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Abstract

We study a doubly reflected backward stochastic differential equation (BSDE) with integrable param-
eters and the related Dynkin game. When the lower obstacle L and the upper obstacle U of the equation
are completely separated, we construct a unique solution of the doubly reflected BSDE by pasting local
solutions, and show that the Y-component of the unique solution represents the value process of the cor-
responding Dynkin game under g-evaluation, a nonlinear expectation induced by BSDEs with the same
generator g as the doubly reflected BSDE concerned. In particular, the first time T* when process Y meets
L and the first time y* when process ¥ meets U form a saddle point of the Dynkin game.
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1. Introduction

In this paper, we study a doubly reflected backward stochastic differential equation with
generator g, integrable terminal data £ and two integrable obstacles L, U

T T
Y,=$+/ g(saYSaZS)ds+KT_Kt_JT+JI_/ ZsdBs, t€l0,T],
t t
Li<Y,=U, 1t€[0,T] (1.1)

T T
/ Yy — L)dK, = / (U, — Yy)dJ;, =0 (flat-off conditions).
0 0

A solution of such an equation consists of four adapted processes: a continuous process Y,
a locally square-integrable process Z and two continuous increasing processes K and J.
Klimsiak [38] studied the same problem but assumed an extended Mokobodzki’s condition: there
exists a semi-martingale between L and U, which is practically difficult to verify. Instead, we
only require the two obstacles L, U to be completely separable, i.e. L; < U;, YVt € [0, T].

Backward stochastic differential equations (BSDEs) were introduced in linear case by
Bismut [9] as the adjoint equations for the stochastic Pontryagin maximum principle in control
theory. Later, Pardoux and Peng [42] extended them to a fully nonlinear version

T T
YI = s +/ 8(57 YS7 ZS)dS - f ZSdBS9 re [07 T]’ (12)
t t

and showed that the BSDE admits a unique solution (Y, Z) when generator g is Lipschitz
continuous in (y, z) and terminal datum £ is square-integrable. Since then, the theory of BSDEs
has rapidly grown and been applied in many areas such as mathematical finance, theoretical
economics, stochastic control, stochastic differential games, partial differential equations (see
e.g. the references in [21] or in [15]).

As a variation of BSDEs, a BSDE with one reflecting obstacle (say lower obstacle L)

T T
Li<Y=§ +/ 8(s, Yy, Zs)ds + Kr — K; —/ ZsdBs, 1€l0,T],
T t 4 (1.3)
/ Yy — L))dK; =0 (flat-off condition)
0

was first studied by El Karoui et al. [20]. If g is Lipschitz continuous in (y, z) and if both
terminal datum & and lower obstacle L are square-integrable, these authors showed that the
reflected BSDE has a unique solution (Y, Z, K) and that the Y -component of the unique solution
is the Snell envelope of the reward process L in the related optimal stopping problem under g-
evaluation (for a more general statement, see e.g. Appendix A of [13], Section 7 of [7]). As a
nonlinear expectation induced by BSDEs with the same generator g as the reflected BSDE, the
g-evaluation possesses many (martingale) properties of the classic linear expectation and thus
become a very useful tool in nonlinear analysis. In particular, the g-evaluation is closely related
to risk measures in mathematical finance.

Based on [20], Cvitani¢ and Karatzas [14] extended the research of BSDEs to those with
two reflecting obstacles. They showed that a doubly reflected BSDE with Lipschitz generator,
square-integrable terminal datum and square-integrable obstacles admits a unique solution
under Mokobodzki’s condition (there exists a quasimartingale between two obstacles) or certain
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regularity condition on one of the obstacles (see assumption (H) of [28] for a simplified form).
Cvitani¢ and Karatzas also found that the Y-component of the unique solution is exactly the
value process of the related Dynkin game, a zero-sum stochastic differential game of optimal
stopping, under g-evaluation (for a more general statement, see e.g. [17]). From a perspective of
mathematical finance, this discovery is significant for the evaluation of American game options or
Israeli options, see e.g. Hamadeéne [24]. Later, Hamadene et al. [29,27,24] added controls into a
doubly reflected BSDE and the drift coefficient of the associated state process to analyze a mixed
zero-sum controller and stopper game as well as the corresponding saddle point problem. For the
literature and the recent advances of Dynkin games, see e.g. [36,48,32,4]. As to the history and
latest development of controller and stopper games, see e.g. [35,37,5,6,3,2,18,41,8].

Among other development in doubly reflected BSDEs, Lepeltier and San Martin [39] obtained
the existence result when g is only continuous and has linear growth in variables (y, z); Xu [49]
got the wellposedness result when the Lipschitz continuity of g in y-variable is relaxed to a
monotonicity condition; and Bahlali et al. [1], Essaky et al. [23,22] analyzed the existence of a
maximal solution when g has quadratic growth in z-variable.

All the above articles on doubly reflected BSDEs, except [24], assumed either (extended)
Mokobodzki’s condition or the aforementioned regularity condition. According to [24]’s
observation that the existence of local solutions of a doubly reflected BSDE relies on neither of
these two conditions, Hamadene and Hassani [25] pasted local solutions to form a unique solution
of a doubly reflected BSDE with two distinct obstacles. Since then, the complete separation of
obstacles has been postulated by most of the subsequent papers including [12,19,26,31] as well
as the present one.

During the evolution of the BSDE theory, some efforts were made to weaken the square
integrability on terminal data so as to match up with the fact that linear BSDEs are well-posed
for integrable terminal data: El Karoui et al. [21] demonstrated that for any p-integrable terminal
datum with p € (1, 0o0), a BSDE with Lipschitz generator admits a unique p-integrable solution.
This wellposedness result was later upgraded by Briand et al. [10,11] who reduced the Lipschitz
condition of generator g on y-variable to a monotonicity condition on y. After Hamadeéne and
Popier [30] extended [11]’s results for reflected BSDEs, Hamadene et al. [19] make a further
generalization for doubly reflected BSDEs with two completely separate obstacles.

We dedicate this paper to the solvability of the doubly reflected BSDE (1.1) with integrable
parameters and will discuss the related Dynkin game. Besides the monotonicity condition on
y-variable and the Lipschitz condition on z-variable, if the generator g additionally has a growth
condition on z-variable of order o € (0, 1) (see (H7) of [11] or (HS) in the current paper), then
the BSDE with integrable terminal datum admits a unique solution (Y, Z) such that both ¥ and
Z are p-integrable processes for any p € (0, 1) and that Y is of class (D). So the corresponding
g-evaluation is well-defined for each integrable random variable. Under the same hypotheses on
generator g as Section 6 of [11], we will demonstrate a similar wellposedness result for doubly
reflected BSDEs with integrable terminal data and two distinct integrable obstacles. Though we
follow the approach of [25,19] on pasting local solutions, the estimations used for L”-solutions,
p > 1 are no longer valid in the p = 1 or class (D) case. We managed to derive some novel
estimation and approximation scheme.

To construct a unique solution of a reflected BSDE with integrable terminal datum & and
integrable lower obstacle L, we use the penalization method introduced in [20] together with
a localization technique. This is because the approximating solutions are only p-integrable
(Yp € (0,1)): Given n € N, we compensate the generator g by n times the distance that y-
variable is below L;, i.e. g,(t,y,z) = g(,y,z) +n(y — L;)”. The BSDE with generator g,
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and terminal datum &

T T T
Y,”=§+/ g (s. Y:,Z;')dern/ (YS”—LS)_ds—/ Z'dBs;, t€l0,T], (1.4)
t t t

has a unique p-integrable (Vp € (0, 1)) solution (Y, Z") such that Y" is of class (D).
The monotonicity of {g,},en implies that of {Y"},cn, thanks to a general comparison result
(Proposition 3.2). Then we can find a stopping time 7, such that |Y"| is uniformly bounded by
£ over the stochastic interval [0, t¢]. By a local estimation (Lemma A.2), the local L2-norms of
Z"’s are uniformly bounded by a multiple of £2. So up to a subsequence, Z" weakly converges
to some Z*. Consequently, we can deduce that K/ := n /01 (Y — L) ds converges to Kf :=
Yo—Y — fot g(s, Yy, ZHds + fot Ztd By uniformly over [0, ]. Letting n — oo in (1.4) shows
that (Y, Z¢, k%) is a local solution of (1.3) over [[0, t¢]). Pasting up (7, Zt, K’s over stochastic
intervals J]ty—1, T¢]]’s we obtain a global p-integrable (V p € (0, 1)) solution (Y, Z, K) of (1.3).
The uniqueness of such a solution follows from a comparison result (Proposition 5.3) of reflected
BSDEs, which is a corollary of Proposition 3.2.

Applying Proposition 3.2 again shows that with respect to the corresponding g-evaluation,
the Y-component of the unique solution of (1.3) is a supermartingale and even a martingale
up to the first time when process ¥ meets the lower obstacle L. Consequently, Y is the Snell
envelope of the reward process L in the related optimal stopping problem in which the player
is trying to select a best exit time from the game so as to maximize her expected reward under
g-expectation.

Based on the wellposedness result for reflected BSDEs with integrable parameters, we next
take [25]’s approach of pasting local solutions to construct a global solution of (1.1): Let
(Y", Z", K"™) be the unique p-integrable (V p € (0, 1)) solution of a reflected BSDE with
the penalized generator g, and the upper obstacle U. We first show that the increasing limit
Y of Y"’s, together with some processes (Z¢, KY), solves (1.3) over some stochastic intervals
[ve, vé]] for any £ € N. A reverse conclusion can be obtained for the limit ¥ of a decreasing
scheme that involves reflected BSDEs with generator n (t,y,2) = g(t,y,2) —n(y — Un™*
and the lower obstacle L: For some processes (Z4, JY), (Y, Z%, JY solves a reflected BSDE
with upper obstacle U over some stochastic interval [[v;, ve41] for any £ € N. Then pasting
(v, Z¢, K%, 0) and (Y, Z¢, 0, J*) alternatively over [[vy, v, ]l and [[v}, ve41 1 yields a global p-
integrable (V p € (0, 1)) solution of the doubly reflected BSDE (1.1).

Leveraging Proposition 3.2 once again shows that with respect to the corresponding g-
evaluation, the Y-component of the solution of (1.1) just constructed is a submartingale up to the
first time t* when Y meets the lower obstacle L, and is a supermartingale up to time y* when
Y meets the upper obstacle U. Consequently, Y is the value process of the related Dynkin game
under g-evaluation in which L (resp. U) is the amount process a player will receive from her
opponent when she stops the game earlier (resp. not earlier) than her opponent. The uniqueness
result of (1.1) then easily follows. Moreover, the pair (¥, y*) forms a saddle point of such a
Dynkin game.

Since dealing mostly with p-integrable (V p € (0, 1)) solutions, we cannot apply Doob’s
martingale inequality and many well-known estimates in BSDE theory without using localization
first, which increases the technical difficulty. Also, to overcome technical subtleties we encounter
when proving the p-integrability (V p € (0, 1)) of the limit Y in the penalization scheme, we
appropriately exploit Tanaka—Ifo’s formula, Hypothesis (H5) and other tricks, see in particular
the proof of (6.14).
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The rest of the paper is organized as follows: After listing necessary notations, we give
the definition of doubly reflected BSDEs and make some assumptions on their generators g
in Section 1. We first present in Section 2 the main result of our paper, a wellposedness result of
doubly reflected BSDEs with integrable parameters as well as the g-martingale characterization
of the Y-component of the unique solution, the latter of which implies that Y is a value process of
the related Dynkin games under g-evaluation. Section 3 recalls a wellposedness result of BSDEs
with integrable terminal data and gives a general comparison result for BSDEs over stochastic
intervals, which plays an important role in our analysis. The unique solutions of BSDEs with
generator g and integrable terminal data induce a widely-defined nonlinear expectation, called
“g-evaluation/expectation”, whose properties will be discussed in Section 4. In Section 5, to
construct a unique solution for a reflected BSDE with integrable parameters as a preparation
for our main result, we use the penalization method which involves two auxiliary monotonicity
results. And we show that the Y-component of the unique solution of the reflected BSDE is
exactly the Snell envelope in the related optimal stopping problem under g-evaluation. Section 6
contains proofs of our results while the demonstration of some technical claims are deferred to
the Appendix.

1.1. Notation and definitions

Throughout this paper, we fix a time horizon 7 € (0, oo), and let B be a d-dimensional
standard Brownian Motion defined on a complete probability space ({2, F, P). The augmented
filtration generated by B

F={F =0 (c(Bs;s €[0,t])U JV)}tE[O,T]

satisfies the usual hypothesis, where 4" collects all P-null sets in F.

Let 7 be the set of all F-stopping times t taking values in [0, T']. For any v, t € 7 with
v<rt,wesetT,; :={y € T :v <y < t}. An increasing sequence {7,},en in 7 is called
“stationary” if for P-a.s. w € 2, T = 1,(w) for some n = n(w) € N. As usual, we say that
a %’([O, T]) ® F-measurable process X is of class (D), with respect to (7, P), if {X;};e7 is
P-uniformly integrable. Moreover, we let & denote the F-progressively measurable o -field on
[0, T] x {2 and will use the convention inf @ := oo.

Let p € (0, 00). It holds for any finite subset {a1, ..., a,} of (0, co) that

n n p n
(1/\n1’_1>2aip < (Za;’) < <1Vnp_1)2aip. (1.5)
i=1 i=1 i=1
And for any p’ € (p, 00), one has

xP <1+4+xP, Vxe(0,00). (1.6)
The following spaces will be frequently used in the sequel.
(1) For any sub-o-field G of F, let Lo(g) be the space of all real-valued, G-measurable random
I
variables & and set L (G) = |& € L) : 1 1110(@) = {EN&11)""7 < oo].

(2) We need the following subspaces of S, which denotes all real-valued, F-adapted continuous
processes:

1
o SP = {X eS%: I Xlls» = {E [(X*)p]}MP < oo},where X = sup,po.7; | Xsl:

oSﬁ::{XGSO:X+:XV0€Sp}ande::{XeSO:X‘:(—X)\/OESP};
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o V0= {X €S°: X is of finite variation};
o K%:={X €S%: X is an increasing process with X = 0} C V°;
o KP:={X eK’: X7 e LP(Fp)}.
(3) Let [2.0 (resp. H>0) denote the space of all R¢-valued, F-progressively measurable (resp.
F-predictable) processes X with fOT |X,2dt < oo, P-a.s. and set HZP = {X e H?O .

In(1/p)
X g = [E [(foT |Xz|2dt)”/2]} 4

In the above notations, if p > 1, || - ||z isanorm on =7 = LP(G), SP, H%?. And if p € (0, 1),
(X, X') = |IX — X'|| z» defines a distance on =7, under which =7 is a complete metric space.

Let us recall the notions of backward stochastic differential equations (BSDEs), reflected
BSDEs and doubly reflected BSDEs: A (basic) parameter pair (§, g) consists of a real-valued,
Fr-measurable random variable & and a function g : [0, T] x 2 x R x RY — R that is
P Q BR) @ B(R?Y)/ZB(R)-measurable.

<o),

Definition 1.1. Given a parameter pair (£, g), let L, U € S° such that PL, < U, Vit €
[0,T]} = land LT < & < Ur, P-ass. We say that (1) (Y, Z) € SO x 120 is a solution of
a BSDE with terminal data £ and generator g (BSDE (&, g) for short) if (1.2) holds P-a.s. (2)
A triplet (Y, Z,K) € SO x 20 x KO is a solution of a reflected BSDE with terminal data
&, generator g and (lower) obstacle L (RBSDE (&, g, L) for short) if (1.3) holds P-a.s. (3) A
quadruplet (Y, Z, K, J) € S x H20 x KO x KO is a solution of a doubly reflected BSDE with
terminal data &, generator g, lower obstacle L and upper obstacle U (DRBSDE (&, g, L, U) for
short) if (1.1) holds P-a.s.

Remark 1.1. Given a parameter pair (€, g),

g_(t,w,y,2) =—g(t,w,—y,—2), Yt w y,2) €[0,T] x 2 xR xR’ (1.7

clearly defines a & @ B(R) ® %’(Rd) /#(R)-measurable function. For any L € SO with
Ly <& Pas., (Y, Z K) €S x H20 x KO solves RBSDE(&, g, L) if and only if (Y, Z, J) =
Y, -Z,K) ¢ SY x H2 0 x KO is a solution of the following reflected BSDE with terminal data
E = —&, generator g_ and upper obstacle U = —L:

T T
U =Y =§ +/ g-(s, Yy, Zo)ds — Jr + J; —/ ZsdBs, te€l0,T],
. t t (1.8)
/ (U; — Y;)dJ, =0 (flat-off condition).
0

Letg:[0,T1x 2 xRxR?! - Rbea Z Q@ ABR) Q BRY)/A(R)-measurable function.
To study doubly reflected BSDEs with generator g and integrable parameters (¢, L, U), we will
make the following assumptions on function g:

Standing assumptions on g.

