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Lipid abnormalities increase the risk of coronary heart disease (CHD) and stroke in patients with Type 2 diabetes. Statins can be used
to treat these abnormalities, but may have adverse side effects. In this article, we consider the optimal timing of statin initiation for
patients with Type 2 diabetes. We formulate an infinite-horizon Markov decision process to maximize the patient’s quality-adjusted
life years (QALYs) prior to the occurrence of the first CHD or stroke event. We describe the state of the process by the patient’s
lipid ratio levels, and derive structural properties of the resulting optimal stopping time model, including sufficient conditions for the
optimality of control-limit policies with respect to patient’s lipid ratio levels and age. We use a large clinical data set to parameterize
our model and compute optimal treatment policies to demonstrate the clinical implications of our results. We illustrate the importance
of individualized treatment factors by estimating the patients’ QALY gains using our customized policies rather than current U.S.
guidelines.
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1. Introduction

There are currently 20.8 million Americans with diabetes
(American Diabetes Association (ADA) 2008), and this
number is expected to grow to 39 million by 2050 (Hon-
eycutt et al., 2003). Type 2 diabetes is caused by insulin
resistance combined with relative insulin deficiency and ac-
counts for the 90% of the diabetes cases in the U.S. Diabetes
patients often have difficulty maintaining their blood glu-
cose levels within healthy ranges. Historically, the primary
goal of managing Type 2 diabetes has been the control
of blood glucose levels; however, more recently, the im-
portance of cardiovascular risk has been emphasized (The
United Kingdom Prospective Diabetes Study (UKPDS)
Group 1998, Snow et al. 2004).

∗Corresponding author

Clinical trials have shown that cholesterol management
using statins reduces CHD and stroke risks (Downs et al.
1998, Collins et al. 2002; 2003, Colhoun et al. 2004, Briel
et al. 2004). The complexity of these treatment decisions
has led to the development of several national treatment
guidelines. One of the published U.S. guidelines, known as
Adult Treatment Panel (ATP) III, sets cholesterol targets
based on patient’s 10-year CHD risk (National Cholesterol
Education Program (NCEP) 2001). ATP III guidelines were
modified to treat the presence of diabetes an explicit cardio-
vascular risk factor, resulting in tighter cholesterol targets
(see Appendix C for details). Moreover, some guidelines
(Snow et al. 2004, ADA 2008) recommend initiating statins
in all patients with Type 2 diabetes irrespective of their
long-term CHD risks.

Although statins reduce the risk of CHD and stroke,
they can have serious side effects, including muscle diseases
and liver problems. Other less significant effects, such as
headaches, nausea, fever, and fatigue, are more common
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50 Kurt et al.

(Phillips et al., 2002, Pasternak et al., 2002). However, none
of the published guidelines explicitly consider the trade-off
between the benefits of reduction in CHD and stroke risks
and the adverse side effects of treatment.

Quality-adjusted life years (QALYs) are commonly used
for treatment evaluation and health policy investigations
(Gold et al., 2002). We use QALYs to adjust raw life years
to account for the reduction in quality of life associated with
side effects from statin treatment and consider the question
of if and when to initiate statin treatment to maximize a
Type 2 diabetes patient’s QALYs prior to the occurrence
of the first CHD or stroke event, or death from all other
causes. We refer to these three outcomes collectively as
terminal events.

We formulate the statin initiation problem as a discrete-
time infinite-horizon Markov decision process (MDP). We
derive analytical results about the structure of the optimal
policy, and present empirical results based on a large longi-
tudinal data set from Mayo Clinic in Rochester, MN. The
specific contributions of our work are as follows. First, we
develop a model that can guide physicians and patients re-
garding the initiation of statins. Second, we derive sufficient
conditions for the optimal policy to exhibit control-limits,
and characterize how such limits change with respect to
patient’s age. Our results support the structure of existing
treatment guidelines. Third, we present numerical results
based on a large longitudinal data set to empirically con-
firm our analytical results and provide insights into the
effect of side effects of statins on treatment decisions. Fi-
nally, we compare published U.S. guidelines to the optimal
policies generated by our model.

To our knowledge, ours is the first optimization model
that provides individualized recommendations for the opti-
mal timing of statin initiation, demonstrating the influence
of various CHD and stroke risk factors on the patient’s
optimal treatment policy. Denton et al. (2009) is the only
study we are aware of that models the optimal timing of
statin initiation. In contrast to this article, which focuses
on the patient’s perspective and side effects of treatment,
they model the problem from a societal perspective. Our
work differs from Denton et al. (2009) also in that we pro-
vide analytical evidence for the optimality of intuitively
appealing treatment policies.

