooth function such that Y(x) =1 (esp. ¥ (x) =0)if |[x| < R -1
(resp. |x| > R).

o Let p : RI+!xd 5 R+ be a smooth function that vanishes outside the unit open ball 3;(0)
of RIH!*d and satisfies Jri+ixa p(x)dx = 1. For any r € (0, 00), we set p,(x) := rt+d 5 (rx),
Vxe Rl+l><d.

e We say that {0 }:n=1 is a partition of the unit closed ball B (0) of RIH >4 if 0;,i = 1,...,m
are simple -connected, open subsets of 31 (0) that are pairwisely disjoint, and if UL, 0; = B(0).

Let {Ok}’ |» k € N be partitions of B1(0) such that 0 = 0/;—11 U 021 " holds for any k € N
andi = 1,...,2% Foreach 0{‘, we pick up a (y,. s f.‘) € Of with yi e R, and let H O;‘ H denote

the volume of Of.
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(1) To apply the existing wellposedness result on 1LP-solutions of BSDEJs with Lipschitz
generator, we first approximate the monotonic generator f by a sequence of Lipschitz generators
{ fulnen via convolution with mollifiers {py }neN.

Fix n € Nwithn > k¢. For any u € L‘z), since Holder’s inequality shows that u also belongs

2-p
to Ly with [luf| »r < (v(X)) % lull 2 = Cp xllull 2, we define

& () :=( )ueL{)’.

nVllull
Applying Lemma A.5 with (E, || - ||, r, x, y) = (L3, || - lpp,n,ut, uz) yields that
160 (u1) = Ga) I < 20w —uallp < 2C, xllur —uallyz2,  Vur,uz € Ly, (5.30)

which shows that the mapping ¢, : L‘% — LYis %(L%) /PB(LY)-measurable. (Note: As the space
LT may not have an inner product, one may not apply Lemma A.4.)
Since B! := m € (0, 1], € [0, T'] is an F-progressively measurable process, we

can deduce from (A.3), (5.30) and the 2 ® B(R') ® Z(R"*?) ® #(L})/%(R')-measurability
of f that the mapping
,f;?(t3 w3 ys <, u) = ﬂn(t9 a))‘(!/(y)f(tv a)v yv ﬂn(z)s ;‘I‘l(u))v
V(t,w,y,z,u) €[0,T] x 2 x R/ x R>4 x L%
is 7 @ B(R') ® B(R™*!) ® #(L?%)/BR)-measurable. Given (1, w, y, z,u) € [0, T] x 2 x
R/ x RI>d x L%, we further define
.f?l(tv w,y,Z, u) = (fr?(t’ , -,y M) * Pn)(y, Z)

By (H1), the continuity of mapping f(f,®,-, -, u) implies the continuity of mapping
f,?(t, w, -, -, u). Hence, f,(t, w, y, z, u) is indeed a Riemann integral:

1. 1._ e o
fut,0,y,2,u) = / f,?(t, w,y——y.7——%, u)/)(y, 7)dydz
G.2)<1 n n

, (5.31)

k—o00

2k

_ I I

DA (RS TRt A G [
i=1

from which one can deduce that f;, is also  ® Z(R') ® Z(R'*?) ® %(L2) / Z(R!)-measurable.
Now, set ¢, (t) = n(3 + R+ c(t) + cz(t)), t € [0, T, which is clearly of Lﬁ_[O, T]. As
B (,8, VvV |f(,0,0, 0)|) <n, (HZ/), (H4) and (HS) show that dt x d P-a.s.

L2y, z )] < B O)(1£(2,0,0,0)] +ko(1+ 1y]) + B + 1 (1) | (2)]
+o] e )
<cn(t), Y(y,zou) e REx R % 12, (5.32)

This implies that for dt x dP-a.s. (t,w) € [0,T] x {2 and any u € L%, falt,w,-, -, u)isa
smooth function on R! x R/*4 via convolution.

Let (y1.21). (v2.22) € R' x R and set vy = ayi + (1 — @)y2, 3o = az1 + (I — @)z2,
Ya € (0, 1). Since

Pn(y1 =Y, 21 =2 — (2 — V.22 —=2) = pu(01 — ¥, 31 —2) — Pu(W0 — ¥, 30 — 2)
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1
= f dpn(Ve =Y, 30 —2)
0

1
= f <(y1 — 2,21 —22), Von(De — 3, 30 — Z)>drx, V(3,2) e R x R*4,
0
(5.32) also yields that df x d P-a.s.
[fa(t, y1, 21, u) — fult, 2, 22, )]

/I;I_H d(pn(yl _’)77 21 _E) _pn(y2_3;, ZZ_E))f,?(t’ yazau)dydz

1
/RHM </o <(y1 —¥2,21 — zz), Vpn(Uot —Vi3a — Z))dcx)fno(z, v, Z, u)dydz

1
< cn(t)/ / |1 = y2.21 = 22)| - [Vou (96 — 3. 30 — Z)|dYdZda
0 Rlﬂxd

<khen®(lyr — ol + 121 — 221). Y(1.21). (2. 22) € R x R, Vu e L], (5.33)

where K;‘ = fRHlxd [Vpon(x)|dx < oo is a constant determined by p and n.
On the other hand, (5.31), (HS) and (5.30) imply that dt x d P-a.s.

[ fut, v,z u1) — fu(t,y, 2, u2)|
/I(&,£)|<1 ﬂz"‘ﬁ(y - %9) <f(t, y— %?, nn<z - %Z) gn(u1)>

ity =25 (e 22), ;nmz)))p@, Bd5dz

)
1(3,9)1=1

1. 1. o e g~ e
- f(t, Y= Y T (z - ;z), Cn(uz))'p(y, 2)dydz
< O] &) = @)y < 202(0C, x|lur —ual 2,

Y (y,z,up,up) € R x R x 1.2 % L2,

£ty = 25,70z = 12), datun)

which together with (5.33) shows that f, is Lipschitz continuous in (y, z, u) € R! x RI*d x L%
with L2 [0, T']-coefficients.

Moreover, (5.31), (H2/) and (H4) imply that df x d P-a.s.

| f(2,0,0,0)] 5/ B

13,911

KO |~
s/ ﬂ,’"(|f<t,o,0,0>|+Ko+—|y|+ﬂ,+c1<t>
|(3,2)|<1 n

£ (=57 (~2). 0)‘p<&, Bddz

1._ el e n
Ty (——Z)Dp(y, 2)dydz
n
1 e e 1
< / (n +Krg+1+n+ —c1(t)>p(y, 2)dydz =2n+«ko+ 14+ —c1 (1),
[(¥,2)I=1 n n
SO E[(foT [ f2(2,0,0, 0)|dl)z] <(@n+4xko+ DT + %fOT cl(t)a?t)2 < 00. Then we know from

the classical wellposedness result of BSDEJs in L>-case (see e.g. Lemma 2.2 of [58]) that the
BSDEJ (£, f,) has a unique solution (Y", Z", U") € D? x Z? x U?.
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(2) In this part, we will use regular argument to show that the L%-norms of {(Y", Z", U }neN
are bounded.

Next, we define a, := 14| f(z, 0, 0, 0)|+4ﬁ,+2(c1(t))2+c§ ()’ and A, =2 [} ads,
t € [0,7]. Clearly, A € LY(Fr) with Ca = [Ar| 05, = 2T +2Cf + 8Cp +
+

4 [T (c1() dr + 2C2 S (e2(0)dr < oc.