Letk > 0,12 € R, ¢ € (0, 1) and let {A;};c[0,7] be a non-negative integrable process (i.e. & €
LY[0, T] x 2, B(0,T]) ® F,dt ® P)). It holds dr ® dP-a.s. that

(HD) |g(t,w,y,2) —g(t,w,y,2) <klz—2|, Vy eR, Vz,7 € R?;

(H2) sgn(y — y') - (8(t, @, y,2) —g(t, 0.y, 2)) <Aly —y'|, ¥y,y € R, Vz € RY;

(H3) y — g(t, w, y, z) is continuous, V z € R,

(H4) |g(t, 0, y,0)| < hy(w) + K|y, Vy € Ry

H5) |g(t, @, y,2) — g(t, 0, y,0)| < k(hi(w) + [y + [zD%, V(y,2) € R x RY.
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From now on, for any p € [0, co) we let C), be a generic constant depending on p, «, AT, T
and E fOT h,dt (in particular, Co will denote a generic constant depending on «, AT, T and

E fOT h:dt), whose form may vary from line to line. For convenience, we will call a function
g:[0,T] x 2 xR x RY — R a“generator” if it is Z ® Z(R) ® @(Rd)/Z(R)-measurable
and satisfies (H1)-(HS5).

Remark 1.2. If a function g : [0, 7] x 2 x R x RY — R is Lipschitz continuous in y (i.e. for
some ¥ > 0, it holds dt ® dP-a.s. that |g(t, w, y,2) — g(t,w, ¥, 2)| <K|ly — Y|, Vy,y €R,
Vz € RY), then (H2) automatically holds and (H4) will be replaced by |g(¢, w, 0, 0)| < h;(w),
dt ® dP-a.s.

Remark 1.3. Let g be a generator.

(1) The function g_ defined in (1.7) is also a generator.
(2) Given t € 7, since {1j;<7}}:e0,7] is an F-adapted caglad process (and thus F-predictable),
the measurability of g implies that

g, ®,9,2) = ly<r()g(t,w,5,2), Y(t, 0,2 €l0,TIx 2xRxR? (1.9

defines a 2 @ B(R) ® B(R?) /% (R)-measurable function. And one can deduce that g, also
satisfies (H1)—-(HS) (actually, it satisfies (H2) with A=AV 0).

(3) If g’ is another generator, so is ag + bg’ for any a, b > 0.

(4) Given L € S#, gr(t,w,y) = (y—Li(w))~, (t,w,y) € [0,T] x 2 x R is clearly
a 7 Q@ BR)/A(R)-measurable function that is Lipschitz continuous in y and satisfies
E [ ¢1(t,00dt = E | Lfdt < T|L"||g1 < oco. By Remark 1.2, g, satisfies (H2)~(H4).
Then part (3) shows that for any n € N

gl’l(tawa yv Z) = g(taa)a y5 Z) +”(y - Ll(w))_ )
V(tw,y,2) €[0,T] x 2 xR xR? (1.10)

defines a generator.

2. Main result: doubly reflected BSDEs with integrable parameters and related Dynkin
games

The contribution of this paper is the following wellposedness result of a doubly reflected
BSDE with integrable parameters in which the Y-component of the unique solution represents
the value of the related Dynkin game under a so-called “g-evaluation” (see Section 4), a nonlinear
expectation induced by BSDEs with the same generator g as the doubly reflected BSDE.
Like [25], we assume the complete separation of the lower and upper obstacles in the doubly
reflected BSDE instead of the traditional Mokobodzki condition which is quite difficult to check
in practice.

Theorem 2.1. Let g be a generator. For any € € L' (Fr), L € Sl_ and U € S such that
P{Lr <& <Ur}=P{L; < U;, Yt € [0,T]} = 1, DRBSDE (&, g, L, U) admits a unique
solution (Y, Z, K, J) € (Npe,1) SP) x H2? x K® x K° such that Y is of class (D).

Define R(t,y) = lz<py L + Liy<oniy<1yUy + Lz=y=13}§, V1,7 € T.Letv € T,
o= inf{t e, T]: Y =1L + 1{,:T}§'} € 1,7 and y) = inf{t ev,T]: Y =
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1.7yU; + 1{,21}5} € T,.r. It holds for any t, y € T, 1 that

gg

V,TAYE

[Yenys] < Yo < €5 [Yerny],  P-as. @2.1)

V,TEAY
Consequently, it holds P-a.s. that
esssup &8 [R(T, Vv*)] =Y, =& [R(T:’ Vu*)]

V,TAYE V,TEAYE
telyr

= essinf 5§,r*Ay[R(T:» ] 2.2)

velur

In particular, we have

Y, = esssup essTinf ES eny[R(x, ¥)] = essinf esssup &5, [R(z.y)], P-as.  (23)

fEI),T yelyr VGZ,T fEITU,T

Remark 2.1. (1) For any v, ¢ € 7 with 0 < v < ¢ < 1, itis clear that 7} = 7, P-a.s. Then
(2.1) shows that ¥, < Sf’TU*M [Yesnc] = &5y [Yy ], P-as., which shows that the Y-component
of the unique solution of DRBSDE(&, g, L, U) is a g-submartingale up to time ré“ (see (4.3) for
definition of g-martingales). Similarly, Y is a g-supermartingale up to time y;. Consequently, ¥
is a g-martingale up to time 7§ A ¥

(2) In (2.3), if we regard L (resp. U) as the amount process a player will receive from, or pay to
if the amount is negative, her opponent when the time 7 she chooses to stop the game is earlier
(resp. not earlier) than the stopping time y selected by her opponent, then the Y-component of
the unique solution of DRBSDE(¢, g, L, U) is exactly the player’s value of the Dynkin game
under the g-evaluation. If the game starts at v € 7, (2.2) shows that the first time ¢} when the
value process Y meets L after v and the first time y, when Y meets U after v form a saddle point
of the game.

3. BSDEs with integrable parameters

The derivation of Theorem 2.1 is based on the wellposedness result of BSDEs with integrable
terminal data, i.e. Theorems 6.2 and 6.3 of [11] cited below as Proposition 3.1. Then in Section 5,
we will exploit the penalization method to construct a unique solution of the corresponding
reflected BSDEs with integrable parameters, with which we can adopt [25]’s approach of pasting
local solutions to obtain Theorem 2.1.

Proposition 3.1. Let g be a generator. For any £ € L'(Fr), BSDE (£, g) admits a unique
solution (Y, Z) € Npe©,1)(SP x H?P) such that Y is of class (D).

This wellposedness result leads to a general martingale representation theorem:

Corollary 3.1. For any & € L'(Fr), there exists a unique Z € Npe(,1) H2? such that P-a.s.
1
BIEIF] = Bis1+ [ ZdB., 1el0.7) @3.0)
0

Proposition 3.1 also gives rise to “g-evaluation/expectation” (see next section), a nonlinear
expectation under which the value of optimal stopping problem (resp. Dynkin game) solves the
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corresponding reflected BSDE (resp. double reflected BSDE) with generator g, see (5.2) (resp.
(2.3)).

To derive a corresponding comparison result of Proposition 3.1 (which is crucial for the
penalty method in solving reflected BSDEs with integrable parameters), we need the following
mere generalization of Lemma 2.2 of [11] (cf. Corollary 1 of [30]):

Lemma 3.1. Given V € V°, if (¥, Z) € S x H2.0 satisfies that P-a.s.

t

Yz=Y0+Vt—V0+/ ZsdBs, 1€[0,T],
0

then it holds for any p € (1, 0o) that P-a.s.

t

t
Y:|” = |Y0|p+p/ sgn(Yy)|Ys|P~av +P/ sgn(Yy)| Y|P~ Zsd By
0 0

pip—1 [! _
+T/ Ly, 00| Y5 1P 21 Zs 1% ds, 1€ [0, T].
0

With help of Lemma 3.1, we can deduce a general comparison result for BSDEs over
stochastic intervals, which is critical in proving Theorem 5.1 and our main result, Theorem 2.1:

Proposition 3.2. Given v, 7 € T withv <1, fori =1,2letg' : [0,T] x 2 xR x R — R be
an P @ BR) @ B(R?Y)/B(R)— measurable function and let (Y’, z', V’) e SO x H20 x VO
such that {Y)l;}ye’];‘r is uniformly integrable, thatE[(fUT |Zf|2dt)p/2] < oo for some p € («, 1),
and that P-a.s.

T T
Y, =7Y! —i—/ g (s, Yy, Z)ds + V. —V/ —/ ZdBs, YVtelv, ] (3.2)
¢ t
Assume that le < er, P-a.s. and that P-a.s.
N
/ Loy @V, —dV}) <0, Vi,s €lv, t]witht <s. (3.3)
t

For either i = 1ori = 2, if g satisfies (H1), (H2), (H5) and if ¢' (.Y}, Z}™") <
g2(t, Yt37’, Z,‘g*’), dt ® dP-a.s. on the stochastic interval [[v, t] = {(t,a)) e [0,T] x 2 :
V() <t < t(a))}, then it holds P-a.s. that Y[1 < Y,zfor anyt € [v, t].

Applying Proposition 3.2 over period [0, T] with V! = V? = 0, we obtain the following
comparison result for BSDEs whose Y-solutions are of class (D) and whose Z-solutions are of
H2? for some p € (a, 1).

Proposition 3.3. For i = 1,2, given parameter pair (Si, gi) with &1 < &, P-a.s., let (Yi, Zi)
be a solution of BSDE (é,-, gi) such that Y' is of class (D) and Zl e Upe(a,1) H%P. For either
i =1lori=2if g satisfies (H1),(H2),(H5) and if g' (¢, Y} ™, Z>7) < g2t Y}7", 2271,
dt @ dIP-a.s., then it holds P-a.s. that Yt1 < Yz2 foranyt € [0, T].
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4. g-evaluations and g-expectations

Let g be a generator. For any t € 7, since the function g; defined in (1.9) is a generator,
Proposition 3.1 shows that for any & € L' (Fr), the BSDE(£, g;) admits a unique solution

(Y75, Z%%) € Npe(,1)(SP x H*P) 4.1

such that Y% is of class (D). Then we can introduce the notion of “g-evaluation/expectation”,
which slightly generalizes the one initiated in [43,45]:

Definition 4.1. A family of operators E‘Ug,, D LYF) > LYF),ve T, T e Ty, is called a
“g-evaluation” if for any v, 7 € 7 withv < t and any & € LO(}",),

yit e LNF,) ifé e L'(Fo)
ES1E] = { —o0, if E[§7] = oo;
00, if E[£7] < co and E[§T] = oo.

In particular, for any v € 7 and £ € LO(Fr) we refer to E8[£|F,] = 557[5 ] as “g-expectation”
of & conditional on the o-field F,.

Remark 4.1. If g is independent of (y, z), i.e., if {g/};¢[0,7] is an F-progressively measurable
process with ]EfOT lg:|ldt < oo, thenforanyv € 7,7t € 7, 1

HGE E[s + / gidi

]—"U] P-as., Vé&eL%F). (4.2)

When g = 0, the g-expectation degenerates into the classic linear expectation, i.e. for any v € 7
and & € LO(Fr), E8[§|F,] = EIE|F], P-as.

In light of Proposition 3.3 and the uniqueness result in Proposition 3.1, one can deduce that
g-evaluation with domain L' (F7) inherits the following basic properties from the classic linear
expectation: Let v, t € 7 withv < 1
(1) “Monotonicity”: For any £, n € LO(F;) with & < 1, P-a.s. we have £5 . [£] < &5 . [n], P-a.s.;
(2) “Time-consistency”: Forany y € 7, ; and § € L' (F), €5, [€5 < [€]] = &5 < [€], P-as.;

(3) “Constant-Preserving”: If it holds dt @ dP-a.s. that g(z, y,0) = 0, Vy € R, then Eif[é] =§,
P-a.s. for any £ € L' (F,);

(4) “Zero—one Law”: For any & € L(F;) and A € F,, we have 1,E5 :[14&] = 1,E5 ([£],
PP-a.s.; In addition, if g(¢, 0, 0) = 0, dt ® dP-a.s., then £ ;[14E] = 14E5 ([], P-as.;

(5) “Translation Invariant™: If g is independent of y, then 5§,T[§ +n] = E,{ir[f;‘ 1+ n, P-a.s. for
any & € LO(F,) and n € L1(F,).

We can define the corresponding g-martingales as usual: A %’([O, T]) ®F-measurable process
X of class (D) is called an g-submartingale (resp. g-supermartingale or g-martingale) if for any
0<tr<s<0

SfS[XS] > (resp. < or =) X;, P-as. 4.3)

The g-martingales possess many classic martingale properties such as Upcrossing inequality,
Optional sampling theorem, Doob—Meyer decomposition and etc., which relate the g-evaluation
closely to risk measures in mathematical finance (see [46,47] for the case of Lipschitz g-
evaluation with domain L2(fT) and see [40,34] for the case of quadratic g-evaluation with
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domain L*°(Fr)). Due to the page limitation, we will elaborate neither on the martingale
properties of our g-evaluation with domain L!(F7) nor on the connection of this g-evaluation to
risk measures in the present paper.

5. Reflected BSDEs with integrable parameters and related optimal stopping problems

With Propositions 3.1 and 3.3, we can employ the penalization method to obtain, as an
intermediate step towards our goal (Theorem 2.1), the following wellposedness result of a
reflected BSDE with integrable parameters, in which the Y-component of the unique solution
stands for the value of the related optimal stopping problem under g-evaluation.

Theorem 5.1. Let g be a generator. For any € € L'(Fr) and L € Si_ with Lt < &, P-a.s.,
RBSDE (&, g, L) admits a unique solution (Y, Z, K) € Npe,1)(SP X H%P x KP) such that Y
is of class (D).

Define R; = 1y<1yLs + 1y=1)&, t € [0, T]. Let v € T and 7:(v) = inf{t e, T]: Y =
R,} € 7, 1. It holds for any y € T, 1 that

gf,}/[yy] = YV = gf,rn(v)/\y [YT:(V)/\}/]’ P-a.s. (51)

In particular, we have

Y, = esssup 5§,V[RV] = Ef’rﬁ(v) [RTW)], P-a.s. 5.2)
vel,r

Remark 5.1. (1) In view of (5.1), the Y-component of the unique solution of RBSDE(¢, g, L)
is a g-supermartingale. For any v, 7 € 7 with 0 < v < v < 14(0), it is clear that 7;(v) = 73(0),
P-a.s. Then we have Y, = 5f,rj(v)w [Y,ﬁ(v)w] = 5§,V[Yy], P-a.s., which shows that Y is a
g-martingale up to time 73 (0).

(2) In (5.2), if we regard R as a reward process that include a running reward L and a terminal
reward &, then the Y-component of the unique solution of RBSDE({, g, L) is exactly the Snell
envelope of R under the g-evaluation. Given a start time v € 7, the first time 73(v) when Y
meets R after v is an optimal stopping time for a player to choose if she is aimed to maximize
her expected reward under g-expectation.

To derive the existence result in Theorem 5.1, we will use penalization method which can be
summarized in the following two monotonicity results:

Proposition 5.1. Let L € S} and let g : [0,T]1 x 2 x RxR?! - Rbea Z @ ZR) ®
B(RY) /BR)-measurable function satisfying (H1),(H4) and (HS). For any n € N, consider the
Sfunction g, defined in (1.10) and let (Y",Z",J") € (ﬂpe(o,l) Sp) x H29 x KO such that Y" is
of class (D) and that P-a.s.

T T
Y' =Y} +/ gn(s, Y, ZMyds — It + JI' — / Z'dB;, t€l0,T).
t t

If {Y"},eN is an increasing sequence of processes, then its limit Y; = lim, o 1 Y/', t € [0, T]
is an F-predictable process of class (D) that satisfies E[sup,c(o 11 |Y:[P] < 00, V p € (0, 1).
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Proposition 5.2. Let L € S}, let g : [0, TIx 2 xRxR? - Rbea @ BR)@BR!)/ B[R)-
measurable function satisfying (H1)—(H4), and let v, T € T withv < t. Foranyn € N, consider
the function g, defined in (1.10) and let (Y", Z") € S° x H>O satisfies that P-a.s.

T T
Y = Y;'+/ gn(s. Y", Z")ds —f Z'dB,, Vielv 1. (5.3)
t t

If {l{tzv}an/\t};e[o rp M€ N is an increasing sequence of processes whose limit Y; := lim,,_,
4+ Lysn Y2, t € [0, T] satisfies P(Y; > Lo} = ]P’{sup,e[w] (¥H=+v) < oo} — 1, then

process {Yyvi}ielo, 1) has P-a.s. continuous paths and there exist (Z, K) € H20 x KO such that
P-a.s.

T T
L <Y, =Y —l—/ g(s, Yy, Zg)ds + K; — K; —/ ZydBs;, VYtelv, 1],
T ! t 54
/ (Y[ - L[)th = O
v

On the other hand, the uniqueness result in Theorem 5.1 follows from the following
comparison result for reflected BSDEs whose Y -solutions are of class (D) and whose Z-solutions
are of H>? for some p € (a, 1).

Proposition 5.3. For i = 1,2, given parameter pair (Ei, gi) and L' € Sﬂr such that IP’{LiT <
g} =Ple) <&} =P(L! < L2, Vit €[0,Tl} =1, let (Y', Z', K') be a solution of RBSDE
(&', g, Li) such that Y' is of class (D) and Z' € Upe@,1) H>?. For eitheri = 1 ori =2, if g
satisfies (H1), (H2), (H5) and if g (¢, Y™, 227"y < g2, Y70, Z2>71), dt @ dP-a.s., then it
holds P-a.s. that Y,1 < Y,Zfor anyt €10, T].

Remark 5.2. By Remark 1.3(1), one can apply Theorem 5.1, Propositions 5.2 and 5.3 to g_
(defined in (1.7)) to obtain a version of them for the reflected BSDE with upper obstacle like
(1.8).

6. Proofs
6.1. Proofs of the results in Sections 3 and 4

Proof of Proposition 3.1. As condition (H7) of [11] is automatically satisfied, it suffices to
verify condition (H5) therein, i.e., Given r > 0,
the process w[(w) = sup |g(t,w,y,0) — g(t,w,0,0)|, (t,w) € [0, T] x {2
[yl=r
is integrable.

By (H3), it holds dt ® dP-a.s. that ¥/ (w) = SUPye[—r /]NQ lg(t,w,y,0) — g(t, w,0,0)],
which implies that ¢" is F-progressively measurable. Also, (H4) shows that dt ® dP-a.s.,
¥/ (w) < |gt,w,0,0)] + supjy <, 18, @, ¥, 0)| < 2hi(w) +kr. It follows that v/ belongs
to L1([0, T]1 x 2, B0, T) @ F,dt @ P). O

Proof of Corollary 3.1. Clearly, g(t,w, y,z) =0, V(t,w, y,2) € [0,T] x 2 x R x RYisa
generator. In light of Proposition 3.1, BSDE(&, 0) admits a unique solution (Y, Z) € Npe(o,1)



E. Bayraktar, S. Yao / Stochastic Processes and their Applications 125 (2015) 4489—4542 4501

(SP x H>P) such that Y is of class (D). For any n € N, we define stopping time 7, := inf{t €
[0,T]: [y |Zsl?ds > n} AT € T, and see from Z € Npeo,1y H>P € H2O that {7, }yen is
stationary.

Let7 € [0,T] and n € N. Since Yy o = Yg, — ft .
expectation [E[-|F;] yields that

Yr ne = E[Yg, |F], P-as. 6.1)

Z¢d By, P-a.s., taking conditional

As {1, }nen is stationary, letting n — oo in (6.1), we can deduce from the continuity of ¥ and the
uniform integrability of {Y; },c7 that Y; = E[Yr|F;] = E[£|F;], P-a.s. In particular, Yo = E[£].
Then

t t
E[£|F/] = Y, = Yo + / Z,dB, — E[£] + / Z,dB;, P-as.
0 0

and {f; Z,d By} leads to

This together with the continuity of processes {E[£]F.]} -

tel0,T]
(3.1) while the uniqueness of process Z is clear. [l

Proof of Proposition 3.2. Without loss of generality, suppose that g! satisfies (H1), (H2), (H5)
and that

', Y2 7% < g% (1, Y2, Z%), dt ® dP-as. on v, t]. 6.2)
Set(V,2)='—v2 z'—7%andqg = p/a € (1, 1 /).
(1) We first show that E[sup,p,, -1 (V)71 < oo.

Since E[|))]] < IE[lY1 I] +E[|Y2|] < 00 by the uniform integrability of{Y’ yer,. i =1,2,
Corollary 3.1 implies that there exists a unique Zeny, P'e©,1) H2P" such that P{IEDJUL?’-}] =
ED] + f() Z,dBy, Vt € [0, T]} = 1. This together with (3.2) shows that P-a.s.

- VAL
Fo o= B Fundd + Yoviony = %o =B+ [ ZudB,
0
VV(TAL) VV(TAL)
- / Agsds vV(‘L'/\l) + V + VvV(rAt) sz +/ Zyd By
v v
t t
= E[W] _/ 1{v<s§r}Agst _/ 1{v<s§r}(dvsl _dv_yz)
0 0

t ~
+ / (Lyeu 2o + Lposce)Z) dBs, 1 €10, T, 63)
0

where Ags = (s Yl, ) (s Y Z2) So y is an F-adapted continuous process,
ie.y eSO Applylng Ito—Tanaka s formula to process y+ yields that P-a.s.

t
yz+ = (E[yv])+ _/ 1{)7 >0}1{v<x§r}Agsds + _St
0 s 2
t
_/0 1{37S>0}1{V<s5r}(dVS] —dVv?)

t
+ / 150, (= 2 + Lpose 2,) dBy, 1€ 10,71, (6.4)
15

where £ is an F-adapted, continuous increasing process known as the “local time” of )NJ at 0.
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Letn € N. We define a stopping time 7, = inf{r € [v, 7] [ [Z]%ds > n} AT € T, ;, and

integrate by parts the process {e M (An it At )i (0.7 to obtain that P-a.s.

+ n +
)‘ (fﬂ/\t)y;:/\t =t T"y.;: +/ l{ys>0}l{s>v}ek SAgA.ds
T

N

Tn
" / Ly - ls=ne @V, = avd)
T

AL

L[ e
—= [ dg, —at / S Ytds
2 Tn AL Tp Nt
_ o . Ats 5
150" * (Ls=ny 25 + L=y 25) dBs, 1€[0,T].  (6.5)
Ty AL

Here we used the fact that )NJW(IM) =E[WIF]+ Vv =W = Novienn, YE€[0,T], ie.
V=Y. YVtelr1l (6.6)
Since g! satisfies (H2) and (H5), it holds ds ® dP-a.s. on [v, 7] that
13,00/ (8' (5.0, 1 @), Zl@) = ¢' (5.0, V2@, Z} @)

<1, =02y (@) < ATV (w), 6.7)
and that

g1 (s, w, Ysz(a)), Z; (w)) — g1 (s, w, Ysz(a)), Zf(a)))‘

<« (hy(@) + @I +1Z @)+ (h(@) + V@] +1Z2@)])

Plugging them back into (6.5) and taking t = v V t there, we see from (3.3) and (6.2) that P-a.s.

Tn

)\.+ V(Ta At )» n\)+ At
vV (T ))yvv(r,,At) < O y =+ 2/{6 77 - /UV(T ) l{yx>0}€ SstBs,

tel0,T], (6.8)

where 1 == [} (b + Y2 + 12} + |Z2])" at
Let € [0, T]. Taking conditional expectation E[‘vav(r,mt)] in (6.8) yields that ATV (@A)
yVV(Tn/\[) <E [ex+r,, y;; + 2K€)\’+T7]|f‘)\/(fn/\t):|’ P-a.s., and it follows that

Lp<r<o e 'VF < Lpeizo)E [e“fny;: + 2Ke“Tn|;ft] . Pas. (6.9)

By (1.5) and Holder’s inequality,

T o 2 T T o
ns/ (h,+|Y,2|) dt—}—Z/ \Zidr < 7' <[ (h,+|Y,2|)dt>
v i=1 v v
2 T C{/z
+T1—“/ZZ</ |z;'|2dt) , P-as.
i=1 v
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Fubini’s Theorem and the uniform integrability of {Yﬁ}y 7 imply that

T T T T
2 2 2 2
E/ |Yt |dt = E/ |Yuv(r/\t)|dt = E/O |va(r/\t)|dt Z/() E[|va(rAt)|]dt
v v

< T sup E[|Y§|] < Q.
vl

As g = p/a, applying (1.5) and Holder’s inequality again yields that

T p
E[nq] < 3qlT(1a)q{E/ (ht + |Y[2|> dt}
%

2 T ) p/2
+ 3¢~ 1pU—e/2a Z E <f |z;|2dz> < oo. (6.10)
v

i=1
We see from E[(fvr |Z§|2dt)p/2] < 00,0 = 1,2 that for P-as. w € {2, 1(w) = 15, (w) for
some N, € N. For any ¢ € [0, T], since the uniform integrability of {Y;}VETM, i = 1,2 implies
that of {e}‘+y y; }yeTv,,’ letting n — o0 in (6.9) yields that P-a.s.
Wozizn Vi < pzizne! 'V < lpsizo2ee” TE[ (v = YD* + 17|
= Lp=i=ry2ce" "B 7).

Using the continuity of ) and that of process {E[n|ft]}t€[o > one gets IE”{)),‘F < et T
E[n|F], YVt €y, 1’]} = 1. Then Doob’s martingale inequality and (6.10) lead to that

E[ sup (Y )q} < (2f<>qquE[ sup (E[nmnq}

telv,1] t€[0,7]

q 1 atT
< (qu) 2k)1e? " E[n?] < oo. (6.11)

(2) Next, we show that E[sup, [, 7 (y,+ )q] = 0 indeed; then the conclusion easily follows.
According to (6.4), applying Lemma 3.1 yields that P-a.s.

@ = (EM)T) -4 /0

t t
~ivg—1 ~ivg—1
_qfo 15,20 ls=a) ()" @V —stz)Jrq/O 150 (%)

t

~ —1 r_ 1
13,0 lwes=n ()" Agsder%/O K" ag,

~ qg—1 (! Sya-2
X (Lszn) Zs + Lpas<r) Z5) By + T/o L5520 ()
52
X (l{sfu}|zs| + 1{v<s§r}|Zs|2> ds, te€[0,T]
Seta = AT + Wz_l) and let n € N. We define a stopping time y, := inf{t € [v, 7] :

SUPse.r] i+ fvt |Z|%ds > n} A T € 7T, ., and integrate by parts the process {ea‘I(V"“)
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D+ ¢ .
to obtain that P-a.s.
(yy"” ) }te[O,T]

S\, 9@ =D [ Sng-2
eaq()/n/\l) (y}-/i;M) + 5 l{j}x>0}eaqs (y;,-)
Ya A
52
x (L | 6 + V)| Z,1) ds
aqy, +\7 " ags (y)+\4—1 vn ags (3+\4
= (yyn> +4q Liy,=ongs>vye® (V)" Agsds —aq (V) ds
n Nt VYn At
1z -
S5 e @y a,
2 Jyunt
y)‘l _1
+d‘meWWWaMw%
YnNE
Yn ~ -1 ~
_q/ 15,20 (U)'™ (o2 2 + 1=) Z5) dBs, 1 €00, T1.
Yant
Then (6.6), (6.2), (6.7) and (3.3) imply that P-a.s.
(g—1) ™ -2
eaqt (yt-l—)q 4 % 1{y5>0}€aqs (y;r)q |ZS|2ds
t
q Vn _ Yn
= e (W) +‘1/ Ly (V)" 1Agsds—aq/ v (Vi) ds
t
/Vn ags y+q 1d£

Yn Yn —1
+61/ Ly, (V1) (stl—de)—Q/ 1y,-0e” (V1) Z,d B,

t

NI»Q

" -1
< eaqyn (y;;) +q/ l{ys>0}gaqs (y:—)q <gl(s’ YS29 Z;) _ gl(s’ YSZ7 Z?)) ds
t

qK? Iz
In@@ -1 J;

Yn
-1
—q / Liy,=01e® (Vi)' Z,dBs, Vte[v,yal
t

o0 ()" ds

. -1 - -2 2
Since Ly-opc (V)" 1201 = G0 ()" 1212 + 25 (0)", Vi € [v, 7l we can
deduce from (H1) that P-a.s.

glqg—1) [ -
et (yt—I—)‘I + 7 f 1{yx>0}eaqs (yv—i_)q |Zx|2ds
t
q Vn 1
< et (yy*) —q / L0 (V)" Z5dBs, V1€ vyl
t

Taking expectation for ¢+ = v shows that

— Yn
—Q(q4 I)Ef 1{ys>o}€aqs (y:_)q_z |Zs|2ds < E[eaqyn (y}-/:)q] (6.12)
v
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On the other hand, the Burkholder—Davis—Gundy inequality implies that

E|: sup (e‘”y,*)"}

telv,yul

T
—1
/ Lp<s<yLi=0e™ (V) Z4d By
t

< E[e"n (y)Z)q] +qE |: sup

1€[0,T]

[
sl (05 e o )
Vn V2
(/ Tys0e® 07712, |de) }
< E[eaqyn (y;rn)q] + %E[ sup (e‘”y;r)qj|

t€[v,ynl

|

Yn
+C4E / 1y,-00¢% (V)72 12, 1%ds.
vV

As E[sup;cp, 1 (€ V)" < e Elsup,gp,, (V)1 < oo by (6.11), it follows from (6.12)
that

E[ sup (yi)q} < ]E|: sup (eaty?)q] = Z]E[eaqy" (y;»r)q]
1

telv,yn t€[v,ynl

Vn ) _ q
—i—C,,]E/ Ly, =0e? (V)7 212, Pds < Cq]E[emm (%Z) ]
v

Because of (6.11) and IE[(fVt |Z§|2dt)p/2] < 00,i = 1,2, it holds for P-a.s. w € {2 that

7(w) = yn/, (w) for some N/ € N. Letting n — oo in the above inequality, we can deduce from
the monotone convergence theorem, (6.11) and dominated convergence theorem that

e s 07| = g 1 2| s 0097 <€ sl (3]

te[v,1] 1€[v,yn]

= B [er (v - Y3)+)q] 0. O

Proof of Remark 4.1. Let v € 7, v € 7, r. It suffices to show (4.2) for & e L' (F;). Given

n € N, we still define the stopping time y,, as in (A.3). As Yvrfy = Y;f + 15<r18sds —

v/\y

i " ZI¥ d By, P-as., similar to (A.4), taking conditional expectation E[-|Fyny, ] yields that

Vi = Moz LS 100 s A+ 1 (V5 200 80d). Pras. S (e

is stationary, letting n — oo, we can deduce from the uniform integrability of {Y),’E }y o7 that

T
-7:\)1| + 1{v>T} (Y;’S +/ gsds>
v

fv}, P-as. O

T
gl‘ir[f] = YJ’é = 1{V§T}E |:Y]‘L:’S +/ gst
v

:E[é—{—/rgsds
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6.2. Proofs of the results in Section 5

Proof of Proposition 5.1. (1) We first show that E[(Y;)?] < oo, ¥ p € (0, 1).

As the limit of F-adapted continuous processes Y"’s (thus F-predictable), Y is also an F-
predictable process. For any (¢, w) € [0, T] x {2, Y;(w) = lim, .o 1 Y/'(w) implies Y,+ (w) =
lim;,— o0 1 Yt”’+(a)). Then one can deduce that

Y (@) = sup Y7 (w)= sup sup¥/"F(w)=sup sup ¥,""(w)=sup Y (w)

tel0,7T] t€l0,T] neN neN t€[0,T] neN
= lim 1 Yt (w), Yowel. (6.13)
n— oo

For any n € N, the continuity of process ¥" shows that P-as., ¥,"* = sup,co.r V" =
SUP;€[0.71NQ Y;"" e Fr, which implies that Y, is Fr-measurable. Then we see from (6.13)
that Y;r is also Fr-measurable.

Let p € (@, 1) and set n == £+ + fOT hyds + LY € L'(Fr). Given n € N, we claim that
P-a.s.

(YT < CuE [1 +n+ (YT

f,], te[0,T], (6.14)

o
(which will be shown in the last part of this proof). Since M = E [1 +n+ (Yf’+) ‘.7-',],
t € [0, T] is a uniformly integrable martingale, applying Lemma 6.1 of [11], we can deduce
from (6.14), (1.5), (1.6), Holder’s inequality and Young’s inequality that
P

Co
E[rh] < Cé’E[ sup (Mf)’]} = 1= (EM7)”
1€[0,T] p

cl
l—p

%o mm (= [0))’]

IA

{1+ @7 + &[0 )

IA

1

1
Ca.p{1 +Elnl} + EE [(v21)F].

IA

AsE [(Yf’+)”] <E[(¥Y)?] < oo, we see that E [(Y;'”L)”] < Ca,p{1+E[n]}. Whenn — oo,
(6.13) and the monotone convergence theorem yield that E [(Y;")?] < Cq, {1 + E[n]}. Since

Y=Y +Y"<@H"+yt <1 |+yt, VYeelo,T], (6.15)
(1.5) implies that E [(Y*)”] <E [(Y*l)"] +E [(Y:’)”] < 00.
Moreover, for any p € (0, @], (1.6) shows that E [(Y*)E] <1+E [(Y*)QTH] < 00. Hence,

E [(Y*)l’] < o0, Vpe(0,1).

(2) Next, let us show that Y is of class (D). Since E [(Y:‘)“] < 00, letting n — oo in (6.14), one
can deduce from (6.13) and the monotone convergence theorem that for any ¢ € [0, T], Y,+ <
C,E [l +n+ (Y:‘)“|}}], P-a.s. Using the continuity of process Y+ and process {E[l +n+
(Y,)e |f[]}l€[0ﬂ, we see from (6.15) that P-a.s.

Y < 1Y+ Y <1V 1+ GE[1+n+ H*|A]. tel0.T].
This implies that Y is of class (D) as Y!is of class (D).



E. Bayraktar, S. Yao / Stochastic Processes and their Applications 125 (2015) 4489—4542 4507

(3) It remains to demonstrate claim (6.14).

For any ¢ € [0, T], the continuity of process L shows that P-as., I} := supscyo, L =
SUP;e[0./1NQ L} e F;, which implies that I" is an F-adapted, continuous increasing process with
E[l'7] < o0.

Let n € N. Since fOT Liyro (Yt” — L,)_ dt = 0, applying It6—Tanaka’s formula to process
(Y" — I')* yields that

T
(Yt}l — Ft)+ = (Y? - FT)JF +/ I{Y;’>Fs} (g(s, Y;l, Z;l)ds - d.lsn - Z?dB_y)
1
T 1
+ f Lyrsryd I's — E(ﬂ’} - £, tel0,T],
t
where £" is the “local time” of Y" — I" at 0.
Set a := 2(k + k2). Given j € N, we define a stopping time Vj = )//’.1 = inf{t € [0,T] :

Jo1Z?ds > j} AT € T, and integrate by parts the process {e“(VJM)(YJ'}jM — FVjM)+}te[0,T]
to obtain that P-a.s.