Fix n € N with n > k¢ and fix ¢ € [0, T]. Applying Itd’s formula to process e”s |st|2 over
interval [¢, T'] and using (1.8) yield that
T
AP [ emiziPas s [ [ etupwPN@s.do
t @T1JX
T
=eAT|E)? + 2/ e [(YE, fuls, YI, ZE, UD) — as|Y!*]ds
t

—2(MT - M[ + MT - M[), P'a.s., (534)

where My = [ e (Y, Z"dB,) and M, = f(()’s] [y ey, U,”(x))ﬁp(dr, dx), Vs €
0.71.
Since (H2 ) and (H3) show that dt x d P-a.s.

(YS", f(s, Y" — :—ly, 0, 0) — £(s,0,0, 0))

I 2 1 1
< Bl = =y Sl (s 17— £3,0,0) = £(5,0.0,0)

< Bs

and since ||£, (UM ,» < 1U e < CpxllUl 2, we can deduce from (5.31), (H4) and (H5)
that P-a.s.

(Yg', fuls, (', ZE, UD)

s Lgos

- /MM g (v - %y)(Ys", f(so v - %y, AGE %z) &a(U2)) oy, 2dydz

1
(2 -2

1
v - y\)}p(y, 2dydz
n

n_ L P n_ 1 I Ixd
Ys—z)” +|y|(l+ Ys—;y), V(y,2) e R' xR

5/ {IYS”I[If(s,0,0,0)|+ﬂs+C1(S)
,2)l<1

1 12
v — [ i1+

+ 2| &N ] + 8

<24 B+ IV 1(141£065,0,0,001 + 36, + 1)1+ 1Z01) + 26)Cp 21U 113
+ Y]
é 1 z n2 1 n2 l ny2
E + |f(s309070)|+ ﬂS +aS|Y5| + |Zs| + ”Us ”L2 fora'e'se[07 T]v
27" 4 4 4 4 :
(5.35)

where we used the inequality o < % +a? Va e [0, 00).
Moreover, Burkholder—Davis—Gundy inequality and Holder’s inequality imply that

1
T 2
E|: sup |Mg|+ sup |/\/ls|:| < e E|Y! (/ |Z§’|2ds>

5€l0,T] 5€[0,T] 0
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1

, I
+ Y (/ / U2 (0)|* Ny (ds, dx)) 2
0 X

c
< e 1Y 2 (12" 22 + 11U ) < o0,

which shows that both M and M are uniformly integrable martingales. Since

T
EU /eAs|U;l(x)|2Np(ds,dx) ]—",} =E[/ /eAS|U;’(x)|2v(dx)ds
@,T1JX t X
T

= E [/ MU ds
t v

taking conditional expectation E[-|F;] in (5.34), one can deduce from (5.35) that P-a.s.
n|2 1 r n|2 ny2
P+ SE| (1202 + 10213 )ds |7
t v
f}}

1 T
<My + —E[/ eA-‘(|Z?|2 + ||Us”||iz)ds
t v
2
< (€ fmiry + 5T+ Cr/2+7C4/2) = (R =22

7

.’F,} , P-as.,

2

This together with the right-continuity of Y implies that

<2(R-2)?2 VneN. (5.36)

IY"lpe <R—2 and [ Z"|2, + U113,

(3) Next, we carefully verify conditions (3.4) and (3.5) for (Y", Z", U™)’s, so the sequence has a
limit (Y, Z, U) according to Proposition 3.2.

For any (¢, w) € [0, T] x {2 except on a dt x dP-null set 91, we may assume that (H2/),
(H4)—(H6) hold, that |Y/*(w)| < R — 2, Vn € N, and that U'(w) € L% cLy, VneN.

Fix (1, w) € M. By (H5) and (H6), it holds for any (y1, z1, u1), (y2, 22, u2) € RExRI*4 % L
that

|)’1 - y2|p_1<9()71 - )’2)7 f(tv w, Y1, Zl’ul) - f(t3 w, y2, Z27u2)>
=In —yzl”_l((@(yl —y2), f(t. @, y1, 21, u1) — f(t, 0, y2, 22, u1))

+ [t @, y2,22,u1) = f(t, 0, 2, 22, u2)|)
< 2@ 6(ly1 — »21?) + 2, ®)|y1 — »2|”
+1y1 =yl (AG )21 — 22l + 2O lur — uallp). (5.37)

Let us also fix m,n € N with m > n. Since (Y™, Z™,U™) is the unique solution of
BSDEJ (&, fn) and since Y(x) = 1 for all |x] < R — 1, (5.31) and (5.36) show that
(ymn zmn gmny .= " —-y", zZz" — 7", U™ — U") satisfies

1Y (@) P2 (@), fu(t, @, Y] (@), Z (@), U" ()
— falt. 0. Y] (@), Z}'(0), U ()))

- /| @I @, B @5
y,2)I=

— Bl (@)h] ,(5.2)p (3. Ddydz, (5.38)
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where 1 (7, 2) = f(t, @, Y/(@) — 15, 7,(Z1 (@) — 12), £,(U}' (@))). Next, we fix (7, %) €
R x RI*? with |(7,Z)| < 1 and set Oman»>Zmn) = ((l — 1)51, (l — l)i). Consider the

m n m n
following decomposition:

1Y (@) [P~ H2 (" (@), B (@), (5, D) — Bl ()R], (5. 7))
= B @)Y @) = Fun "D (0" (@) = Tmn) . (5. 2) — Bl (5. D)
+ B @)Y (@)P T 2 (Y] (o))
— ¥ (@) = T |"T D (V" (@) — Tmn) B (5. D) — hE (5, D)
+1Y" " @)PH2 (Y (@) . (B (@) — Bl (@) (5. 2)
=115, )+ 12,G5.D)+ 1,5, 9.
(3a) We see from (5.37) that
', (5.5 < 200(Y"" (@) = Fnnl?) + B(@)|Y]"" (@) = Fnl”
1Y (@) = Y|P
< () (2@ — - 2) (2@ ~ 12|
+ 206 (U @) = a(Ur @) ) (5.39)

Applying Lemma A.2 with (b, ¢) = (1Y/""(®) = Ym.ul. 1¥;"" (@)]) and p = p — 1 (then p = p)
yields that

~ _ —1 ~ — —1 _
1Y/ (@) = VP70 < [V @]+ TP < [V @) 0P (5.40)
~ ~ p=1
and Y (@) = Sl = [0 @)+ p(1 @)+ Fnal) [T
< [¥""(@)|” + na (5.41)
with , :== Z(2R — 3)P~1. Also, (A.3) implies that
1. -
[ (20" (@) = —2) = mu(Z) @) - 12)|
1. - -
< [ (20" (@) = —2) = 7 (2] @) = 12)| + [ (Z} (@) — 1)
—mn(Z] () — 13)|

< |Ztm,n(w) _Em,n| + 1{|Z”
t

n 1~
@-12) > 70 (@)~
2
<1Z{"" ()| + - + 122 ) >n—1)| Zf (@)]. (5.42)

_ 1
- Ty

2 o k
For any u € L;, since STl 3] /1 as k — oo, one can deduce that

m

[ &m ) — u(u)| = 1{||u\|L5>n}( )llulng < 1{||u|\L5>n}||u||L5,

mV lullgp nV lullpr
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which together with the first inequality of (5.30) implies that
6 (UF" @) = & (U} @) ]
< [ 6n (U @) = & (Uf(w)) o + lem (U @) = & (U] @) ] ¢
< 2“ Um,n

P @l p=n) || Ui @) |

<2HU'""<w>||Lp a7 |Up

Lp
< 2UP @)y 407 ) e |Ur@ (543
Since |U"" (@) = Cp.x|U"" (@) ;. plugging this inequality and (5.40)~(5.42) into
(5.39), we can deduce from the monotonicity of function 6 that
15,2 = A0 (1" @)1” +na) + B @) (1" (@)I7 + 1)
+ (1" @)1 401 7P) x [ 9] @) + A @I 2" @) + 201U @) ]
= 2a@O(Y"" @) + 1) + B(@)]Y"" (@)
08 (@) + [1+ QR =P8 @) + 17" @) [ 4 @) 2" @)]

+ 26010 @)l |

1 m.,n m,n
+§nl_”(/1t2(w)+ \z" (a))|2+4C127’X(62(t))2+ o™ (w)”i%), (5.44)

where 7" (w) = A;(w)(2 +1{.zn(w)\>,, I |Z @) +n'7 cz(r>C”X||U"<w>||Lz Ar(w) +

_n

(n = DT A,(@)|Z] @) 7 +n'7 cz(t)cm!U"(w)HLz
(3b) As [ & (U @) || 1p < U @) 1p < Cp 21U @)l 2, (H2), (H4) and (HS) show that
1} (3, DI < 11, ,0,0,0)] + ko1 + ¥/ (@) — 33
+B1(@) + c1 (D] (Z] (@) = 3D| + 20| & U @)
< |f(t,®,0,0,0)| + koR + B (@) + c1 () (1 + |Z]' (w)])
+()Cp xI1U (@) 12, (5.45)

which together with Lemma A.6 yields that
12,65 < [V @1 (1" @)
— [ @) = Tl (@) = Foa) | ([ G D] + [, G,
<+ 2P—1)n1—1’[2|f(t, ®,0,0,0)| 4+ 2o R + 28 ()
+c1 )2+ 12 (@) +1Z] ()])

+e2(0Cp (17 @z + 107 @12) ]| = T2 @). (5.46)
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Since 0 < B/'(w) < B/ (w) <1, YVt € [0, T], (5.45) also implies that

(3.2 = @R =477 (1 = B1@)[1£(1,©,0,0,0)] +KoR + B (@)

+a (14121 @)) + 200 21U @) 3| = TP (@), (5:47)

Putting (5.44), (5.46) and (5.47) back into (5.38) shows that (3.4) is satisfied with c(-) = 2¢2(+)
and

1
T = 0@, +[1+ QR — P10 4+ Enl_”(/ltz(w) +12]"" (@)

+4C2 1 (@) + | UM @) ||§%) +I24+T% relo.Tl.

Hoélder’s inequality, Young’s inequality and (5.36) give rise to the following four estimates:

T T
(a) sup E/ r"dr < LR -3y 1C + [1+ @R —4)/’—1]15/ w'dt
m>n 0 n 0
1 1 2 r 2 2 r 72 73
+ " 1’<CA + CP’X/O (c2())"dt + 8(R —2) > + E/O (17 + 1)dt.  (5.48)
242

T
2 ) = ~(2) 7:
(b) E/O v'dt < ~CP + (- nECP |20

p2 2 T q % 2
+n7 C;’X</o (c2(0)) df) 10"

<200 4o - 1O R - 23 4 2bn' T TR -2}
< Cp F2n = DFC(R=2)% +20n 7 C ) CHR =27,
1
where Cill) = EfOT Asdt and Cglz) = (E fOT Atzﬂdt)zTe.
T

T _ 1
(©) E/ 12dr < (1 +2"—1)n1—f’{2cf + 2i0RT +2Cg +/ <2c1(t) + E(cl(z))2
0 0

+3C pe?)dr+ Y (1212 + v n@z)}

o T |
(2010 + 5(10)?

<1+ 2P‘)n11’{2cf +2kRT +2Cg +f
0
+ %C;X(cz(t))z)dt +4(R — 2)2}.
T T
(d) E/ I3dt < 2R —4)”_1{E/ (1= BO(1f(t, ©,0,0,0)| + koR + B + c1(t))dt
0 0
T 1
+||Z”||Zz(Ef ()’ —ﬁf)zdt)z
0
T 1
+Cp U e (E /0 (20)*(1 - ﬁ{’)zdt)z}

T
s(zR—4>P—1{E/ (1= BY(1f (t,0,0,0,0) + koR + B; + c1(1))d1
0
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T %
+V2(R - 2)(E/ (c1())°(1 - ,3,")2dt)
0

T 1
+V2C, ¥ (R — 2)(Ef (c2())*(1 — B! )2dt)2} = J,.
0

Because B! = 1v(ﬁ1/n)v(\f(z()00)|/n) /" lasn — oo, Vt € [0,T], the dominated
convergence theorem shows that lim,_, o J, = 0. Thus, letting n — o0 in (5.48) yields that

limy,— 0o SUP,,-, Efo ™" dt = 0. Moreover, since || - lpr < || - [lpoe, || - lz2p < |l - llz2 and

2-p

I llur < (V(X)T) 2 || - [ly2 by Holder’s inequality, we see from (5.36) that (3.6) also holds.
Then Proposition 3.2 shows that {(Y”, z", U")}neN is a Cauchy sequence in S”. Let (Y, Z, U)
be its limit.

4) In this part, we will extract an almost-surely convergent and summable subsequence
{armi, zmi, umi, o from (Y™, 2", UM nen.

Since
T 5 £
lim E|: sup |¥)' —Y,|" + </ A dt)
n—>00 +€[0,T] 0
T
+ / / U (x) — U,(x)lpv(dx)dt] =0, (5.49)
0 X
we can extract a subsequence {m; };cn from N such that
T 2
(1) lim sup |Y i Yt| = lim |Z;”i —Z,| dt =0, P-as., (5.50)
i—00 ZG[O T] i—00
(i) lim |0 —U;|,» =0, dtxdP-as., (5.51)
I—00 v
(i) [ym =y, v Zme = 2, v U = Uy, <27, VieN
(5.52)
By (5.36), it holds P-a.s. that sup,cio 7 1Y:| < sup,epo.77|Y: — M <
SUP;ef0.7] |Y — Y,| + R —2, Vi € N. Letting i — 00, we see from (5.5()) that
sup |¥;| < R-—-2, P-as., thus |Y|p~> <R-—2. (5.53)

1€[0,T]
For any i € N, we define two [0, co)-valued, F-predictable processes
i i
=120+ Y |2 =27 and U = U+ DO =0

j=1
tel0,T]

with Z™0 := Z and U™ := U. Minkowski’s inequality and (5.52) imply that

ol o]y

IA

i
12l 20 + 212" = 27 22,

IA

1+ (2|, + 2" - 2|, VielN (5.54)
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i . . .
As {Z'}, _ is an increasing sequence,

Z, = li zZi=\|z z -z
(= lim 1 IzI+Z|

, 1€[0,T] (5.55)

defines an [0, oo]-valued, F-predlctable process. The monotone convergence theorem shows that
r 2 ~ 2 r 2 H
f (Zt (a))) dt lim 4 (Z,’ (a))) dt and thus (/ (Z, (a))) dt>
0 0

i—00

T P
lim 4 (/ (Z,i(a)))zdt>2, VYo e (.
0

i— 00

Applying the monotone convergence theorem once again, we can deduce from (5.54) and
Lemma A.1 that

E[(/OT thdt)g:| lim 1 E[(/()T(Z,i)zdt>gj|

3 (14| 2]5, + |12 = Z]5n, ) < oo (5.56)

IA

Minkowski’s inequality and (5.52) also imply that
oo
{E f (Zke dt}
0

{Z/l ! } is an increasing sequence,

IA

[0l + 3 U — vy,

A

L+ ||U |y + U™ =U|y,» VieN (5.57)

U = lim 1 Uj = ||Ut||Lp+Z||U U s te€l0,T] (5.58)
j=1

defines an [0, oo]-valued, F-predictable process. Applying the monotone convergence theorem
again, we can deduce from (5.57) and Lemma A.1 that

T T
B[ uptar=tim 1 E [ agyra<3r (14 Ul + o v,
< 00. (5.59)

(5) Finally, we will send i — oo in BSDEJ (§, fn,;) to demonstrate that the processes (Y, Z, U)
solve BSDEJ (&, f).