, + Vi
AN ( )’}j/\l — ij/\z) + a/ e (Y —Iy)Tds
VNt

Yj
=i (Y;‘j - l"},j)Jr +/ . Liynsryye® (g(s, Y, ZHds —dJ! — Z;’dBS)
Vi
yj as 1 yj as n
+ l{y:n>]“x}e dly — 5 e dﬂx, te[0,T]. (6.16)
VNt VNt

Since (H4), (HS), (1.5) and (1.6) imply that

lg@, Y, ZD| < |g@, Y[, 0)| + [g(t, Y/, Z}') — g(t, Y[', 0)| < hy +«|Y/]
+ic(hy + Y+ 12D
< hy + kY] + ke (he + 1Y D" + 6| 271" < by + | Y]]
+i(1+h + 1Y) + x| 27|
<k+ A +w)h +26|Y] = It + 2« [y + x| Z7|%,  dt @ dP-as., (6.17)

taking conditional expectation E[-|F;] in (6.16), we can deduce from Holder’s inequality that for
any t € [0, T']

) +
ea(yf/\t) (Y;lj/\t - ij/\l)

T
<kTe"" + E[eﬂyf(y;’j — Ty + (1 + e f heds + (1 + 2« T)e*" Iy
0

a2
Vi
+KT170[/2€(170[)“T (/ I{YSn>FA}€2aS|Z;l|2dS>
Y.

jNE

fz], P-as., (6.18)

where we used the fact that 1iy». 1) |Y/" — It = (Y)" — ™.
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. A 2 . 2
Applying Ito’s formula to process {e alyjnn ((Y;lj/\t — ij/\z)+> }

in (6.16) yields
that

te[0,T]

2 Vi
e2a()/_,-/\t) ((Y;lj/\t _ ij/\t)+> + Za/ eZas ((st _ Fs)+)2 ds

YjNt

Vi ) P
+ / l{ysn>['s}€ ag|Z?| ds
Y.

jNE

ay; n + 2 Yi 2as cyn +
= ((ij—ij) ) +2/ Liypsrye™ (Vg — 1)

VNt

x (g(s, Y, Zds —dJ]! — Z}dBy)

Vi Vi
+2/ Liyns ) (Y] — It T —/ Sy — Iyytagr,
YjNt

VNt
tel0,T] (6.19)

Since (H1) and (H4) imply that d¢ ® dP-a.s.
1, Y, Z] < 18, Y] )] + 18, V', Z0) = 86, ¥/ O)] < hy + [Y)'| +1Z]
< h + kY] =i +«It + k|21,
it holds dt ® dIP-a.s. that

2
Loy (Y =T g, Y 20 < () = TV hy + (k + 263 () — T
1 1
+ Zl{yln>[1t}r]2~ + Zl{y’n>F[}|Z?|2.
Set ¥ := supse[,qT](YS" — I'y)T,t € [0, T]. It then follows from (6.19) that

2a(yiNt) n + 2 1 Yi 2as | 7n |2
e\j (Y)/_/At — F}’jAI) + 5 [/ 1{y{1>[‘v}€ |Zs | ds

j Nt

2 r 1
< ((Y;’jﬁ) + 227 / hods + ST I7 + 22 W Iy

t

-2 Yi 1 2as ;yn __ )yt z"
{yr>TIy)€ (¥ s)" Zgd By
Y.

jNE

2 T 2
< T ((Y;/_)J’) +(F"? 4+ Co (/O hsds) + Col'?

Vi
+'2/ Lynory) @ (Y — I)TZMdB,|, 1 €[0,T].
VNt

Taking powers of order /2 on both sides, we see from (1.5) that

2
a/2—1 aa(y;At) n +\* 1 vi 2as | 7n |2 “
2 (v = Tym) ) +3 Lyro )€ |22 ds
14

ANt
< eaaT ((Y)’}j)—i_)a + (Lptn)a
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! ¢ T /2
+C(x </0 hst) + C@F% —+ ‘2/ I{SSVj}l{YS”>FS}62aS(Y;l _ Fs)+Z;lst ’
!

t€[0,T]. (6.20)

Lett € [0, T]. For any A € F;, since
a/2

T
14 / L=<y Lyns e (Y] — )" 2 d By
t

/2

T
/ 1Al{sfyj}l{}’}'>lﬂ;}ezas(Y;1 - FY)+Z?dBS
t

a2

s

T
= ‘/ 1A1{,35,,.}1{%[1?}8“5(Y;' — )t ZrdB
0

multiplying 14 to (6.20) and taking expectation, we can deduce from the Burkholder—Davis—
Gundy inequality and (1.6)

1 Vi /2
J
—E|1,4 / Liynsr,)€* 2" *ds
2 YNt ’
o T o
< C4E| 14 ((yﬁjﬁ) F 1T 1y (/ hsds) 14T
0
T ) o/4
+</ 1A1{t§s§y,-}1{Y;‘>Fs}e4as ((st_Fsﬁ) |Z§l|2ds) :|
0
T
< CoB | 14+ 1a(Y)) " + 14" + 1A/ heds + 14T + 14 (#)*/?
0

T a/4
: (/ I{SSVJ-}I{Y51>FS}€2M|Z;L|2ds> :|
t

T
< GE |:1A +1a(Yp) T + 14T + 14 / hsds + IAFT}
0

| vi /2
+ ZE 14 (/ l{x;1>pv}e2”S|Z§’|2ds>
yjAl

. a2
Since E |:(fo 1{yg>ps}62“|Z§’|2ds> :| < 2T j2/2 and since

VNt

te[0,T] t€[0,T]

E[(7)*] = E[ sup ((¥;" — m*)"} <E [ sup ((Y{’)ﬂ“} < IY"ls« < oo,

letting A vary over F; yields that

Vi a2
E ! 1 2as n2d
resrye 1Zg|%ds
Yjint

T
< CoE [1 + @)+ () +/O hyds + I'r

Fi

7|
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Then we see from (6.18) that
+ ) +
( - ij/\t) < (WA (Y;jAz _ Fy,-m)

T
< G,E [1 + @)+ ()" +f hsds + I'r
’ 0

}",], P-a.s. (6.21)

The uniform integrability of {Y;’}yeq— implies that of {(Y;l)+}yeT' As Z" € Npe,1 H>P C

H20, {v;}jen is stationary. So letting j — oo in (6.21), one can deduce from the continuity of

process Y" that
7]
< GoE[14n+ (¥)*|F]. P-as.

Then claim (6.14) follows from the continuity of process Y™ and of process {E[1 + n +
(w(;l)a|‘7:f]}te[0,T]' 0

Proof of Proposition 5.2. The proof is relatively lengthy, see our introduction for a sketch. We
will defer the demonstration of some technicalities (those equations with starred labels) to the
Appendix.
(1) Forany n € N, K}' == nfot 1pes<ry (Y — Lg)~ds, t € [0, T] is clearly a process of KO
satisfying

K!'=0, Vrel0,v]. (6.22)

AsK!—K!'=n [ Yyey<r) (Y — L) ~ds = n [F (Y — Ly)"ds, ¥t € [v, t], (5.3) shows that
P-a.s.

T
Yt <L+ (Y —1)" <+ CE [1 +ET 4 (P +/ hyds + I'r
0

T T
Y! =y" +f g(s, Y", ZMds + K" — K" —/ Z'dB;, Vielv 1. (6.23)
t t

Since {I{I.ZV}}IE[(),T] is an F-adapted cadlag process and since each (Y2 b0 18 an F-
adapted continuous process, we see that Y is an F-optional process. (It takes some effort to
show the continuity of Y between v and T, see (6.40) for an intermediate result.) By the Debut
theorem,

t
Ty = inf{t elv, t]: (Y,])7 + Y,Jr + Lf +/ hyds > Z} AT, £eN (6.24)
%

are stopping times with v < 7, < 7,ie. 1w € T, ;. As ]E[L:[ +fOT h,dt] < oo and
]P’{sup,e[w] (@h=+1h) < oo} = 1, it holds for any w € §2 except on a P-null set V] that

7(w) = T, (w) for some N, € N.

Now, let us fix £ € N for this part as well as next two parts. Let N3 = U,en{w € 2 :
the path Y (w) is not continuous} (which is clearly a P-null set) and set A, := {v < ¢} ﬁ/\fz" €
Forr, C Fy. Given w € Ay, for any n € N we can deduce from (6.24) that |Y/'(w)| < ¢,
Vit e [v(a)), Ty (a))), and the continuity of each Y” implies that |Y/*(w)| < €, Vt € [v(a)), Ty (a))].
Then it follows from the monotonicity of {¥Y"},cn that

sup | ¥ ()| < |V (@)| V[V <€, Vie[vw), uw)] YoeA,. (6.25)
neN
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Let n € N. As E[|14,Y/"|] < ¢, Corollary 3.1 shows that there exists a unique VA=
Npe,1y H2? such that P{E[14, Y| ] = E[14, Y]] + J3 Z-"dB,, Y1 € [0, T1} = 1. Similar
to (6.3), we can deduce from (6.23) that P-a.s.

Ytéyn = E[IAZ Ym]:v/\t] + Yxflv(qm) -v

t
= B[] = [ Moo, ¥ Z0ds = K + KL

t
+ / (1{39}2;3’" + 1{V<SSQ}Z§’) dB,, 1¢€l0,T] (6.26)
0

Thus Y*” is an F-adapted continuous process (i.e. Y¢" € S°) that satisfies
Y = E[1a, YF ]+ Y — YD =14, Y] + 14, (Y — Y]) = 14,7,
Vit ev, 1], (6.27)

which together with (6.26) shows that P-a.s.
T T
Yo" — Yt — KD+ K] +/ Z"dB = / g(s, Y, ZMds
“ t t
- 1AZ/ g(s, YE", ZMyds
t
T
= / g(s, Yo", ZMds, Vi€ v, . (6.28)
t

Since E[|Y{"|] < £ by (6.27), (6.25) and since K!' = 0 by (6.22), applying Lemma A.2 with
Y,Z,K)= (Y@’”, Z", K™) and (7, p) = (t¢, 2), we see from (6.27), (6.25) and (6.24) that

) ) 2
E / |Zt”|2a’t+]E[(Kfz)2] < CoE| sup |Yf’"|2 + CoE ( / h,dt)
v telv, ] v

< Cot?. (6.29)

It then follows from (H1) that E [™ |g(r, Y,"", Z}') — g(t, Y/",0)%dt < «>E [[*|Z}dt <
Cot2. In virtue of Theorem 5.2.1 of [50], {1{V<’sz}ztn}ze[o,r]’ n € N has a weakly conver-
gent subsequence (we still denote it by {1fy<;<7,1Z} }icf0,7], » € N) with limit zt ¢ H*Z;
and {1y <=7} (8(1, Y,l’", Zmn — glt, Y,K’", 0))}t€[0’T1, n € N has a weakly convergent subse-
quence (we still denote it by {1y <s<z,)(g(t, ¥,"", Z') — g(2, Y, 0))) ,n € N) with limit

q tel0,T]
h' € H>2. 1t is easy to deduce that
2 =1pc<n 2" and K =1y <ryhls  di @ dP-as. (6.30)

The F-optional measurability of Y implies that of stopped processes {Ymt} 1e[0.7] and
{YTU\t}te[O T (see e.g. Corollary 3.24 of [33]). As Ay N {t > v} € F; forany t € [0, T],
{1a,np=n }te[() 71 s an F-adapted cadlag process. Then

va(rg/\t) Y, = lAlﬁ{tzv} (Y‘[gAt - Yu) = lA(ﬂ{l‘ZV} (Y‘[(/\l‘ - YvAt) s te [0’ T] (631)
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is an F-optional process and it follows that
4 ! 7 ! 14
K; =Y, - Yv\/(rgAl) - / 1{v<x§rg} (g(s, Y, 0) + hs) ds +/ 1{v<s§rg}stBs,
0 0

t€[0,T] (6.32)

also defines an F-optional process. Since (6.31), (6.25), (H4), (6.24) and Holder’s inequality
imply that

~ T ~
R = Loty (Frons| + 100 + L, [ (0 w18+ 71) i
v

t
+ / 1y <s<r,) Z5d By
0

T 1/2 t
< 30+ «lT + <T/ |hf|2dz) + sup / 1jyos<e) 2LdBs|, Vi e[0,T].
v tel0,7T] 0
Doob’s martingale inequality and (1.5) show that
~pn2 L7 t 2
E[(R)’] = co® +3T]E/ h¢Pdt +3E | sup / yes<e ZLd By
v ref0,711J0
o,
< Col® + COE/ (1> + 26 )de < oo, (6.33)
v
We next claim that
K" satisfies the conditions of Lemma A.3 and is thus an increasing process. (6.34%)

As E[(I?‘})z] < 00 by (6.33), it holds P-a.s. that f? < 00. Then applying Lemma 2.2 of [44]
to (6.32) shows that both process K¢ and process {Y,,V(,M[) }te[O,T] have P-a.s. cadlag paths.
(2) By Holder’s inequality and (6.29), E [* (¥ — L)~dr = ‘E[K2] < H{E[k2)?]}"* <
%COE, Vn € N. Letting n — o0, we know from the monotone convergence theorem that

T T¢
Ef (Y, — L) ~dt = lim | IEf (¥" — L)~dt =0,
v n— 00 v

so it holds dt ® dP-a.s. that 1{,<; <¢,) (Y; — L;)™ = 0. Since {YW(,M,) }te[O,T] has P-a.s. cadlag
paths by part (1) and L has P-a.s. continuous paths, one can deduce that for any w € A, except
a P-null set Ny, Y;(w) > L,(w) for any ¢t € [v(a)), 7 (»)). Given w € {v < T} NNF NNS N
(UZENM)C, there exists an n,, € N such that 7, (0) = T(w) > v(w). Sow € A,, N /\Nf,gw =
{0 € 2:v(0) < 1, (@)} m/\/;n/?/;w and Y;(w) > L;(w) holds for any € [v(w), Tu, (@) =
[v(a)), r(a))). In summary, it holds for P-a.s. w € {v < t} that Y;(w) > L;(w) for any ¢t €
[v(a)), T(w,)’ which together with P{Y; > L.} = 1 shows that for any w € {v < 7} excepton a

P-null set N/
Y(©) > L), Vi e [v@), (@) (6.35)

Now we freeze the parameter ¢ again and let w € Ay N Ne. As Ay C {v < 1} N NE,
we see from (6.35) that Y;(w) > L;(w) for any t € [v(a)), T¢ (a))]. Since continuous function
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(Y= Li) (@), t € [v(w), 7¢(w)] is decreasing to (Y; — L)~ (0) = 0,1 € [v(w), te(w)]
when n — 00, Dini’s theorem shows that

lim | sup (Y —Li) (w)=0.

OO te[v(w),Te(w)]

As 14, SUP;¢fy 7,1 (Y = L) <1y, SUP;efy, 7] (Lt+ + 1Y) < 2¢, Vn € Nby (6.24), (6.27)
and (6.25), an application of the bounded convergence theorem yields that

lim | |14, sup ((¥'—L)")"|=0. (6.36)
n—00 telv, 1]

Similar to the arguments used in [20] (see pages 21-22 therein), we can deduce from (6.36)
that

l, . . 2
{Y "}HEN is a Cauchy sequence in S“ and {1{V<t5714}2?}te[0,T]’ neN
is a Cauchy sequence in H>2. (6.37%)
Let V¢ € S? and zt € H22 be their limits respectively, i.e.
2 r =012
lim | E| sup |[¥/" =Y |+ lim IE/ [Lj<i<enZ! — 2f|7dt = 0. (6.38)
n—o00 1€[0,T] n—o00 0

Up to a subsequence of {Ye’”} _y* one has limy—o0 | SUp,co.7y |¥," — VE| = 0, P-as. It
n

follows from (6.27) that P-a.s.

V= lim 1 Y5 = lim 4 1,,Y" =14,Y,, Vi€ [v, 1l (6.39)
n—oo

n—oo

which together with the continuity of )¢ shows that
{1,4/Z Yov (g }relo T is a continuous process. (6.40)

On the other hand, the strong limit Z¢ and the weak limit Z¢ of <=2} corpn €N

must coincide, i.e. Z{ = Z!, dt ® dP-a.s., which together with (6.38), (6.27) and (6.39) and
(6.30) shows that

T
lim E|14, sup |¥/'— 1/,|2 + lim ]E/ 1Z" — 25%dr = 0. (6.41)
n—oo ZE[V,‘E(] n—0o0 v

(3) By (6.31) and (6.40), Y\, — Yyy(nan = 1a, (Yv — va(rmz)), t € [0, T] is an F-adapted
continuous process, then so is

t

t
ICf =Yy, — Yovirar) — / 1{u<s§rg}g(s’ Yy, Zf)ds +/ 1{v<s§Q}Zdes»
0 0

tel0,T] (6.42)

One can deduce from (6.41) that

lim E| sup |K!'—K¢|*|=0. (6.43%)
n—00 telv, 1]
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So up to a subsequence of {K"},¢N, it holds P-a.s. that

lim sup |K!'—K{|=0 andthus K= lim K/, Vte[v 7l (6.44)
n— oo ZE[U,T@] n—oo
which together with the monotonicity of K"’s show that for P-a.s. @ € 2, the path Kf(w) is
increasing over period [v(w), T¢(w)]. One can also deduce from (6.44) that for P-a.s. w € {2,
the measure d K" (w) converges weakly to the measure d ICﬁZ (w) on period [v(w), T¢(w)]. It then
follows that P-a.s.