Fix k € N. We define an F-stopping time
t
= inf{t €[0,7T]: / 22ds > k} AT. (5.60)
0

Since [* |Z]" — Z,°dt < [;*(Z])?dt < [} Z}dt <k, Yo € £2, the dominated convergence
theorem and (5.50) show that

Tk ) 2
lim Ef |z{" — z,|"dt = 0. (5.61)
0

i— 00
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Hence, there exists a subsequence {mﬁ‘}ieN of {m;}ien such that for dt x dP-as. (t,w) €
[0, T] x £2
. mk
lim 1y<y|Z, " — Z,| = 0. (5.62)
1—> 00
We shall show that
Tk ml‘ mk I‘i‘ll»C
lim E/ I (S ANARAS BN (RN AL (5.63)
1—> 00 0 i

Since ¥ (x) = 1 for all |[x| < R — 1, (5.36) implies that for any i € N

Tk
d!
0
Tk
=)
0 JI(3.al<l1

- f(l‘, Yi, Zy, Ut)

k k m

mh bk
fm/_(<t, v,z U ) — £(t. Y0, 2, U) | dt

‘ Eo Coo1 ‘
,3:1’f<t, I CA T Bigr). (Uf”))

k
m; i

0 (3, 2)dydzdt. (5.64)

For any (1, w) € [0, T] x {2 except on a dt @ d P-null set 9 D I, we may assume further

k
that (5.51), (5.62) hold, that lim;_, |th" (@) — Yi(w)| = 0 (by (5.50)), that |¥;(w)| < R —2
(by (5.53)), and that U, (w) € LY.
Let (t, w) € ME N[0, 7] and let (§, 7) € R! x RI>4 with |(§, 7)| < 1. Since

k

lim 2" (@) — Zi(@)| =0 (5.65)

1—>00
by (5.62), Lemma A.4 and the first inequality of (5.30) imply that

k k
@) 1" @ = L5 = V@) = & + 1" @) = Yi@)| > 0,251 — o0;
]‘{ 13 ~ 1 k B

@) |7, (2" @) = £2) = Ze@)| = |0 (27 @) = k2) = 7, (Z00) | + |, (Z1 @) -

mk
Z)| = 2" @) - Zi()| +

mk -
2" @ - hE - Zio)| + 7,0 (Zi @) - Zi@)] = L+

1
m;

|7Tm1.‘ (Zt(a))) — Z,(a))| — 0,asi —> o0;
mk mk
@) |6 (U @) = U@, = J6u (0" @) = i@y + [ Un)) ~

m].{
Ur@)] p = 2] U7 (@) = Un()]

LY
m

‘
(1 m{fvnutl(w)uLg)” Ui(@)]
k

Since the mapping f(t, w, - -, U (a))) is continuous by (H1) and since lim;_, o 1 ,B,mi (w) =
1, we can deduce from (el) and (e2) that

Lp—>0,asi—>oo.
v

. mk mk 1 . mk 1.
Tim B @) f (1,0, " @) ~ el (2" @ - Wz) Ui(@))
= f(t. 0, Y1 (0), Zi(w), Ui(w)). (5.66)
Moreover, (H5) shows that

f(t, 0, Y™ (@) — #5, - (Z,’”f () — #z) Et (Ut”’f (w)))

i
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m;

0 (r 0 = o (2 - 7). V)

< 20, (V" @) - V@)

Ly’
which together with (5.66) and (e3) implies that

L,{&, " (z,’"'k(w) _ #z) " (Ut’”f" (w)))

mk mk
B ’(w)f(t,a), Y () —
m;
— [t . (), Zi(), Ut(a)))‘ —0. (5.67)

lim
i— 00

Given i € N, there exists an 7: }'\(k, i) € N such that m{‘ =m3. Since
mlf n
2" @) = 2@ = Z(w) and
k
e (U7 @)

one can deduce from (HZ/), (H4) and (HS5) that

L SU @) <U). (5.68)

k
LY = H U’mj (@)

B @ f (101" (@) %y (20 ) - #Z) 6 (01 @)

— (.0, Vi), Zi(@), U@)|

P02 @ = e (20 @) - ) (0 @)

<
"

+]7(t 0. Yi(@), Zi(), Ui(@)|

o1
<20/ (.. 0,00 +x0(2+ 1" @) ~ 5| +¥i(w))
i

mk 1.
+26,@) +a0(|2" @ — —Z|+1Z())
m;

mk
+ex0( |6 (U @), + U@
<21f(t,®.0.0,0)| + 2R — Do + 2 (@)
+ a1 (1 + Z(@) + 1Z@)]) + O @) + U @)l 17) = H ().

Applying Holder’s inequality, we see from (5.56) and (5.59) that

Tk Tk T
E/ f H; p(3,2)dydzdt = E/ Hidt < E/ H,dt
0 JiG.al<1 0 0

<C+E [(/Or(cl(t))zdt>;{(/OTthdty + (/OT |Zz|2dl‘)£}j|
+ (/OT@(:))%)‘]’{(E/OTufdr); + ||U||w}
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_1 T, N\% 7
§C+C2{(E[</ Z,dt) ]) +||lezz,p}
0
o T 1
+cq{( / M,pdt)p+||U||Up}<oo (5.69)
0

with C .= 2Cy + (2R — DkoT + 2Cpg + fOT c1(s)ds < oo. Hence, the dominated convergence

theorem and (5.67) show that
1 mk 1 mk
limE/ / <tYl——y,nk(z'——z),;k(U’D
i~o0 G, z>\<1 mp 7T A
p(y,2)dydzdt = 0,

- f([» Y:, 2y, Ut)

which together with (5.64) leads to (5.63).
Since f( wAt] = f(o, wl = f(o, wnge Y1 € [0, T, the Burkholder-Davis-Gundy inequality,
Holder’s inequality and an analogy to (5.1) imply that

E| sup
1€[0,T1]

f f (Us’”‘k(x) — Uy(x)) Ny (ds, dx)
(tent, 1] J X

<2E [ sup / f (Us’”fk(x) — Uy(x)) Ny (ds, dx) }
tel0,T] (0,7 At]
<c [ / W )~ Uy Ny s, d)) }
0,7l
Py A
<q E[f / W () = U PN s, dx))z]}
1
<¢ / f (U (6) — Uy ()| Np(ds. dx)}p
.7
=¢ E/ / |(U§”5'((x)—Us(x))|”u(dx)ds}p
0 X
— U™ —Ullyr — 0, asi — oo, (5.70)
and that
Tk mk Tk mk 2 %
E| sup / (Zy" — Zy)dBy| | < ciE </ |z, — Z,| ds>
t€[0,T] T At 0
<al|z™ = 27|, =0, asi — . (5.71)

In light of (5.50), (5.63), (5.70) and (5.71), there exists a subsequence {a} }, _ of {mf},
such that except on a P-null set /' lk

ik fk
_lim{ sup |Y, ' —Yt‘—i—/
I=>00rel0,T] 0

~k ~k
(S AN ARV BN (R NI
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Tk mk
+ sup / (z i _ 7, )dBS
110,71 | Jrent
sup / / T () — Us(x))ﬁp(ds, dx) } =
tE [0,T] (T AL, Tk ]

Since (Y’%i, Z"7i , Uﬁi) solves BSDEJ (S, fn~1/_() for any i € N, it holds except on a P-null set
N¥ that

itk K mko_mk gk Tk
Yr/\/\t = l{rk<T}YTk + 1= T}E-i—/ fﬁf(s’ Y, l,Zs‘,US')dS—/ 7" dB,
t

Tk N\ T N

~Jk ~
—f / U (x)Np(ds, dx), Ytel0,T], VieN.
(T AL, Tk

Letting i — oo, we obtain that over (% := (le)c N (./\/'zk)(

Tk Tk

£ (5. Y5, 25, Uy)ds —/ 7, dB,

T Nt

Yrk/\t = l{rk<T}Yrk + l{Tk=T}é +/

T Nt

—/ / Us(x)Np(ds, dx), t € [0, T]. (5.72)
(At ] J X

By (5.56), it holds for all w € {2 except on P-null set N7 that fOT th(co)dt < 00, and thus
Te(w) = T for some £ = €(w) € N. Then letting k — o0 in (5.72) shows that (1.1) holds over

(ﬂkeN .Qk) NN %, which together with Remark 2.1 shows that (¥, Z, U) is a solution of BSDEJ
¢. . o

Proof of Theorem 2.1 (Uniqueness). Suppose that (Y, Z,U), (Y',Z',U’) € SP are two
solutions of the BSDEJ (&, f). For any n € N, we set

(Y,Z,U) ifnisodd,

Y',Z',U") ifniseven.

By an analogy to (5.37), the inequality (3.4) holds for n, = 0, ¢(-) = ¢2(-) and 7" = 0.
Proposition 3.2 then shows that {(Y", Z", U")} _ is a Cauchy sequence in S”, which implies
that |Y — Y'llpr = |1Z — Z'lj2r = |IlU — U'llur = 0. Hence, one has that P{Y; =
Y/, Vt € [0,T]} = 1, that Z,(w) = Z/(w) for dt x dP-a.s. (f,w) € [0, T] x 2, and that
U(t,w,x) =U'(t,w,x) fordt x dP x v(dx)-as. (t,w,x) € [0, T] x 2 x X.

(Existence)

(1) Let us first assume that &€ € L°°(F7) and fOT |f(,0,0,0)|dt € LY (Fr). We set

Gn, fn) =, f) and (Y”,Z",U")::{

T ” T
R:=2 +exp{T +Cy+4Cp + 2/ (c1(t)) dt +4(V(X))T”/ (cz(t))zdt}
0 0

X JIE gy, + 5T + Cr/2+7C4/2, (5.73)

and let ¢ : R! — [0, 1] be a smooth function such that Y(x) =1 (resp. ¥ (x) =0)if |x| < R—1
(resp. |x| > R).
Let n € N. For any u € L}, we define m,(u) = (W) u € LY. An application of

Lemma A.5 with (E, || - ) = (L7, || - | .») shows that |7, (u1) — n’n(uz)HLf < 2llur — uallyr,
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Yuy,up € LY, which together with (A.3) and the 2 ® Z(R!) @ Z(R™*Y) ® B(L))/ZR!)-
measurability of f shows that

n

fl’l(tv w,y,Z, u) = m‘ﬁ()’)(f(ta w,y, T[l’l(z)v nn(”)) - f(tv w, 01 07 O))

+ f(t,®,0,0,0),

(t,w,y,z,u) €[0,T] x 2 x R x R™*? x LY defines a R'-valued, 2 ® Z(R!) ® #(R'*!) @
#(LY)/#(R!)-measurable mapping satisfying (H1), (H3)—(H5) with the same coefficients as
f except for cg’(-) = 2¢>2(+). By (H2), it holds for dt x d P-a.s. (t,w) € [0, T] x {2 that

n

|fn(t7w7 y9 07 O) - fl’l(t9 w707 Oa 0)' = v RI/’(Y)’f(t, w, y’ 07 O) - f(t’ , 07 0’ 0)}
t
n
< —nthw(y)qstR <n, VyeR,

so f, satisfies (HZ/) with kg = n.

Also, let (H2) and (H4)-(H6) hold for f except on a dt x d P-null set 91 and let (¢, w) € NC.
Given (y1, z1), (y2,22) € R xR™> andu € LY, if [y1] A |y2| = R, then we automatically have
falt, o, y1, 21, W)= fu(t, @, y2, 22, u) = Oand thus |y1 — y2|P "D (y1—2), fult, @, y1, 21, u)—
fu(t, 0, y2, 22, u)) = 0; on the other hand, let us assume without loss of generality that |y;| < R,
then (H2), (H4)-(H6) and (A.3) imply that

v = 0P {21 = y2), fult, @, y1, 21, ) — fult, @, 2, 22, 1))
n

_ = _ _ p—1 _
= ¢f(w)(‘”(y” V() vyt = »2lP"H2(n = y2), f(t, 0, y1, 0 (21), TTa ()

— f(t,®,0,0,0)) + YD)y =yl

_n
nv oR(w)
x(2(y1 = y2), f(t, 0, y1. 0 (21), T (W) — f(t, @, y2, Ta(22), T (W)))

< \ \/—(ZIR(a)) C¢|)’1 - )’2|1’(¢>;R(w) + ,Bl(w) + cl(t)|7'[n(zl)| + C2(t)||7-[n(u)||L5)

n
oo VO [HO 00 = 021”) + @l -l
+ A (@)1 = 2P (@) = ()]

< A0 0(ly1 — y21”) + [ 21(@) 4+ Cy Bi(@) +nCy (1 + c1(t) 4 c2(1) ] Iy1 — y2I”
+ A (@)ly1 — 21?7 Hzi = 22l

where Cy, denotes the Lipschitz coefficient of the smooth function . Hence, f, satisfies (H6)
with the same coefficients as f except for &) = &; + Cy f; +nCy (1+c1(t) +c2(t)),t € [0, T].
Clearly, [ ®!dt € L (Fr).

Since f, satisfies (H3)—(HS) with the same coefficients as f except for ¢j(-) = 2c2(-) and
since [ | fu(t,0,0,0)|dt = [ |f(1,0,0,0)|dt € L?(Fr), the constant R in (5.73) is exactly
that for f;, in (5.29). According to the proof of Proposition 3.3 (in particular, (5.53)), the BSDEJ
(&, fn) has a solution (Y, Z", U™) € D™ x Z*P x UP such that

IY"|pe < R — 2. (5.74)
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We also see from Proposition 3.1 that

Y™ e +1Z" 15, + 10" s

720

<c(1 + 1N ry + | / 1£@,0,0,00de|" m)) =C, (575)

where C is a constant depending on T, v(X), p, C and Cs.