7
/ (Yy — Ly)dKt =0, Vtelv, ] (6.45%)
t
(4) Setting to := v, we next show that process Y together with processes
Zl = Z l{t[71<[§-[[}zf and K[ = Z(’Cﬁ(At - ,Cff—l/\t)’ re [Oa T] (646)
LeN £eN

solves (5.4).

As {l{nv,_1 <tsz}};g[o T is an F-adapted caglad process (thus F-predictable) for each £ € N,
the process Z is F-predictable. On the other hand, it is clear that K is an F-adapted process with
Ko=0.

Let V3 be the P-null set such that for any o € /\/’3c and £ € N,

T
/ |Zf(w)|*dt < oo and the path {K!(w)} is continuous and increasing
0

tel0,7T]
over period [v(w), T¢(w)].
Given w € (N7 U AN3)¢, both sums in (6.46) are finite sums:

N,

Zi@) =) Lo @=i=n(@) 2 @) and

l;l (6.47)
K@) =Y (ICZ (@) A1, @) — KE (11 (@) AL, w)) . telo,Tl.

=1

The former implies that [ |Z,(@)]?dt = [;“|Z;(@)Pdt = YN, [ | ZEw)Pdr <

7—1(w)
Z?’;’l fOT |Zf(a))|2dt < 00, s0 Z € H%0 We see from the latter of (6.47) that the path
{K:(®)}ie[0,77 1s equal to O over period [0, v(w)], is a connection of continuous increasing
pieces from K¢ (t;_1(w), ®) to K¢ (t¢(w), ), £ = 1,..., N, over period [v(w), T(w)], and
then remains constant over period [r (w), T]. Thus, {K;(w)}:e[0,7] 1S a continuous increasing
path, which shows K € K.
Let £ € N. One can deduce that

4
Kt = Z(Kf[i/\l - le[l‘,l/\l) = X;(Kffi/\l - ]Cf[,‘,l/\l)

ieN

4 TNt . AL
=> (—Yw + Yo ni — / g(s, Y5, Zhds + / Z;d&)

i=1 Ti—IN Ti_1At

4 Ti At Ti NI

<_Yr,-/\t + Yr,-,l/\t - / 8(s, Yy, Zy)ds +/ stBs>
i=1 Ti— 1Nt Ti_ 1At
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TNt T¢ Nt
= _Yng/\t + Yoar — / 8(s, Yy, Zy)ds +/ Zyd By
VAL VAL
t t
— Y, 47, — / o(s, Yy, Z)ds +/ Z.dB,, Viev 1l (6.48)
v v
It follows that
T Te
Y, = Yy, +/ g(s. Yy, Zy)ds + Kz, — K, —/ Z.dB,, Vitelv (6.49)
t t

Since the increment of K over [ti_{, ;] is that of K over [t;_1, 7;] for any i € N, (6.45%)
implies that

7 4 7
/ (Y — LydK, =) / (Y, — L)dK,
v i=1YTi-1

4 T .
=Y / (Y, — L)dK! =0, P-as. (6.50)
i=1"%-1

Because of P{Y; > L.} = 1, (5.4) clearly holds IP-a.s. on the set {v = t}, and {(Y,,W)(a)) =
Yy (w) } 1€[0.7] is a constant path for any w € {v = t}. Let /4 be the P-null set such that for any
wef{v<t}NNyNNfand £ €N,

(6.35) and (6.50) hold on scenario w, and {(Yyv (znn) (@) }
continuous path (see (6.40)).

Forany w € {v =1t}N (/\/1 UNMN> UM)C, we can deduce from (6.49) that (5.4) holds on scenario
w and {(va,)(w) = (YW(TM))(“’)}te[O,T] is a continuous path.  [J

refo,71 18

Proof of Proposition 5.3. The flat-off condition of reflected BSDEs implies that [P-a.s.
s s
0 =< / Lyi.y2dK, = / Lpioyisy2dK,
t t
s
< / Lypiog2dK)! =0, VO<i<s<T.
t

It follows that P-a.s.

) N
/ Loy (dK} —dK?) = —/ Lyioy2ydK} <0, VO<i<s<T.
t t

Then we can apply Proposition 3.2 over period [0, 7] with Vi = K, i = 1,2 to get the
conclusion. [J

Proof of Theorem 5.1. (1) (existence) For any n € N, we define function g, as in (1.10), which
satisfies (H1)—(H5) since L € Sﬂr. In light of Proposition 3.1, the BSDE(&, g,,) admits a unique
solution (Y", Z") € Npe(0,1)(SP x H27) such that Y" is of class (D). Also, Proposition 3.3
shows that for any w € {2 except on a P-null set A/

Y'(w) <Y (w), Vtel0,T], VneN. (6.51)

We can let (6.51) hold for any w € {2 by setting Y/'(w) = Ligene Y/ (w), (t, w) € [0, T] x £2,
n € N (each modified Y" still belongs to N,e(0,1) S, of class (D) and satisfies BSDE(Z, g,)
with Z™).
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Applying Proposition 5.1 with (Y", Z", J") = (Y",Z",0), n € N shows that the limit
process Y; = lim,—~ 1 Y/, t € [0, T] is an F-predictable process of class (D) satisfying
E[sup, 0.7 1Y:17] < 00, ¥ p € (0, 1). It follows that sup, o 71 (V)™ + ¥;") < Y]+, < oo,
P-as. As Y7 = lim;,, 00 1 Y% =& > Lr, P-as., applying Proposition 5.2 with (v, 7) = (0, T)
yields that ¥ € N e(,1)S” solves RBSDE(Z, g, L) with some (Z, K) € H*? x K°. Moreover,
applying Lemma A.2 with (v, ) = (0, T') and using Ho6lder’s inequality show that

T p/2 T P
E [(/ |ZS|2ds> ] +E[K7] < CLE[(Y)P]+Cp (]E/ h,dt> < o0,
0 0

Vpe(0,1).

Namely, (Z, K) € Npe(,1)(H>P x KP).

(2) (uniqueness) Let (Y!, Z', K1), (Y2, Z%, K?) € Npe(,1)(SP x H2? x KP) be two solutions
of RBSDE(, g, L) such that Y, Y2 is of class (D). We know from Proposition 5.3 that
P{Y! =Y?, VYt e[0,T]} = 1,so it holds P-a.s. that

T T
/ g(s, v}, zhds + Kk} — k! —[ VAT):R
t t
T T
= / g(s, Y2, Z2)ds + K3 — K> — / Z2dB;, t€l0,T]
t t

Comparing martingale parts on both side shows that Z} = Z,2, dt @ dP-a.s. Then it follows that
P-a.s.

t 13
K!'=v) -1 - /g(s, Y;,z})dH/ VALY NED I /g(s,Yf,zf)ds
0 0 0
t
+/ Z2dB; = K}, t€[0,TI.
0

(3) (proof of (5.1) and (5.2)) Fix v € T and y € 7, 7. We will simply denote t;(v) by 7. The
uniform integrability of {Y, }, ¢7 implies that ¥,, € L' (F}), so we see from (A.2) that [P-a.s.

14 14
v, " =yy+/ g(s. YSV’YV,ZSV’YV)ds—/ zl'"dB,, Vielvyl (6.52)
t

t

Since it holds P-a.s. that

Y Y
Y: :Yy—i—/ g(s,Ys,Zs)ds—l—K,, —K,—/ ZidBgs, Ytelv, vyl
t

t
applying Proposition 3.2 with (Y1, Z!, v1) = (¥, z7¥r 0) and (Y2, 2%, V?) = (¥, Z, K)
yields that P-a.s., Y,y'yy <Y, foranyt € [v, y]. In particular,
$ =Y <v, Pas (6.53)
AsY, > 1y,.1yLy, +11,=116 =R, P-a.s., we see from the monotonicity of g-evaluation that

Y, > €8, 1Y, 1 > €5[Ry],  Pas. (6.54)
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Since it holds P-as.that ¥; > R, = L; for any r € [v,T), the flat-off condition in
RBSDE(¢, g, L) implies that P-a.s. K; = K, for any 7 € [v, T]. Then it holds P-a.s. that

TAY TAY
Y, = ?Ay‘i‘/ 8(57 YSst)dS‘I'K?Ay_KI_f Zsd By
t t

?/\y ?/\y
= Yiny +/ g(s. Yy, Zy)ds —/ ZidBy, Yte[v,TAy]
t t

Similar to (6.52), one has that P-a.s.

TAY, Y2ny Ty TAY. Y2ny STAY. Yeny
Y, = Yory + g(s, Ys A )ds
t
TAY -~
TAY, Y3, ~
- . eV, T .
Z "V B, Vit Ay
t

Applying Proposition 3.2 again yields that P-a.s., Y; = Y,MV’Y?M forany ¢ € [v, TA y]. It thus
follows that

?A)/, Y?/\y

Y, =Y, =&5. . [Yany]. Pras, (6.55)

V,TAY
which together with (6.53) proves (5.1).

As Yr = & = Rr, P-as., we can deduce from the continuity of process Y and the right-
continuity of process R that Yz = Rz, P-a.s. So taking y = T in (6.55) yields that ¥, =
S+ [Yz] = €5 - [Rz], P-a.s., which together with (6.54) implies (5.2). O

6.3. Proof of Theorem 2.1

(1) (existence) We shall follow [25]’s approach by pasting local solutions to construct a global
solution of DRBSDE (¢, g, L, U), see our introduction for a synopsis.
(1a) (increasing penalization scheme)

For n € N, we define function g, as in (1.10) which satisfies (H1)-(H5) since L € Sﬁr.
Theorem 5.1 and Remark 5.2 show that the following reflected BSDE with generator g, and
upper obstacle U

T T
Ui > v =§+/ ans, Ys,zs)ds—frw,—/ Z.dB;, 1€[0,T],
i i (6.56)

T
/ (Ut—Yt)thZO
0

admits a unique solution (Y, Z", J") € Npe(0,1)(SP x H?>? x KP) such that Y” is of class (D).
In light of Proposition 5.3 and Remark 5.2, it holds for any @ € (2 except on a P-null set A/ that

Y'(w) <Y (w), Vrel0,T],VneN. (6.57)

We can let (6.57) hold for any w € {2 by setting Y/" (@) = ljpepne) Y/ (@), (t,w) € [0, T] x {2,
n € N (each modified Y still belongs to N,e,1) S?, of class (D) and satisfies (6.56) with
(Z",J")). By Proposition 5.1, the limit process ¥; = lim,o 1 Y/, t € [0,T] is an F-
predictable process of class (D) that satisfies

E| sup |[%4|? | <00, Vpe(01). (6.58)
1€[0,T]
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Letv € 7. For any n € N, define a stopping time y,! :=inf{t € [v,T]:Y/' = U} AT € T.
As it holds P-a.s. that Y/ < U; forany t € [v, ylj’), we can deduce from the flat-off condition in
(6.56) that P{J" = JI', ¥t € [v, ']} = 1. It then follows that P-a.s.

n

a4 Yo
en(s, Y], Zds — f Z!dBy. (6.59)
t

0=J;’£,—Jt"=Y)Z,}—Yt”+/
t

Clearly, y,} is decreasing in 7, and their limit y,, = lim,— o 1 ¥/} > v is still a stopping time
thanks to the right continuity of filtration F. We claim that

Y,, =1y,=1y¢§ + 1y, <n1U,,, P-as. (6.60)
(which will be shown in the Appendix). So Yy, > 1y,=1yL1 + 1{3,<7}L,, = L,,, P-a.s. Since
]E|:suple[0j] [YHP + SUpP;[0.7] |Y,|pi| < 00, ¥ p € (0, 1) and since it holds IP-a.s. that

Yv W
yr=yn +/ gn(s, Yg,zg)ds—/ Z'dB;, Ytev, (6.61)
t

t

for any n € N by (6.59), applying Proposition 5.2 to {(Y", Z")} _. yields that process
{YW(J,UA,) }te[O T has P-a.s. continuous paths and there exist (Z", KV) € H20 x KO such that

P-a.s.
iz iz
L <Y, =Y, —l—/ g(s, Yy, Z))ds + K;U - K/ —/ Z.d By,
Viewnl t (6.62)
/yv(yt ~ L)dK} = 0.
v

Since E[|Yy|] < oo by the uniform integrability of {¥;};c7, Lemma A.2, Holder’s inequality
and (6.58) show that

T p/2 T P
E <f |Zt|2dt> SC,,E[ sup |Y,|”] +C, (E/ h,dt) < 0,
v telv, 7] v
Vpe(0,1). (6.63)

(1b) (decreasing penalization scheme)

Similar to g7, discussed in Remark 1.3(4), gy (¢, w, y) == (y — Uy()) T, (t, w, y) € [0, T] x
2 x Risclearly a & ® #(R)/%(R)-measurable function satisfying (H2)—(H4). Forany n € N,
we see from Remark 1.3(3) that

Zn(t,w,y,2) =gt w,y,2) —n(y—U@), VY, 0,72 ¢el0,T]x2xRxR

defines a generator, and Theorem 5.1 shows that RBSDE(S, Sn> L) admits a unique solution
(Y", z", K”) € Npe(o,1)(SP x H2? x KP) such that Y” is of class (D). Since gy is decreasing
in n, Proposition 5.3 shows that P-a.s.

Y'>Y"' Vre[0,T],VneN. (6.64)

As in (6.57), we can assume that (6.64) holds everywhere on {2.
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Set (Z, l~]) = (—U,—L) € S! xSL. Foranyn € N, (?", zn, f”) = (—?", _7n. —I?")
satisfies that P-a.s.

~

T T
U =-L>Y'=—¢ —/ g(s, Y Z)ds —i—n/ (Y" —U,)Tds — K3 + K
t t

TN
+ / Z"dB,
t

-~

T T
= Y7 +/ g—(s, Y], Z})ds +n/ (Y —Ly) ds+Jp—J
t t
TA
— / Z'dB,, tel0,T). (6.65)
t

Since g_ is a generator by Remark 1.3(1), applying Proposition 5.1 to {(?” z", f")} yields

that Y, = hm,,_>C>o 0 Yl ,t € [0,T] is an F-predictable process of class (D) that satlsﬁes
Elsup;e(o,71 Y]] < 00. ¥ p € (0. ).

Let v € 7. The stopping times ! := inf{r € [v, T] : f’\t” = INJ,} AT =inf{t € [v, T]: Y" =
L,} AT e T is decreasing in n. Analogous to (6.60), 7, := lim,_, | 7/ > v is still a stopping
time that satisfies

YTV = —l{ru:T}g + 1{TV<T}L77v = _I{IV:T}UT - l{TU<T}LTU = _va

> L. P-as. (6.66)

For any n € N, similar to (6.61), we can deduce from (6.65) that P-a.s.

Ty

Ty _
(Y] — Ly) ds —/ Z!'dBs;, Vitelv, 1l
t

Ty ~ ~
Y= +[ g,,(s, Yl Zg’)ds +n/
t

t

As E[sup,;¢o,7) |Y | + SUP; [0, 7] |Yt| ] <00, ¥V p e (0,1),using (6.66) and applying Pr0p051-
tion 5.2 yield that process {YW(TUN) }tE[O 71 has P-a.s. continuous paths and there exist (Z" K")
€ H>? x K° such that P-a.s.

TU —~ —~ —~ —~ r\) —~
L <Y, =Yrv+/ g-(s, Y5, Z))ds + Ky, —K;)—f ZJdB,
' '
Vitelv, ol (6.67)

Ty ~ ~ ~
v

Since g_ satisfies (H4) and (HS5) with the same function / as g, an analogy to (6.63) shows that

T p/2 R T p
E (/ |Zt|2dt> §CP]E[ sup |Yt|”}+cp (IE/ htdt) < 00,
v telv,t] v

Vpe(,1). (6.68)
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Set (?, A3 J~”) = (—?, _7v, —I?"), it follows from (6.67) that P-a.s.

Ty ~ o~ ~ ~ Ty o
U >Y, =71, —I—/ g(s, Ys, Z)ds — JT”v +J —/ Z)dBs, Ntel[v, 1],
t t

. o (6.69)
/ (UZ - Y[)d]tv = 0
v
(1c) Next, we show that except on a P-null set N
L<Y,=Y,<U, t€l0,T] (6.70)

Givenn € N, we set V" :=n [ (Y — Ly)~ds — J/ and V} := —n [y (Y — Uy)*ds + K},
t €[0,T]. As (Y", Z", J") solves (6.56) and (Y", Z", K") solves RBSDE(£, g,, L), it holds
P-a.s. that

Y'<U;, and Y'>L, Viel0,Tl (6.71)

We can then deduce that P-a.s.
s

N
/z Lypg @V —dVy') < nf, Lyno iy (V) = L)~ + (¥ = Up))dr
N
= ”/ (1{L,ZY,”>I7,"}(an — L))"+ Lynojusy, (Y] — U,)+>dr
t
N
= ”/ (Vo7 O = L™ + Vpevy B = U )dr =0, YOt <s<T.
t r

Since Y7 = ?% = &, P-a.s., applying Proposition 3~.2 over Eeriod [0, T] with g! =Ng2 =g,
(r',zh vl =", z", V" and (Y2, Z2,V?) = (Y", Z", V") yields that P{¥}" < Y}, ¥t €
[0, T1} = 1. It follows that P-a.s.