Set w = p(l — %) > p(l — g) = landlet m, n € N with m > n. Since ¥ (x) =
for all [x] < R — 1 and since an analogy to (5.43) shows that Hrrm (U,’") — (U,”)”Lf <
20U = U7y + Vgwpnpom 107 [ < 2008 = UF | g + 0" =7 U [y, £ €10, T, we can
deduce from (5.74), (H2) and (H4)—(H6) that dt x d P-a.s.

A A AR DN A AR VOB AS AN )

= qu&tR|Ym_Ynip 1( (Y,'"—Yt"),f(t, Yzm’”m(Z,m),ﬂm(Utm))

— Y ZD, T UD)) + (g = —— )1 = |

mV (])R nv qbtR
x(D(Y" =Y, f(t. Y] 7a(Z)), ma(U])) — £(2,0,0,0)
<A@ (Y = Y'P) + &Y — Y|P

1Y = Y Al (2 = 7 (ZD)] + 20w @) = @] |
n — n n
+(1- W)(ZR =P (SR + B+ 1Ol (ZD] + 2Ol U] )
<a0(Y" = Y'NP) + &Y =Y

1Y = A2 - 27+ 20| Ur = U |+ T

where 77" = (1 — V¢R)(2R — P PR + B + 1|2 + aOIUM ) + 2R —

4HP=ley(nl- p HL‘J' Thus, (3.4) holds for 5, = 0, ¢(-) = 2c»(-) and the above process
T " By Holder’s inequality and (5.75),

T T
(2R—4)1’1’E/ ""dr < E/ (1 - )(¢, + Bodt
0 0 ¢[

P T o

t

T e,
+{E/O <1_n\/¢R) cz(t)dt} 1U" [lur

t

T CNE( T -z
+n1—w(/0 (c2(0))" dr )" (E/O uu;1||g€dt)
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T

q 1
SE/OT<1— VY. )(d), +ﬁ,)d¢+cp{ [(/O (“ﬁ)%%(z)dr)z]}"
+(’3\11'{E/0T<1 - - vn¢R)ch(t)dt}; +é\1_$n17w (/(;T(cz(t))‘l/dt)q]’ .,

t

Because

0 .
e 1v(¢ ) /" lasn — oo, YVt € [0,T], the dominated convergence

theorem shows that lim,_, o I, = 0. It follows that lim,_, « sup,,-, E fOT T""dt = 0. Since
supneN(nY"ng,, + 1215, + ||U"||{},,) < C by (5.75), we see from Proposition 3.2 that

{(Y", z", U")}nEN is a Cauchy sequence in S”. Let (Y, Z, U) be its limit. As in the proof of
Proposition 3.3, one can extract a subsequence {m;};cny from N such that (5.50)—(5.52) hold,
then we still have (5.53). Also, similar to (5.55) and (5.58), we can define two [0, oo)-valued,
F-predictable processes Z and U that satisfy (5.56) and (5.59) respectively.

Fix k € N and define the F-stopping time 7; as in (5.60). We can still derive (5.61) from
the dominated convergence theorem and (5.50). Hence, there exists a subsequence {m{‘}l ey of
{m;}ien such that (5.62) holds dt x d P-a.s. For any (¢, w) € [0, T] x {2 except on a dt x d P-null
set ‘ﬁk, we may assume that (H2), (H4), (HS), (5.50), (5.51), (5.62) hold, that |Y;(w)] < R —2,

|Y ’(a))| <R —2,VieN(by(574),(5.53)), and that U; (w) € LY, '(a)) eLP VieN.
k
Let (f,w) € ‘J’tz N [0, 7¢]. Since lim;_, 5o 1 W = 1 and since w(Y, i (a))) =

k k k
lim f, (t, w, Y, (@), Z, (), U, (60))

i—00

= lim f(t 0, Y™ (@), 7 k(z (a))) ( [”f(a)))). (5.76)

i—00

Using (HS), (5.51) and an analogy to the inequality (e3) in Part 5 of Proposition 3.3’s proof, we
obtain

‘ f(t, 0, " (@), Tt (zﬁ"’k (a))), 7,0 (U,’”f (a))))
- f(t, 0, Y" (@), Tt (zﬁ"f (a))), U, (w))‘
< 20 [ (0" @) -

< a0 (2" @ -

o+ 7 (@) = @) )
— 0, asi — oo, (5.77)

Also, similar to the mequahty (e3) in Part 5 of Propoqluon 3.3’s proof, one can deduce from (A.3)
and (5.65) that )nml_{ (zt (w)) _ Z,(a))‘ < ‘Z, () — Z,(a))‘ n ‘nmz; (Zi(w)) — Z,(a))‘ -0
as i — 0o, which together with (5.50) and the continuity of the mapping f (t, w, - U (a))),
shows that

k

lim £ (1,0, %" @), 7,6 (2" (a))) Ui@) = (1.0, Yi(), Zi(@), Ui@).  (578)

i—00
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Combining (5.76)—(5.78) leads to that

b -
m ‘fmf (t,a), Y (@), 2" (), U, ’(a))) — £ (t. 0. Yi(®), Zi(w), Ut(a)))‘ — 0. (5.79)

li
i—00

k
Giveni € N, since (thi (w)) = 1, one can deduce from (H2), (H4), (H5) and an analogy to
(5.68) that

mk m/.{ m/.{
[t (1. 0.0 @), 2] @), U] @) = £ (1 0, Vi), Zi(@), Un(@))|

_ ””—k( 7 (100" @) 7,0 (20 @) 7,0 (0" @)

mk v R ()
— f(t, ,0,0, 0)) + f(t,»0,0,0,0) — f(t, w, Y (), Z;(w), U,(a)))‘
mk mk mk
< ‘f(t,a), V" (@), 7, (z, i (a))),nmik (Ut ’(w))) — f(t,®,0,0, 0))
+|f(t. 0, Yi(w), Zi(@), Ui(@)) — f(t, ®,0,0,0)]

< 268 @) + 2@ + e 0|2 @) +1Z:(@)1)

e[ (U @)], + 101

<208 (w) + 28 (w) + c1(0)(Z1(@) + | Zi(@)]) + c2(0) (Us (w) + IIUt(w)IILg)
= H, ().

Analogous to (5.69), we can deduce from Holder’s inequality, (5.56) and (5.59) that

T T . T NG
E/ H,dtSZE/ ¢,Rdt+2Cﬁ+C2{<E|:(/ z}dr) D +||Z||Zz.p}
0 0 0
1 T 1
+Cq{(E/ L{,”dt>” + ||U||Up} < 0.
0

The dominated convergence theorem and (5.79) yield that

Tk
lim E/
i—00 0

Then following similar arguments to Part 5 in the proof of Proposition 3.3, one can show that
(Y, Z, U) is a solution of BSDEJ (¢, f).
(2) Next, let us consider the general case that £ € L”(Fr) and fOT |f(,0,0,0)|dt € Li(fT).
For any n € N, we set &, := 7,,(§) and define
fatw.y.z,u) = f(t,o,y,z2.u) — f(t,0,0,0,0) + 7, (f (1, ®,0,0,0)),
(t,w,y,z,u) € [0, T] x 2 x R x RI*4 x LP.

Clearly, f, is an Rl-valued, 2 ® Z®R!) ® B(R*M) @ PB(LY)/B[R!)-measurable
mapping satisfying (H1)-(H6) with the same coefficients as f. As fOT |]7y,(t,0, 0,0)|dt =
fOT |7rn(f(t,0, 0, O))|dt < nT, Part 1 shows that the BSDEJ (En,fn) has a solution
(Y "z u ") e D*® x Z>P x UP (For easy reference, we still denote this solution by

k
mi

k k
S (1 ¥ 200 = 1Y Zi, Up e = 0.
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(Y", Z",U"). Note its difference from the triple considered in Part 1). Also, we know from
Proposition 3.1 that

T
1Y 5y + 127152, + 10" 1, < CE[I el + ([ Imra.00, 0>>|dr)"}

T » "
5CE[1+|E|P+ (f |£(t,0,0, 0)|dt) } =C, (5.80)

where C is a constant depending on 7', v(X), p, C and Cg.
Givenm, n € Nwithm > n, an analogy to (5.37) shows that (3.4) holds for f, = fn, Ny =0,
c(-) = c2(-) and

= |y = ¥ (£, 0,0,0)) — m, (£(2,0,0,0))],
By Holder’s inequality and (5.80),

Vtel0,T]

T
E/ "de < E|: sup |¥" —Y!'|"” 1/ |f(t,0,0,0)—nn(f(t,0,0,0))|dti|
0

t€[0,T]

< |y - Y"Hé,,{E[(/O | £(2,0,0,0) — 7, (£ (. 0,0, 0))|dr)p“”
P ~1 T p % ~
§2qC’1{E[(f ]f(z,o,o,O)—nn(f(r,o,o,O))\dz) ]} = 1I.
0

As E [( fOT | f(,0,0, O)Idt)’7 ] < 00, the dominated convergence theorem implies that
lim, 00 I, = 0. It follows that lim,,_, « sup,,_, EfOT 7""dr = 0. Since supneN<|| Yo, +

|| z" ||22,p + ||U” ||6p> < Cbe (5.80), we see from Proposition 3.2 that {(Y”, z", U")}nEN isa
Cauchy sequence in S”. Let (Y, Z, U) be its limit. As in the proof of Proposition 3.3, one can

extract a subsequence {m;};cn from N such that (5.50)—(5.52) hold.

i
For any i € N, we define an Fr-measurable random variable ; := Y, + Y (Y™ — Y™i-1)_
i=1
with Y0 := Y. Minkowski’s inequality and (5.52) show that

||nz||Lv(fT)_||Y||DP+ZHY”” Y|y < V(Y g + Y™ =Y, (58D
j=1

o0
Since {1;},_y is an increasing sequence, y := lim 1t y; = Vi + > (Y™ — Y™i-1)_ defines
1—> 00 ]=1
a [0, oo]-valued, Fr-measurable random variable. Then the monotone convergence theorem and
(5.81) imply that

”U”L"(fT) = hm 1 o ”L”(FT) L+ [ Y], + Y™ =Yg, < oo (5.82)

Moreover, as in (5 .55) and (5.58), we can define two [0, oo)-valued, F-predictable processes Z
and U that satisfy (5.56) and (5.59) respectively.

Fix k € N and define the F-stopping time t as in (5.60). One can again derive (5.61) from
the dominated convergence theorem and (5.50). Hence, there exists a subsequence {m{‘ }l.eN of
{m;}ien such that (5.62) holds dt x d P-a.s. For any (¢, w) € [0, T] x {2except on a dt x d P-null
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set {thk, we may assume that (H2), (H4), (HS), (5.50), (5.51), (5.62) hold and that U, (w) € Lb,
k
U" (w) e LY, VieN,
Let us also fix £ € N and define Ay := {yp v Y, < £} € Fr.
Let (t, w) € ‘R,iﬂ[[O, 71 ]. The continuity of the mapping f(t, w, -, -, U (a))), (5.50) and (5.65)
yield that
~ mk mk mk mk
lim [ (t,a), Y (), 2" (), U,(a))) = lim f(t,a), Y (), 2" (w), U,(w))
1—> 00 i 1—> 00

= f(t, 0, Yi(@), Zi (@), Ui (@)). (5.83)
By (HY), it holds for any i € N that

T ). 20" @, U @) = T (1.0, 7" @), 2" @, U@))|

- )f(t, 0, Y™ (@), 2" (@), U™ (a))) - f(t, 0, V" (@), Z" (). Ut(‘”))‘

< 00" @ - Ui@)

P’
Ly

which together with (5.51) and (5.83) shows that

~ mk mk mk
lim ‘fml@ (t,a), Y (@), 2" (), U, ’(w)) — f(t. 0, V(). Zi(w), U,(w))‘ — 0. (5.84)

1—> 00

k
Given i € N, there exists an j = j(k,i) € N such that mf‘ = mj. Since Y:l" (w) <

Yo(@) + Y (Y™ = ¥™i1) (@) = 0j(@) < n(w), one can deduce from (H2), (H4), (H5)
and an analogy to (5.68) that

~ mk I’I‘l]-( I’I‘L]-(
P (10 ¥ @, 2" @), U] @) = £ (1,0, Yi(@), Z:(@), Uy@)|

14,

mk mk mk
<|ft,®,0,0,0) — 7, (f(t, ©,0,0,0)| + 14, f(t,a), Y, (w), Z, " (w), U, I(a)))

— F(Yi(@), Zi(@), Uy ()|
mk mk mk
< |f(t,®,0,0,0)] +1A€{‘f(t,a), Y (@), 2" (), U, ’(a)))
— f(t,®,0,0, 0)‘ + £t Yi(0), Zi(0), Ur(w)) — f(t, 0,0,0, 0)|}

ml.{
< |£(,0,0.0,0) +26{ (@) + 28:(@) + 1 O(|Z)" @) + |Z(@)])

ran(|u @], + 1vwiy)
< [f(t,@,0,0,0)[ + 26/ (@) + 281 () + c1()(Z/(@) + | Z; (@)])
+ () (U (@) + Ui @)l ) = Hf ().
Similar to (5.69), we can deduce from Holder’s inequality, (5.56) and (5.59) that

T T
E/ H'dr < E/ (1£(,0,0,0)] +2¢f)dt +2Cg
0 0
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e T/OTz,zdiy’])i izt
+65{(E/0 L{,”dt); + ||U||Up} <0

Then the dominated convergence theorem and (5.84) yield that

Tk
lim E f 14,
1—>00 0
In light of (5.50), (5.85), (5.70) and (5.71), there exists a subsequence {m}"*}, _ of {m¥}.
such that except on a P-null set N, lk .

T 20 0 = v, 22,09

dt = 0. (5.85)

k.t

lim { sup |¥," — Y,‘
i—00 | 1€[0,T]
™|~ mlf'e m].(’(Z m].c’z
+1A[/ fm1_<,2<t, Yy 2t Ut )—f(t, Y., Z:, Uy dt
0 1
Tk k.t
+ sup / (Z i —Zs)st
tel0,T] T At
sup / / UA’ (x) Us(x))ﬁp(ds,dx) } =
te[0,T] (T AL, TR ]

Since (Y’”i' L zm um ) solves BSDEJ (Smg,e, ﬁg,z) for any i € N, it holds except on a
P-null set N, k.8 that

k@ k.l
Yfkl/\f = l{fk<T}Yf’Z' + l{fk=T}7Tmi_<l(é)

Tk o mlf.[ m/.\',l m/f,l Tk ’nI;,e
+/ ]’m@,z(s,Ys’ AN )ds—/ Z" 4B,
T ! T

K N\t kNt

/ / i (x)Np(ds dx), vt el0,T], VieNlN. (5.86)
(T AL, Tk ]

Set A% = (V)" N (M) 1 A¢, which includes the set (Upern V) 1 (Ve MF) N 4.
For any w € Xlz, letting i — o0 in (5.86), we obtain (5.72) over le As ¢ varies over N, (5.72)
further holds over (2 = (UZGN./\/lk’e)c N (UZGNNZIC"Z)c N (UZGN Ag). By (5.82)and Y € D7,
one has P(.Qk) = P(UgeN Ag) =1.