Yi=lim ¢ Y'< lim | Y"=Y, tel0,T] (6.72)
n—oo n—oo

On the other hand, let v € 7. By (6.66),

va/\]/v = 1{T|J>V\J}YVU + 1{'51)5]/1)}?7\) = l{TV>VU}Y)/U + 1{T|JSV|J~,TV<T}LTU + 1{"-’\):)/11:7‘}s

IA

1{7v>yv}UVV + I{TUEVU»TV<T}YTU + 1{"7\):%):7‘}s = I{TV>VV}Y)’V + I{vayv}YTv
=Yy, Ay, Pas.

Also, we see from (6.69)and (6.62) that P-a.s.
~ ~ TwAYv ~ o~ ~ ~ WAV
Yy =Y ny, —|—/ g(s, Y5, Z))ds — Jruv/\yu +J —/ Z,dB;,
t t
and
Tw AV Tv AV
Yi =Y ap —|—/ g(s, Y5, Z))ds + K;’Myu - K, — / Z/dB;,
t t

Vtelv,y Awl.

Since both ¥ and Y are of class (D), using (6.63), (6.68) and applying Proposition 3.2 over
stochastic interval [[v, 7, A y, 1 with (Y', z!, vl = (Y, VAS —J“) and (Y2, 7%, V% =
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(Y, Z", KV) yield that P-a.s., 17, <Y, YVt € [v, 7y A y]. In particular, one has ﬁ < Y, P-
a.s. As v varies over 7, the cross-section theorem (see Theorem IV.86 of [16]) and (6.71) imply
that P-a.s.

L,< lim | Y'=Y,<Y,= lim 4 Y'"<U, t€[0,T],

n—o00 n—oo

which together with (6.72) proves (6.70). In particular, we see from (6.62) and (6.69) that
(Y, Z", K", 0) locally solves the doubly reflected BSDE over the stochastic interval [[v, y, ]| and
(Y, A ,0,J ") = (Y, Z” 0, JV ) locally solves the doubly reflected BSDE over the stochastic
1nterval v, tl.
(1d) (construction of a solution via pasting)

Foranyn e Nandt € [0, T], setZ]' :=[(t —27") v O, (t +27") AT]. Similar to (A.19), we
can deduce from the continuity of Y "’s Y"s and (6.70) that P-a.s.

lim 1 inf ¥, = lim 1 inf lim 1 Y > hm 4 lim 1 1nf Y

n—oo seZ? n— 00 seZP m—00 n— 00
= lim ¢ Y" =Y = Y, lim | Y = lim ¢ lim | sup Y
m— 00 m— 00 m— 00 n—00 seI!

v

lim | sup lim | Y'” = 11m | sup ¥y = 11m 1 sup Y
n—

=00 gegn M seIt seZ?

lim 4 inf Y, Vtel0,T],

n—00 = seIp

v

which shows that Y is a continuous process. So ¥ € N,¢(,1) S” by (6.58).
Let v; := 0, we recursively set stopping times v, = y,,, Vg1 = Ty} £ € N, and define
processes

~ U/
Z; = Z I{W<t5vé}Z;)Z + 1{Vé<t5w+1}z s K: = Z (K:fm - K“’)Lf”) ’
LeN teN

~v/
= Z(JV;HM 7 'fN) 1[0, 7).

teN

Since {I{VZ<ISU2}}IG[O,T] and {1{v2<t§w+1}}te 0.r] are F-adapted caglad processes (thus F-
predictable) for each £ € N, the process Z is F-predictable. Also, it is clear that K and J are
F-adapted processes with Ko = Jy = 0.

Let N> be the P-null set such that for any w € N, the paths L.(w), U.(w)Y.(w) are continuous
and L;(w) < U;(w) for any ¢t € [0, T]. By (6.60) and (6.66), it holds except on a P-null set A3
that

1{vé<T}Yvé = 1{vé<T}Uvé and 1y, <1yY, =14, <)Ly, YEEN (6.74)
We claim that {v, },eN is stationary: more precisely, for any w € (N U N2 U N3)¢
T =vy,(w) forsome N, € N. (6.75)

Assume not, then it holds for some w € (N7 UN3 UN3)C that v, (w) < T for each n € N. Given
neN, as v, (w) < v, (w) < vpy1(@) < T, (6.74) shows that

(Yy) (@) = (Uy) (@ and (Y,,,,) (@) = (Ys,.) (@) = (Ly,.,) (@). (6.76)
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Let t, = tx(w) = limy— 00 T Vy(@) = limy00 1 v, (@) € [0, T]. As n — 00 in (6.76), we see
from the continuity of paths L.(w), U.(w) and Y.(w) that

Li(@) = lim (Ly,,,) @) = lim (7,,,,)©) = ¥, (@) = ¥, (@) = lim (¥;) @)
= lim (Uy) @) = U, ().

A contradiction appears, so (6.75) holds. Then the three sums in (6.73) are finite sums. An
analogous discussion to the one below (6.47) shows that Z € H20 and K, J € K°.

Let ¢ € N with £ > 2. Similar to (6.48), we can deduce from (6.69), (6.62) and (6.70) that
P-a.s.

-1 -1 ,
_ — Vi _ Vi i TVi
Ki—Ji = (Kvi’At v N) (‘]Uz+1N Ju{m)
i=1 i=1
-1 VAL
= —le_/m + Yy — / g(s, Ys, Z;”)ds
i=1 Vi At

Vit
+/ thdB V[+1/\I+YU,/\Z‘
%

i N\t

VigI NI ~ ~y Vt+l/\t
— / g(s, YS,ZS’)ds+/ dB
VAL VAL

-1

Vi1 At Vip1 At
= ( v,+1At + Yv,At / g(s» Yy, Zs)ds +/ stBs>
v,

i=1 i Nt Vi AL

t t

= —Y,+Y0—/ g(s, YS,Zs)ds~|—/ ZsdBy, Vit €[0,v].
0 0

It follows that P-a.s.
vy Ve
YtZYve‘i‘/ g(S, Ys, Zs)ds‘i‘Kvg_Kt_JUg"‘Jt_/ Z,d By,
t t

Vit e[0,ve]. (6.77)

Since the increment of K over [v;, v/] is that of K" over [v;, v/] (K is constant over [v], vi41])

and since the increment of J over [vlf , Vit1] is that of J Vi over [vi’ ,Vi+1] (J is constant over
[v;, vl.’]), (6.69), (6.62) and (6.70) again imply that

73 -1 1)1./ —1 ulf )
/O (Y, = L)dK, =) f (¥, — LydK, =) f (¥, — LydK;" =0, (6.78)
i=1 Vi i=1YVi

and

Ve vy N =1 evigg -
/O(UZ—Y,)djtz./O (U = Yi)dJ, = / (Ur = Y,)dJ;

Z / U, —¥)dJ =0, Pas. (6.79)

Clearly, Y7 = lim, .o 1 Y} = &, P-ass. Letting £ — o0 in (6.77), (6.78) and (6.79), we see
from (6.75) and (6.70) that (Y, Z, K, J) solves DRBSDE(, g, L, U).
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(2) (Proof of (2.1)—(2.3)). Fix v € 7. We will simply denote 7, by T and y,* by ¥. Since it holds
P-a.s. that

Y, >L;,, Vte [v,?) and Y; <U;, Vte [v, )7),
the flat-off conditions in DRBSDE(, g, L, U) implies that P-a.s.
Ki=K,, Yte[,7] and J =J,, Vie[v7] (6.80)

Let 7,y € 7, r, we see from (6.80) that P-a.s.
TAY TAY
Y, = ?Ay"'/ g(S»Ys,Zs)dS_J?Ay‘FJI_/ Zsd By, V[E[U,?/\ V]-
t t
As Yepy € L! (FzAy) by the uniform integrability of {Y,/}, 7, (A.2) shows that P-a.s.

- TAY TAY
Y[r/\)/»me = Yiry +/ g(s Yt/\y Yeay Zr/\y YTAV)dS _f Zr/\y medBM
t t
Vie[v,TAY] (6.81)

Applying Proposition 3.2 with (Y, Z!, vy = (¥, Z, —J) and (Y2, Z%,V?) = (Y?A%YW,

ZTAYYeny | 0) yields that P-as., ¥, < thy’y?” forany t € [v, T A y]. It follows that

v, < vy VY 2 g8 [ven, ] Pas. (6.82)

V,TAY

Similarly, we can deduce that
Y, > Ef’t/\?[Y,/\y], P-a.s., (6.83)

proving (2.1).
The continuity of processes Y, L and U implies that 1jz.7} Y7 = 1iz<1}L7 and 151} Y3 =
17 <73Uyp, P-ass. It follows that P-a.s.

R(?’ V) = 1{?<y}L? + 1{y§?}ﬂ{y<T}Uy + 1{?=y=T}€ = 1{?<V}Y? + 1{y§?}ﬂ{y<T}Yy
+1lg—y—11Y7 = Y2uy, (6.84)
and
R(t. V) = L<piLr + Lp<onp<n)Up + Lir=p=1)§ = Liz<p)Yt + Lp<onp<n)¥p
—+ 1{‘[:)’/\=T}YT = Yr/\?~ (685)
Then (6.82), (6.83) and the monotonicity of g-evaluation show that
gu TAY [R(T )/)] = gv rAy[ TM/] =Y =< gv r/\y[ T/\V] = 55,?/\)/ [R(?’ )/)], P-as.

Taking essential supremum over v € 7, 7 and essential infimum over y € 7, 1 respectively
yields that

esssup essinf & R(t,y)| < essinf esssup & R(z,y)
tel, 1 velur UTAV[ ] vel,r e, UTAV[ ]

esssup &5 S[R(z,7)]

el 1

IA
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<Y < ;;is?l_nf ES ey [RE, 1]
< esssup essinf £5 .., [R(r,y)]. P-as. (6.86)

Te’]—vT VASEN A

By (6.80) again, it holds P-a.s. that

TAY TAY
Y, = ?A7+/ (s, YS,ZS)ds—/ ZidBy, Yte[v,TA7]
t t

Comparing it to (6.81) with y = 7, we can deduce from applying Proposition 3.2 that P-a.s.,
Y, = YMV YT for any t € [v,T A7]. Taking y = 7 in (6.84) and T = T in (6.85) yields that

Y, = YMV Yeny 5§my[Y?Ay] Sf?A?[R(t, )], P-a.s., which together with (6.86) proves
(2.2) and (2.3).

(3) (uniqueness) Let (%, 2, %, 7)€ (ﬂpe(o,]) S”) x H>? x K° x K° be another solution of
DRBSDE (&, g, L, U) such that % is of class (D). Since % also satisfies (2.3), it holds for any
t € [0, T'] that

%; = esssup essinf & R(z, )| = essinf esssup £° R(z,y)
t PoTr N tr/\y[ ] N Ty trAy[ ]

=Y;, P-as. (6.87)

The continuity of Y and ¢ then shows that P-a.s.
T T
§+/ g(s,Ys,Zs)derKT—Kt—JT+Jz—/ ZdBs =Y, =%
t t

T
=E+/ g(s, %, Z)ds +Jr — 2 — I+ i — /Q‘”dBA, tel0,T].
t

Comparing the martingale parts on both sides shows that Z, = 27, dt ® dP-a.s., and it follows
that P-a.s.

= - %, tel0,T] (6.88)

The flat-off conditions in DRBSDE(¢, g, L, U) implies that P-a.s.
t t t
K; = / Liy,=L,d K5, = /0 V=1, d s, Jr = / Liy,=v,d Js,
0 0
t
Hr = /0 Lig—vnd 75, te[0,T] (6.89)
AsP{L, < U;, Yt € [0, T]} = 1, we can deduce that P-a.s.
t t
/(; l{Ys:Us}dKS :‘/0 l{Y.s:Us}l{Ys:Ls}dKS =0 and

t t
/ Lg=u,d A =/ Log=vglig=1dHs =0, 1[0, T],
0 0
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which together with (6.89), (6.87) and (6.88) leads to that P-a.s.

t t t t
Ji =/ 1{YS=US}dJs+/ Vi, —u,d s =/ Ly, =u,yd Js +f Ly, =u,)d s
0 0 0 0

t ' ' t
=/ 1{Y3-:Uy}dfs+/ Liy,=u,)d K =/ Lig—v,yd s +/ Liy,=v,)d K
0 0 0 0
= jlv re [Ov T]
Then it easily follows from (6.88) that P-a.s., K, = %, Yt € [0, T]. O
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Appendix

Lemma A.l. Given & € L](]-}), let & € LY(F,) and let gt,w,y,2) = <t 8t ®,y, 2),
(t,w,y,2) €[0,T] x 2 xR x RY be a generator. Then one has

Py)* = Y55, Viel0, T} =1 and Z7* =1y<yZ}%, dt ® dP-as. (A.1)

(see (4.1) for the notation Y%, Z%5). In particular, it holds P-a.s. that

T T
A =g+f g(s, xff,zg’é)ds—/ ZM¥dBs, Vrelo,rl. (A.2)
t t

Proof. Given n € N, we define a stopping time
! 2
Yn ::inf{te[O, T]Z/ |Z§’S| ds>n}/\TeT. (A.3)
0

Since Y755, = Y35+ [71 Vseryg(s, Y55, Z0%)ds — (11 z0%aBy = v5F — [ Z7%dB,,

TAYn TAYn TAYn
P-a.s., taking conditional expectation E[~|]-} Ayn] yields that P-a.s.

Yrtfy,, = E[Y;,ﬂfmyn] = 1{T§yn}E[Y;,{E|-7:T] + 1{T>Vn}E[Y;n,§|‘Fyn]
= l{rfy,,}E[Y;fL,Fr] + 1{r>y,,}Y;,;§- (A4)

As Z%5 e Npe,1) H2P ¢ HZO, {¥n}nen is stationary. Letting n — oo, we can deduce from the
. . e 7,
uniform integrability of {Yy }y .7 that

Y78 = 1en B[V S|P + 1oy V7 = E[¥75| 7] =E[g| 7] =6 Pas.
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Then it follows that P-a.s.

T T
Y55 = vrt +/ Lis<r)g(s. Yf’g,zsr’s)ds—/ Z 't dB
T

Nt AL

T T
= §'+/ l{ssr}g(s, Y;’Ai, I{XST}Z;[’E)dS —/ l{ssr}Z;’gdBS,
t

t

tel0,T] (A.S)
which shows that {(Yff,, I{IST}Z,T’S) }te 0.7] also solves BSDE(¢, g;). Clearly, { T/\%}IE[O 11
an F-adapted continuous process such that E[sup, o 7] Y55 |71 < Elsup,c .71 Y5 171 <

for any p € (0,1) and that {Y)f’g}yeTO is uniformly integrable. As {1{f<f}}te0T is an

F-adapted caglad process (and thus F-predictable), we see that {1{,5T}Z, is an F-

°}
1€[0,T]
p/2 p/2
predictable process satisfying E |:<f0T Ly<n|ZF® |2) } <E |:<f0T V4i |2) :| < oo for any
p € (0, 1). Hence, by the uniqueness of solution of BSDE(£, g;), (A.1) holds.
Moreover, (A.5) can be alternatively expressed as: P-a.s.

T
r/\t =¢£ +/ g(s, Ysrﬁ’ Z;f)ds —f Zsr'gst, tel0,T],
TNAL TAL
which leads to (A.2). [
Lemma A.2. Let g : [0, T] x 2 x RxR? - Rbea P @ BR) @ B(R?)/B(R)-measurable

function satisfying (H1) and (H4). Given v, t € T withv < t, let (Y,Z,K) € SO x H20 x KO
satisfy that P-a.s.

T T
=1, +f g8(s, Yy, Zg)ds + K — K; —/ ZidBs, Vtelv, 1] (A.6)
t t

If E[I¥,[] < oo, then for any p € (0. 00), E[(/j |Z,|2dt)p/2] + E[(K; — K)P] <

C ]E|:suple[v’t] |Yt|”} + CpE[ (/] hidr)"]

Proof. Let E[|Y,|] < 0o and fix p € (0, 00). By the Burkholder-Davis-Gundy inequality, there
exists ¢, > 0 such that for any continuous local martingale M

E[(M,)"] < c,,IE[(Mﬂ/Z] and IE[(M*)P/2] <¢,E [(M)'T’/“]. (A7)

Set ¥ := supc[y, 7] |¥:| and suppose E [ #P] < oo, otherwise the result trivially holds. We let

n € N and define a stopping time t,, := inf{r € [v, 7] : flf |Zs|2ds > n} At € 7.1Itis clear that
v <1, < 7. Since (H1), (H4) and Holder’s inequality imply that

K

n

- K,

Tn Tn
Yv_an_[ g([»Yt,Zt)dt+f Z:dB;
v vV

IA

T, T
20 +/ (ht + Kk |Ye| + x| Z: ) dt + ’/ 1y <s<z,) Z1d By
v 0
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T T 1/2
5(2+KT)sp+f h,dz+xﬁ</ |Z,|2dt>
vV

v

+ sup s IP-a.s.,

te[0,T]

t
/ 1y <5<z} Zsd By
0

taking the expectation of pth power, we can deduce from (1.5) and (A.7) that

o) oot ()

T r/2
+ (KPTP/2 + c,,) E [(/ |Z,|2dt> “ (A8)

As ]E[|YU |] < 00, Corollary 3.1 implies that there exists a unique Ze Npe(,1) H?2? such that
P{E[Y,|F] = E[Y,] + [y Z;dBy, Yt €[0,T]} = 1. Similar to (6.3), (A.6) shows that P-a.s.

~ t
Y, = E[Yy|Fon] + va(rAt) - Y, =E[Y,] - / 1{v<s§r}g(sv Y5, Zs)ds
0

t t
- / 1{v<s§r}sz +/ (l{sgv}zs + 1{v<s§r}Zs) dB;, te€[0,T]. (A9)
0 0

So Y is an F-adapted continuous process, i.e. Y eSO,
Seta = 2(k +«?) and § := [3(1 v 4P/2"1)(1 v 4P~ (kPTP/? + cp)]_z/p. Applying Itd’s

formula to process {e’” |I7t |2}te[0 7> We can deduce from (A.9) that P-a.s.

' '
e‘”|Y,|2 = (IE[YU])z—f-a/ e‘”|Ys|2ds—2/ Vy<s<re”Ysg(s, Y5, Zs)ds
0 0
t
# [ e (1enlZeP + Leszn | Z2P) ds
0

t

t
- 2/ 1{v<s§r}emstKs + 2/ Y (l{sgv}zs + 1{v<s§r}Zs) dBy,
0 0
tel0,T].

An analogy to (6.6) shows that )N’t =Y;, YVt € [v, t]. Hence, it holds P-a.s. that
T T
Y, P = e’”|YT|2 = e‘”|Yl’2 + a/ e”‘Y|YS|2ds - 2/ Liy<s<r}e® Ysg(s, Y5, Zs)ds
t t
T ~ T ~ ~

- 2/ 1{v<s§r}eaSstKs + 2/ emYs (I{SSV}ZS + 1{v<s§r}Zs) st

t t

T
+ / e” <l{s§v}|Zs|2 + 1{v<s§r}|Zs|2) ds

t
T
= e“’|Y,|2+/ e (alV, 2 + 12,2 = 2Y,8(s. ¥y, Z) ) ds
t

T T
—2/ e“SYSdeuzf e“Y,ZdBs, Yt € v, 1] (A.10)
t t
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Then (H1) and (H4) imply that P-a.s.
) Tn ) ) 2
aa +/ e (al¥sP +12) ds
vV

ar,
= e "

T Tn Tn
an|2 +2/ e” Sg(S, Ys, Zs)dS +2/ eaSstKs - 2/ eaSYSZSdBS
v v v
Tn
e w2 [T e (10dh 4 KV kI ds 4 26T UK, — Ko
%

T
+2 / l{Vszrll}eaSYsstBs
0

2 T T,
< (1 + E)em w2 4 20T . f hyds + 2(c + Kz)/ ™S\ Y,|2ds
v

v

1 A ' $ T
+5 / 12, s + S (K, — K+ 2’ / Lpves<e, 16 ¥s Z,d By
v 0

It follows that P-a.s.

Tn Tn 4 T 2
/ \Z,2dt < / |2, Pdt < (4 + E)eM w242 (/ h,dt)
v v

v
t
+58(Ky, — K,)>+4 sup f <5<z, Yy Zod By
0

1€[0,T]

Taking the expectation of p/2th power, we can deduce from (1.5) and (A.8) that

. |:</r |Z,|2dt)P/2:|

T p
S(lV4p/2_1)[<4+%)p/ze“pTE[W]—kZ”/QE[(f hm) ]

Tn P/4
+8PPE [(Ky, — Ky)P] + 472, E [(/ e2“’|Yt|2|Zt|2dt> } }
v

< C,E[¥P]+C,E [(/vr h,dt)p} N %]E |:<'/Urn |Z,|2dt)p/2]
+CpE [(W’” ( [ IZt|2dt)p/4:|
< GE[V']+CE |:</vf h,dt)p} + %]E |:</V’" |Zt|2dt)p/2] |

So B[ (" 1Z12d1)"?] = C,E[#P] + C,E[(J] hidr)” ], which together with (A.8) shows

that
E [(/vr |Z,|2dt)p/2i| +E[ (Ky, — K.)'|
prE[![/p]+CpE|:</vrh,dt>p:|. (A.11)
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As Z € ﬁ2*0, it holds for P-a.s. @ € {2 that 7(w) = 1y, (@) for some N,, € N. Then letting n —
oo in (A.11), we can apply the monotone convergence theorem to obtain the conclusion. [J

Lemma A.3. Let X be an F-optional process with P-a.s. right upper semi-continuous paths
(ie., for any w € (2 except a P-null set Ny, X; > limy\,X,, Yt € [0,7)). If X, < Xy,
P-a.s. for any v,V € T withv <7, P-a.s., then X is an increasing process.

Proof. Set Dy := {tk 2k A T}(2 T , Vk €e Nand D := Ugen Dg. Given t € [0, T'), we define
X, =1lim, o 1 infycon Xy, where an =DnN(t (t+27") AT]. Clearly,
or = U 6/, where 0/* =Dy (1, t +27") AT]. (A.12)
n

k>

For any m,n € N with m < n, since ©)" is a countable subset of (t (t+27")AT], the
random variable infyc gr X is clearly F(,-n),r-measurable. So X, = l1mn»oo 1 infycgr
X5 € Fyq42-myar- As m — 00, the right-continuity of the filtration F shows that

X, € N Fuypo-mar = Fir = Fr. (A.13)
meN

(1) Additionally setting X7 = Xt € Fr, we first show the process X is F-progressively
measurable.

Foranyt € [0,T), c € R and n, k € N with kK > n, since it holds fori = 0, ..., LZkIJ and
any s € [tf, 1, ) N[0, 1] that

Ot = Oyt =t =it ik 2 = P C (s 42T AT
c (0,c+2"AT],
we can deduce that

{(S,w) €[0.1] x 2: min X,(w) > c}
re@f’k

= LZk;J{(S o) € (I, ) N10.1) x 25 min X, (@) = c]

1= re@
5o {(s w) € ([t,, £ )N, r]) X 0 min X, (@) > c}
re@
12%7] c ok
=y regka{(s’w) e (Ief 50 010.11) X 2: X, (@) = ¢}
[2%¢]

) 9 ([z‘l, ik o, r]) x {X, > ¢} € B(0,1]) ® Fiys2-mrr- (A.14)

Now, let 7 € [0, 7] and ¢ € R. If 7 = 0, then (A.13) shows that {(s,w) € [0,7] x £ :
X, (w) > E} = {0} x {X, > ¢} € B0} ® Fo;if 7 > 0, forany m > mg = {—l“—t—‘, we can
deduce from (A.14) and (A.12) that

{(s,0) €[0,7=27"] x 2: X;(») > T}
={c.oefo.T-2"]x2: Jim 1 int Xy () > g

n>m
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ngm{(s,a)) c [(),’f'_ m] x £ in(gsn Xr(w) > F}

n>m (e

{(s w) € [0.7-27"] x Q:riergng(w) z’c“+1/e}

{(s © e[0,T=2"]x 2: min X,(0)>7C

n>m ZeN k>n }’E@Sn'k

+1/tfez([0.7T-2"]) 0 7,
which together with (A.13) shows that
{Gs,0) €[0,7] x 2: X,(w) > T}

= [(s,a)) € ( U [0,7— 2""]) x 2: X, () > '5}

m>mg

U{Gs,w) e [T} x 2: X (0) > ¢}

_ ( U {0 e [0.7—27"] x 2: X, (@) > z})
m>m

({7} x{X;>7¢}) e ([0.7]) ® -

SoAd = {5 CcR: {(s, w) € [0,7] x2:X (w) e 5} c R ([O 7]) ®.7-"’;} contains all open sets
of form (¢, 0o), which generates Z(R). Clearly, A is a o-field of R. It follows that Z(R) C A,
ie. {(s,a)) € [0,7] x 2: X, (w) € 5} € @([O?]) ® F; for any £ € Z(R). Hence, X is
F-progressively measurable.

(2) Fix £ € N. Since both X and X are F-progressively measurable, the Debut theorem shows
that

=inf{t €[0,T]: X, <X, — 1/} AT

defines a stopping time, i.e. 7, € 7. We claim that Ay .= {ty < T} € Fr is a P-null set: Assume
not, so Ag\Ny is not empty. Let ® € A¢\Nx and set s := 7¢(w). there exists {s;};en C [s, T)
with lim; , o | s; = s such that

X, (@) < Xy (@) —1/¢, VieN. (A.15)
Given m € N, we can find some i = /i\(m) € Nand 7 = n(m) > m such that for any i > 7 and
n>n, (si,(si+27")AT] C (s, (s +27™) A T] and thus

@; = (kU Dk> n (s,-, (i +27H A T] C (kU Dk) N (s, (s+27™ A T] = o.

>n >m

It follows that inf,cgm X, (w) < 1nfr€9n Xr(w). Letting n — oo, we see that inf,c gm X, (w) <
X, (@). Asi — o0, (A.15) and the r1ght upper semi-continuity of X.(w) imply that

inf X,(w) < lim X (w) < lim X, (w)—1/¢

reon isoo i—00

@Xr(w) — 1/ < Xg(w) — 1/¢.

IA

Now, letting m — oo yields that X (w) < X;(w) — 1/£, which shows that
X, <Xg —1/€ on Ap\Ny. (A.16)
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The F-optional measurability of X implies that of the stopped process {X 7 A,} 1€[0.7] (see
e.g. Corollary 3.24 of [33]), so Xf = I{XIWSXI}’ t € [0, T] is also an F-optional process. Since
Xl = 1ix,,,<x,) = 1, P-as. forany v € 7, the cross-section theorem (see Theorem IV.86
of [16]) shows that for any w € £2 except on a P-null set Ay,

Xi@)=1 or (Xgn) (@) <X,(@), Viel0,Tl. (A.17)

Letw € Ap\(Nx UNp). As X (t¢(w), w) < X (¢, w), YVt € [te(w), T]by (A.17), we can deduce
from (A.16) that
X (u(w), w) < X ((w), w) < X (te(w), w) — 1/L.

An contradiction appears, so 0 = P(Ay) = P{X, < X; — 1/€forsomet € [0, T)}. Let-
ting £ — oo yields that P{X, < X;, forsome? € [0,7T)} = limy—~o P P{X, < X; — 1/¢
for some ¢t € [0, T)} = 0, which together with the right upper semi-continuity of X shows that
except on a P-null set N/

X,thZmez lim | sup Xs > lim | sup X;
SN =00 se(r,(t+2-")AT] =00 se@n

lim {1 inf X, =X, Ytel0,T).

n—oo s€6)]

v

To wit, it holds for any @ € N that
Xi@= lim X(@. VYrel0T). (A.18)
SN\

seDN(t,T]

Set N := N U (Us,yeD,s<s'{Xs > Xy}), which is also a P-null set. Given o € N°¢ and
t,t' €0, T]witht <1, let {sp}peny C DN (¢, ') with lim, o | s, =t and let {s) },eny C DN
((t’, U {T}) with lim, o | s, = t’. We can deduce from (A.18) that X;(w) = lim,_
X5, (@) < limy—00 Xy (@) = Xy (w). Therefore, X is an increasing process. [

Proof of (6.34*). (1) The continuity of Y"’s implies that for P-a.s. w € {2

lim Ys(w) = lim 4 inf Ys(@) = lim 1 inf lim 1 ¥"(w)
NG n—>00 ' se(t,(t+2"")AT] n—00 | se(t,(t+2"")AT]M—>0
> lim 4 lim 1 inf Y (w)

m—00 | n—00 ' se(r,(t+2"")AT]

= lim 1 lim Y"(w) = lim 1 ¥/ (w)
m—00 s\t N m— 00

=Y(w), Vite[v(), (), (A.19)
which shows that the process {Ywm N)} 1e[0.7] has PP-a.s. right lower semi-continuous paths. It
then follows from (6.32) that K has P-as. right upper semi-continuous paths.

(2) We next show that Ef is a weak limit of {K?z/\y nen i L*(Fr) foranyy € T.

Let x € L?(Fr). In virtue of martingale representation theorem, there exists a unique ZX
H?2 such that P-a.s.

t
M} = ]E[X|]-",]=E[X]+/ ZXdBs, Ytel0,T].
0

Set; =¢t:=vVv (g Ay) € T andletn € N. We define T,e’n = KS\/({/\:) + Yf\’/"({/\t) — Yf’” -

(I’(va(mo +Yovienn — YU>, t € [0, T]. As K] = 0 by (6.22), one can deduce from (6.28) that
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P-a.s.

VW (LAL) - VV(EAL)
T[Z’n — —f (g(s, st,l’l’ Z?) —g(s, Y,0) — hf) ds +/ (ZzZ — Zf) dB;
v v

t
[tz (305, 20 565,12, 0) — B s
0

13
+/ Lyes<gy (Z? —Zf> dBs, 1€[0,T],
0

thus %" is an F-adapted continuous process. Since (6.27), (6.31) and (6.25) shows that

[T <4+ KD o+ 1K onn |- Y1 €10, 1, (15), (6.29) and (6.33) imply that

E [(Tf’")2:| <3E [16@2 + (K1) + (I?f)z]

o,
< Cot* + COIE/ (|hf|2 + |zf|2) dt < o0, (A.20)
v

which shows that 74" e S2. Like (6.22), one has
Kf=0, Viel0,v] (A.21)
So Tf*” =K — Ef = 0. Integrating by parts the process MX T4 yields that P-a.s.
T T
X = Mprpr = e [Crarin s [Crtnan
t t

+ (M, T)r —(M*, T),

T
= _/ 1jy<s<c) M2 (g(s, YEn, 7y — g(s, Y5, 0) — hf) ds
t
T
+/ Ly <s<y MY (Zi’ —Zf> d By
t
T T
+/ T ZXd B, +/ 1yes<c) 2% (zg —Zf) ds, te[0,T]. (A22)
t t

Since Doob’s martingale inequality shows that E [(Mjf)z] <A4E[IM}*] = 4E[|x|*] < o0

(i.e. MX € S c H>?), applying the Burkholder-Davis—Gundy inequality and Hélder’s inequal-
ity, we see from (A.20) that

E| sup
t€[0,T]
¢ ) 1/2
< CoE MX</ |Z§’—Zf|ds)
v
T 12 5 ¢ 5
+CoE va”(f |Zj,<|2ds> < Co E[(Mjf) ]]Ef |z! — 2t|7ds
0 v
1/2

2 T
+C0{]E[(Tf’">]IE/O |z;<|2ds} <00,

+ sup
1€[0,T]

t t
/ 1p<s<¢) MY (Zg - Zf) d B / T ZXd B,
0 0

1/2
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Namely, { [ 1y<s<e)ME (22 — Z8) dBy}, o 7y and { [ Liszv) rf’"zdes}lemyT] are uni-

formly integrable martingales. Then taking expectation in (A.22) for ¢+ = 0 yields that
Ex (k7 = RE)| =[x (-1 +¥e + v = 0) |+ EL TP
=E[x (<Y 4V 4y v,
T ~
B [ e M (g0, VI 20 — g6 770 < s
0
T
B [tz M (865, 7,00 — g5, ¥, 0)) ds
0
T
+E/ Vposee) ZX (28 — Z0)ds =1} — I} — I + 1.
0

As MX,ZX € H>?, the weak convergence of {l{y<s<(g(s, Yf’",Z"ﬁ) — g(s, Y5,
Moz € N o {Lpas<aphy) oy and that of {Lp<s<e)Z8} orp 7 € N to

{Lsze 2oy bY (6:30) show that Tim, o 13 = lim, o0 If = 0. Since |x(~¥/" +
Yo+ Y4 —,)| < 4€lx1 by (627), (631), (6.25) and since Ef|x[] < 1+Ellx|*] < 00 by (1.6),

the dominated convergence theorem imply that lim,,—, o /' = 0. Moreover, (H3) shows that

Jim L co<r) (g (s, Y, 0) — g(s, ¥y, 0)) = Jlim. 1a,npv<s=<c)(8(s, Y], 0) — g(s, Yy, 0))
=0, ds®dP-as.,
while (H4), (6.27) and (6.25) imply that ds ® dP-a.s.

)1{v<sSC}MsX (g(s, Ysz’n’ 0) —g(s, ¥, 0))‘ < Lp<s<g)I M |(2hs + K|Yf”| + K|Ys|)
=< 1{v<s§§}|MSX |(2hy + 2/(@).

As (6.24) and Holder’s inequality show that
T
E/ L<s<e) M| 2hs +2c8) ds < 20(1 + KT)E[MK]
0

1/2
< 20(1 +KT)[IE[(M,§)2]] < o0,
we can apply the dominated convergence theorem again to obtain lim, .~ I3 = 0. Hence
lim, s o E[X (Kg _ I?f)] —0.
Since (6.22) and (A.21) imply that for any n € N

n ol _ pn ol _ pn n =l ol
uny ~ Ky = Kopny = Kony = Kopny = Kyneny) — (Krzw o KW\(WM’))
ol ot ol
= Ky — Ko = (vamw) - Kv) =Ky — K,
one gets lim,,, IE[X (K?MV — f}‘f)] = 0, which shows that {K?z/\y 2y converges weakly to

KSin L2(F7).
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(3) Now, let v,y € 7 such that y < ¥, P-a.s. For any n € N, since K" is an increasing
process, it holds P-a.s. that
K" < K! (A.23)

Ay = DAY

Then we must have Kf < Kf7, P-a.s.: Assume not, i.e. the P-measure of set A = {Kf > K}%} €

Fr is strictly larger than 0, it would follow that E [1 A K f;] > E [1 A K ]%] However, we know
from part (2) and (A.23) that

E[L4R] = lim E[14K2,, | = lim E[14K7 ] = E[14KE].