We see from (5.56) that for all @ € 2 except on P-null set Nz, fOT Z,z (w)dt < oo and thus
T¢(w) = T for some £ = £(w) € N. Then letting k — o0 in (5.72) shows that (1.1) holds over
(ﬁkeN Qk) N Ng, which together with Remark 2.1 shows that (Y, Z, U) is a solution of BSDEJ
¢ N O

Proof of Corollary 2.1. Clearly, f(t,w,y,z,u) = 0, V(t,w,y,z,u) € [0,T] x 2 x R x
R? x L% satisfies (H1)—(H6). In light of Theorem 2.1, BSDEJ(&, 0) admits a unique solution
(Y,Z,U) e SP. Since (1.4) and Lemma 1.1 show that fé Z.dBg + f(o’t] [y Us(x)Np(ds, dx),
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t € [0,T] is a uniformly integrable martingale, it holds for any + € [0, T] that ¥, =
E[§ - ftT ZsdBs = [, 11 [ Us(x) Np(ds, dx)|F;] = E[§|F], P-as. In particular, Yo = E[£].
Then for any ¢ € [0, T],

t
E[E1F] = Y, = Yo + / Z,dBy + f / U, (1) Ny (ds, d)
0 0,11JXx

t
= E[S]—l—/ stBs—i-/ / Us(x)Ny(ds,dx), P-as.,
0 0,11 JX

which together with the right continuity of processes E[&|F;], f(; Z.d By and f(o, . [ Us (x)ﬁp
(ds,dx),t € [0, T]leads to (2.1).
Next, let (Z', U') € Z*P x UP be another pair satisfying (2.1), so one has that P-a.s.

t ~
/ (Zs — Z.)dBy +/ / (Us(x) — Uj(x))Np(ds,dx) =0, t€l0,T].
0 0,11 JX

Clearly, the quadratic variation of the above process is fé |Zs — Z;lzds + f 0.1] f ¥ |US (x) —

Us’(x)|2Np(ds, dx) =0,t € [0, T], which implies that Z;(w) = Z;(w) for dt x d P-a.s. (t,®) €
[0,T] x 2, and U(¢, w,x) = U'(t, w, x) for dt x dP x v(dx)-a.s. (t,w,x) € [0,T] x 2 x
X. O

Appendix

Lemma A.1. Let {a;}ien C [0, 00). For any p € (0, 00) and n € N withn > 2, we have

n n P n
1 AnP! a? < a|] <(Qvnar! a’. (A.1)
( ) 2_a; ( ) 2_a;

i=1 i=1
This result is routine, see e.g. our ArXiv version [53] for a proof.

Lemma A.2. For any b, ¢ € [0, 00), we have

et < |

_ P ;

b —cl”, y l.fp € (0, 11, (A2)
pb VAP~ b —cl, if pe(,o0).
Proof. It is trivial when b = c. Since b and ¢ take the symmetric roles in (A.2), we only need to
assume b < ¢ without loss of generality.
e When p € (0, 1], applying Lemma A.1 with a; = b and ap = ¢ — b yields that ¢” = (a1 +
a)P < al +al = bP 4+ (c—b)P, which implies that [b” —cP| = c? —b? < (c—b)P = |b—c|”;
e When p € (1, 00), one can deduce that c” —b? = p [ 1P~ 1dt < p [ P~ dt = pcP~! (c—b),
which leads to that [b? — ¢?| =cP —b? < pcP~Hc—b)=p V)P b—cl. O

Lemma A.3. (Bihari’s Inequality) Let 6 : [0, 00) — [0,00) and ¢, x : [0, T] — [0, o0) be
three functions such that

(i) either 6 = 0 or 6(x) > 0 forany x > 0;

(ii) 6 is increasing and satisfies fol " ﬁdx = 00,

(iii) ¢ is integrable and x is bounded.

If x(¥) < flT 49()( (s))g“(s)dsfor anyt € [0, T], then xy =0.
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See e.g. our ArXiv version [53] for a proof of this lemma. For the next three lemmas, we
consider a generic vector space E with norm | - ||.

Lemma A.4. Let E be a vector space with inner product (-, -) and norm || - ||. For any x,y € K,
we have

|77 () =7 || < llx = ll,  Vr € (0, 00). (A3)
Consequently,

Ix =yl = (Xl Ayl [ 26G) = 20 |- (A4)

Proof. Without loss of generality, we assume that || x|| < |y|| in the whole proof.
To see (A.3), let us discuss by three cases:
(1) When r > ||y||: Since 7, (x) = x and 7, (y) = y, one simply has ||z, (x) =7, (y) | = llx—|;
(2) When ||x|| < r < ||yl|: Let us set ¢ := (x, Z(y)) and y := cZ(y). Since (x — 3, Z(y)) = 0,
it holds for any @ € R that
2 ~ 2 12 2
[t~ a2 = |x -5 - @ - 020 = |x -5 + |@ - 020

= ||x —’)7”2 + (@ — )%

Hence, it follows that ||rrr(x) — 7r,(y)||2 = ||x — r.@(y)”2 = ”x - ’y\”z +(r —c)? <
(Iyll—c)* =
by the Schwarz inequality.
(3) When r < ||x||: We know from (2) that
gllx =yl = [ ) =g || = |2 = X120 || = x| 2() — 2
>r|2x) - 20| = |7 @) =5

If x = 0, (A4) holds trivially. Otherwise, since ||x|| < ||y, applying (A.3) with r = ||x||

givesrise to (A.4). O

?, where we used the fact that ¢ < l(x, 2M)] < lIxll <7 < Iyl

Lemma A.5. Let E be a vector space with norm || - || only. For any x, y € E, we have

|7 ) = ()| < 2llx = yll,  Vr€(0,00).

Proof. Let x,y € E. Since [a Vb —a Vv ¢| < |b — c| holds for any a, b, c € R, the triangle
inequality implies that

.
Tr(X) — 1T, = _
7 () — 7,9 | Hrvnxu rV”y”yH V” =l
- [
- y
VTR, ||y||
Fllyl
< llx—yl+ r v lxl =7 vyl

(v Alx DV Ay D
< llx =yl + [lIxl = Iyl < 2lx =yl O

Lemma A.6. Let E be a vector space with inner product (-, -) and norm || - ||. For any p € (0, 1]
and x,y € E, we have [|Ix | 2(x) = |y I” 20| < (A +2P)lx = y|I”.
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Proof. The case “p = 17 s trivial since ||[x[|2(x) — [y[2(»)| = llx — y|.. For p € (0, 1),
we assume without loss of generality that ||x|| < ||y| and discuss by three cases:

(1) When x = 0: |[[ly I” 2(») | = lIylI”;

(2) When 0 < [lx|| < [lx = yll: [Ix I” 2) =y 1”7 20| < [[Ix 17 2@) |+ |[Ily I”? 20|
Ixl1? + Iyl7 < llxl1” + (el + llx = y1)” < @A+ 2P))x — y]I1P;

(3) When ||x|| > |lx — yll: As |lx]| < |lyll, (A.4) and Lemma A.2 show that || lx|1? 2(x) —
Iy I 2| < IxI1P|2(x) — 2| + |1x1P = IyIP] < Ix1P7 e = vl + [l = liyll]”
2x —ylI?. O

A
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