An contradiction appears. Therefore, K )‘f < K f«, P-a.s. Then Lemma A.3 shows that K¢ is an
increasing process. [

Proof of (6.37%). Set a := 2(A" + «?) and Fix m,n € N with m > n. We define processes

EMMi=Em —E" t €0, T]for £ =Y, Y" Z. Similar to (A.10), we can deduce from (6.26)
that P-a.s.

1)
eat|YtZ,m,n|2 +/ eas (a|YSZ,m,n|2 + |Z§n,n|2) ds
t
2 "’
= o |ylmn|® 4 2/ ¥y timn (g(s, yim, zmy — g(s, Yn, zg)) ds
13
T Ty T
+2/ eas YSZ,m,ndK;n _ 2/ eas YSZ,m,nszn _ 2/ eas Yf,m,nzgn,nst’
t t t
Vit e lv, 1] (A.24)
By (H1) and (H2), it holds ds ® dP-a.s. that
Yé,m,n Yl,m Zmy _ Yé,n Zn
p g(s, Y, ", Z) — g(s, Yo", ZY)
= I (s, Y[ Z0) — g5, YO, Z1))

+r0m (g0 Y 20 — (s Y ZD)

1
S MYEIIP kY ZE < OF YT 4 12 (A.25)

Also, one can deduce from the definition of process K™ that

Tt Te Te
/ e® YimrgK" = 1A[/ e YK = 1Ae/ Ly <p,)e™ Y dK]"
t t t

IA

7
T B A
t

IA

7
e“TlA@/ (Y" — Ly)~dK™
%

IA

eaTlAl ( sup (Y — LS)_) Ky, Vtelv,ml (A.26)

s€v, ]
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Similarly,

T T¢
—/ B YEmngKr < 1Ae/ Liyr<r,je® (Ly — Y/ dK]
t t

IA

s€[v, 7]

eT1,, ( sup (Y" — LS)_> K7,

IA

selv, 1]

eT1,, ( sup (Y — Ls)_) K2, Vtelv, 1l
Plugging this and (A.25), (A.26) back into (A.24) shows that P-a.s.

1 1% T
e“’|1/f”"’”|2 + 5/ ™| ZM" 2ds < — 2/ edybmnzmngp Vit e v,
t t

where 1 = %% |YLmn > 4+ 26" 14, (5Upyepy. o (Y = Ls)7) (K2 4+ K2L).
Taking expectation for = v, we see from Holder’s inequality, (6.27) and (6.29) that

T T
E/ Ltz 2" Pt < E/ ™2™ 2ds < 2E[y] < 2E [euf@|yé»mv"|2]
0

v

12
+ 407 {E [1& sup (¥ — Ls)—)z} < E[ (K2 + K;;)Z]}

selv, 1]

12
< CoE [1Ae Yy, — Y;;\z] 4 Cot {E [L,,Z sup (V" — Ls))2“ . (A27)

s€v, 1]

On the other hand, the Burkholder—Davis—Gundy inequality implies that
E m,n|2 at 2
sup [Y;""|7| <E| sup e < E[n]

tev, ] te[v, 7]
T
/ Ly<s<rje® YO 27" d By
t

Y[E,m,n

+2E | sup
t€[0,T]

Tt 1/2
< E[n]+ GoE sup |Yf*m*”| ) (/ oo IZ;"’"|2dt)
telv, 7] v

1 i
< Eln] + EE[ sup |Yf””’”|2} + CoE / e 2" dt.
vV

telv, 1]

ylmn |2] < 4¢% by (6.27) and (6.25), it follows from (A.27) that

v,7¢] | t

As E[sup,¢(

Te
E[ sup |Yf""’"|2:| < 2E[n] + COIE/ e |Z""2dt < CoE[n]. (A.28)
%

telv, ]
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Since Doob’s martingale inequality and (6.27) show that

2 2
E| sup [v"")"| <E| sup [B[10, 17| 7]|" | < 4B [[1a, 70 ]
t€0,v] 1€[0,T]
Lm,n |2
<4E| sup |Y, | ,
telv, 7]

we see from (6.27) and (A.28) that

2
<E| sup
tel0,v]

<S5E| sup |Y,£’m’"|2 = CoE[n].
telv, ]

Yl,m,n

£,m,n
P Y,

2
+ sup f

telv, 7]

E| sup ‘Ytz’m’"
t€l0,T]

2:|
This together with (A.27) leads to that

2 T
sup{E[ sup i| —I—E/ 1{v<t§rg}|zzm'n|2df}
m>n t€[0,T] 0

1/2
< CoE[n] < GoE [1A[\Y,Z -1 ]2] + Cot iIE [1” sup ((¥' — Lt)_){“ .

telv,te]

L,m,n
Yt

As 1y, |Yt( — Yr"[| < 2¢, Vn € Nby (6.25), letting n — 00, we see from bounded convergence
theorem and (6.36) that

T
lim sup {E[ sup |va’"’"|2} —HE/ 1{,,<,§,l}|Z;"’n|2dt} =0.
0

=00 m>n t€[0,T]

Hence, {Y®"} _ is Cauchy sequence inS? and {1(, < <7, Z]'} n € Nis Cauchy sequence

inHZ2, [

1e[0,T]

Proof of (6.43%). As K| = IC,{ = 0 by (6.22) and (6.42), one can deduce from (6.28) that P-a.s.
K'— K= (K =K' — (KE— K8 = Y —yP" — 14, (Y, — V)
t
- / (6. ¥/, Z8) = g5, Y, 20)) ds
vt
+/ (Z" — 25dB;, Yte[v, 1l
v
Then (6.27) and (H1) show that P-a.s.
|KI' — K| < 14, 1Y) = Yol + 14,|¥] = Vi
t
T / (K|z§ — 28 4 1g(s, Y, 28 — (5. Vs, zf)|) ds
v

t
+‘/ (22— 2t)as
%

, YVt e v, 1]
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Since Holder’s inequality and (1.5) imply that

t
2 2
|K! — KE[7 < Cola |Y? = Yo + Cola, |Y! = Yi|” + co/ |Z" — 25%ds
v
t 2
+Co <1A[ / lg(s, Y1, 25 — g(s, Vs, Zf)|ds>
v

' 2
[ e (22~ 20)am,
0

we can deduce from Doob’s martingale inequality that

. Yie[lv, 1l

+Cp sup
7€[0,T]

E[ sup |Kf—icf|2] < CoE [1A2|Y‘7—Yv|2]

telv, 1]

174
4o [u@ p |Y;1—Yt|2}+c0n<: (12t - 2t
v

telv, 7]

7 2
+ CoE [(/ 14,|g(t, Y], 2)) — g2, Yy, Zf)|dz> } )
v

The bounded convergence theorem and (6.25) imply that lim, .~ | E [1 AY) — Y,,|2] = 0.
Thanks to (6.41), it remains to show that

T Y4 £ 2

. n J—

Tim E (/v 14,|g (z, Y, ,z,) —g (z, Y, Zt) |dt) =0. (A.29)
By (H3), it holds dt ® dP-a.s. that lim,— oo 1a,njv<r=z} |8, Y7 25) — g(t, Y1, ZD)| = 0.
Also, (H1), (H4) and (6.25) imply that for any n € N

Lanp<i=ey |8, Y], 20 — (1, Yy, 20|

< Larierse (J8 Y 0] + [g(, Y7 20 = g1, ¥, 0)] + |30, Y., 0)

+ gt Y 2D — (2. Vi, 0)|) < Layniver=r) (2h, 2l + 2K|Zf|)
=h', dr®dP-as. (A.30)

ASE [l bt dt < 20+2cT+2cTV2 (E [ |2¢2dt)'? < oo by (6.24) and Holder’s inequality,
applying the dominated convergence theorem yields that

Te
lim E/ 14,|g(t, Y], 2) — g(t, Yy, ZD)|dt = 0.
v

n—oo

So up to a subsequence of {¥"},en, it holds P-as. that lim,—o [ 14,|g(t, Y], 25) —
g(t, Yy, ZH)|dt = 0. Since (A.30) shows that for any n € N, ([ 14,[g(t, Y}, Z}) — g(t. Yy,

INPRY T 0 ,.\? . A o T o0\
Zt)|dt) < (fo f)tdt) , P-a.s. and since Holder’s inequality implies that [£ (fo f)tdt) <

E [(213 + 20T + 2 [T |Zf|d¢)2] < Cof? + CoE [™|2!2dt < oo, applying the dominated
convergence theorem again yields (A.29). [
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Proof of (6.45%). For any n € N, Holder’s inequality and (6.29) imply that

T T
E/ ' |Y! —Y|dK! = E [1&[ e |y, — Yt|th"} <E [1& < sup Y — Yr|) K?{|
v v telv, ]
1/2
{E [(x2)*]E [1& sup |¥) — Y,F“

telv, 1]

172
ColiE |14, sup |Y1"—Yt|2 .
telv, 1]

LY = Y,)dK]!

IA

IA

Asn — 00, (6.41) shows that lim,,_, oo E[ ] = 0. So up to a subsequence of

{Yn}}’IEN’

Te

lim (Y —Y))dK] =0, P-as. (A.31)

n—oo v

For P-a.s. w € {2 such that (6.44) holds and that path Y; (w) — L;(w) is continuous from t = v(w)
to t = 1¢(w) by (6.40), one can deduce from (6.44) that measure d K;'(w) converges weakly to
measure dle (w) on period [v(w), T¢(w)], so

T (w) 7 (w)

lim (Yi(w) — Li(w)) dK/ (w) = / (i (@) — Lt (@) dK ().

=0 Jy(w) v(w)

Adding this to (A.31), we see from (6.35) that P-a.s.

T T¢ Tt
0=< 1{v<rg}/ ¥s — Ls)dlcf =< 1{U<‘L’(}/ Yy — Ls)d’Cf = f (Y5 — Ls)dlcf
t v v

T

= lim [ (Y~ L,)dK"

s
n—oo J,
Te

= 1im | Yyrepy (Y — L)dK! <0, Vi€ vzl
v

proving (6.45%). O

Proof of Claim (6.60). It is clear that ¥, = 1{yv=T}YT + 1{V|)<T}Y7/v < l{y\,=T}‘§ + I{J/u<T}UJ/u’
P-a.s., so we only need to show the converse inequality.

Fix n € N. Clearly, K! :==n fg(Yr” — L,)~dr,s € [0, T]is a process of K satisfying that
P-a.s.

n n

Y Y
vr =y, +f §(s, Y7, Z0ds + K"y — K _/ ZdB,, Viev,yl]
t t

by (6.59). Since E[|Y]'|]] < oo by the uniform integrability of {an}geT’ applying Lemma A.2
with (Y, Z, K) = (Y", Z", K") and © = y,, we see from (1.6) that for any p € (0, 1)

7 r/2 W P
E f VAR < C,E| sup [¥/'|P + <f htdt)
v telv, vl v

T
< C,E |:l + sup [YP+ sup |Y|P +/ htdt:|. (A.32)
5€[0,T] 5€[0,T1] 0
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Let j € Nand define a stopping time ¢/ := inf{r € [0, T : Jo1Z8%ds > j} AT € T. Since
(6.59) shows that

VAT
n __yn n n n n
Yynen = me;, = Yyﬁ,M; +f,, g(s, Y, ZNds + KVI,MC}, -K

ALY WA
Yo NG}
- / Z"d B,
¥

n
WAL

v

nAgY VAL
Y, +/ g(s, Y, Z)ds —/ Z{dBs, P-as.,
14 W

2
J VALY Ny

taking conditional expectation E [ . ‘fyu A C}’] yields that P-a.s.

v

YVU Ag jn

Yy ALY
E Y;MC}? +/ g, Y, ZhHdt
»

n
WAL

fVI)A§7:|

Vo ALY

Ty, <nE {Y;}M}z + /y g(t, Y, ZMdt

AC!
VAL

VALY
= l{y‘)z;}l}E |:Y):115’A;".1 +/ g(t, Ytn, Ztn)dl
W

n
J U/\;j

fyv} =1+ Y. (A33)

As{yy = ¢} C () = ]}, itholds P-as. that

' vy ALY
n,j __
mi = ]E[l{yvzgf}ygv,,w +1m24_7}/ o g, Y", ZMdt _7-};:|
Yv j

=E [1{%2;7}5’;";

Similar to (6.17), (H4), (HS), (1.5) and (1.6) imply that |g(t, Y, Z?)| <k+ A+ +
2c|Y + k| Z}¥, dt ® dP-a.s. It then follows from Holder’s inequality that P-a.s.

Vo ALY
/ |lg(s, Y, Z!|ds < /
VALY »

v

Fur] = Lyzep V- (A34)

n
v

v
|gCs. ¥5', Z)|ds = Co/ (1+ hs + (Y1) ds
Yv

n a2
Yy
+r(yl — )2 ( / |Z§|2ds> (A.35)

v

T T a/2
< CO/ (1 + hg + |Y;’|) ds + Cq (/ |Z§?|2ds) . (A.36)
0 0

By Fubini’s Theorem and the uniform integrability of {Y/'};c7, E fOT |Y!|ds = fOT E[|Y!]ds <
T supepo. 71 E[1Y!] < oo, which together with Z" € H>“ shows that the last term in (A.36) is
integrable. As Z" € Npe(,1) H>P € H2O shows that {g‘]’?}jeN is stationary, it holds [P-a.s. that
limj o0 Yy, et =Yy, though we have not yet shown whether Y is a continuous process. Letting

Jj — ooin (A.33) and (A.34), we can deduce from the uniform integrability of {Y?};e'f and the
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conditional-expectation version of dominated convergence theorem that

n

Y
YVv = I{Vv YT + hl'Il I o - 1{)’1) T}g: + I{VU<T}E |: 7 +/ g(t’ Ytn’ Ztn)dt
Vv

Fyu ]

fyv:| , P-as., (A.37)

= ljy,=1}é + 1m<T}

n

Yv
xE {lm"—ﬂé + 1y <ryUyp +/ g, Y/, Z{)dt

v

where we used in the last equality the fact that Y}’fvn = Uy, P-as. on {y) < T} by the continuity

of Y and U.
Since limy—o0o | lyr=r} = lyy,=1} and since § € L'(Fr), applying the conditional-
expectation version of dominated convergence theorem yields that

lim 1y, <7)E [1yp=r)§|Fy,] = lim E[1y,rlpp=r)é|F,] =0, Pas.  (A38)

n— oo
As 1y <) | Uy p<n |yl < ¥y
and {Y; };e7 implies that of {1(,n 7,U,» }

neN’ and it then follows from the continuity of U that

Jim B (10 Uy | Py ] = E 1, <1 Uy,

Fp] = 1p<1yUy,, P-as. (A.39)

Set & = %(1 +a) € (0,1). Given ¢ > 0, with A” := {E[fy):g
Fy,» (A.35), Holder’s inequality and (A.32) imply that

1 24
]:}’v = —E lA’Fl |g(ta Yn’Z;l)‘dt
& 'y

n n a/2
C Yv K )
< 2E / (L 1Y) di + ZE | () = 7 ( f |Z?|2dt)

C o o 1-a/a
v K )
- / (1+h,+|Y2|+|Yt|)dr+8{ [(y —y)zw]}
4

v

) H(/y 'Z?Pdt)a”]}a/a

C " C -0 |y 1—a/d@
Qg [* (14 he+ i1 ) ar+ e o -0 S5 )
Yv

T ajd
xAE|[1+ sup |Yt1|°‘+ sup |Yt|°‘+/ h.dt .
5€[0,T] 5€[0,T1] 0

Since Fubini’s Theorem and the uniform integrability of {Y Cl YeeTs {Ye }reT show that

g(s, Y}, Z?)|ds’.7~"yv] > 8} €

1 w
P(A?) < EE [lAgE[/ @, Y7, Z|d1

IA
|
=

IA

T

T T
IE/ <1+ht+|Y,1|+|Y,|>dt§/ (1+h,)dt+/ E[|Y,l|+|Yt|]dt
0

T
/ (1 4+ hy)dt +T sup E[|Y 1
t€[0,7T)
+T sup E[|Y;]] < oo,
t€l0,T]
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letting n — oo, we can deduce from the dominated convergence theorem and the bounded
convergence theorem that

1z
lim P E[/ |g(s, Y7, Z)|ds
12

n—oo

.Tyv:| >¢egr =0, P-as.

v

Thus, E [fy):”n g(s, Yy, Z?)ds|.7-',,v] converges to 0 in probability P. Up to a subsequence of
{(Y", Z")}nen, one has

n

"
lim E / g(s, Y], ZNds|Fy, | =0, P-as.,
n—oo v

which together with (A.37)—(A.39) leads to that Y, > 1y, =1}§ + 1(, <1}U,,, P-as. O
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