The remainder of this paper is organized as follows: In
Section 2 we describe our MDP model. In Section 3 we
analyze the structure of the resulting optimal policies of
our model, which we support by a series of numerical ex-
periments in Section 4. In Section 5 we present conclusions
and summarize the limitations of our work.

2. Model formulation

We formulate a discrete-time, infinite-horizon MDP model
for the optimal timing of statin initiation for patients with
Type 2 diabetes. Once a patient with Type 2 diabetes ini-
tiates statin treatment, clinical guidelines recommend that

she should continue for treatment in the remainder of her
life (Vijan and Hayward 2004, Snow et al., 2004). We treat
statin initiation as a one-time irreversible decision. Specif-
ically, the decision we consider is if and when to initiate
statin treatment over the course of the patient’s lifetime
based on her risk profile to maximize her QALYs prior to
the first terminal event.

There are several published risk models that predict the
CHD and stroke probabilities for patients with Type 2 di-
abetes based on their cholesterol levels and other risk fac-
tors. The most popular of these models was calibrated on
data from the UKPDS study (Turner 1998, Stevens et al.,
2001, Kothari et al., 2002). The UKPDS model predicts
CHD and stroke probabilities based on several risk factors,
including age, gender, ethnicity, smoking status, choles-
terol, systolic blood pressure (SBP) and hemoglobin A1c
(HbA1c) levels. While other predictive models have been
developed (e.g. the Framingham model (Anderson et al.,
1991) and the Archimedes model (Eddy and Schlessinger
2003a, 2003b)), the UKPDS model is unique in that it has
published risk equations that are specific to patients with
Type 2 diabetes.

Following the UKPDS risk model, we describe the pa-
tient’s CHD and stroke risk profile by her cholesterol, SBP
and HbA1c levels, and her age, gender, ethnicity and smok-
ing status at diagnosis. Of these risk factors, the patient’s
age, cholesterol, SBP and HbA1c levels are dynamic. Based
on clinical evidence that patient’s SBP and HbA1c levels are
correlated with age, the studies that use stochastic models
to analyze the cost-utility effects of therapies for diabetes
treatment assume time-dependent SBP and HbA1c levels
(Burt et al., 1995, Kannel 1996, Kilpatrick et al., 1996,
Carrera et al., 1998, Hajjar and Kotchen, 2003). Similar to
these studies, we incorporate the effect of the patient’s age
into her CHD and stroke risk profile by a time index and
model the evolution of the patient’s SBP and HbA1c levels
deterministically as a function of time.

Elevated total cholesterol (TC) and depressed high-
density lipoprotein (HDL), also referred to as “good”
cholesterol, have been reported to increase the overall risk
of CHD and stroke. The ratio of TC to HDL, defined as
the lipid ratio (LR), is a commonly used predictor of CHD
and stroke risks, in models such as UKPDS (Wannamethee
et al., 2000, Vijan and Hayward 2004). However, this ratio
can vary significantly and unpredictably over time (Garber
et al., 1994). Therefore, we model the progression of the
patient’s LR levels as a finite-state discrete-time Markov
chain. We describe the components of our MDP model as
follows:

Time horizon: We assume the treatment decision is revis-
ited periodically (e.g. annual visits to an endocrinologist)
over the patient’s lifetime prior to the occurrence of the
first terminal event. We define T = {0, 1, 2, . . . , N} as the
set of decision epochs and assume the problem parameters
at epoch N − 1 remain stationary beyond epoch N − 1.
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The structure of optimal statin initiation policies for patients with Type 2 diabetes 51

Therefore, the epochs beyond N − 1 are not differentiated
and are represented by N. This modeling approach reflects
the nonstationary nature of risk with respect to age, and
provides an approximation framework for the patient’s re-
maining expected QALYs prior to the first terminal event
over the time horizon for which there is insufficient medical
data due to low sample sizes for high ages. For simplicity,
we let T′ = T \ {N} refer to the set of epochs in the non-
stationary horizon, and we let stage t refer to time interval
between epochs t and t + 1. We assume the time between
two successive decision epochs is τ > 0 years.

States: We discretize the continuous range of LR values
into a finite set of states L′ = {1, 2, ..., L} where each � ∈
L′ corresponds to an LR-range and lower indexed ranges
indicate lower values of LR. We add an absorbing state
L + 1 to the set of LR-ranges to denote a terminal event,
and let L = L′ ∪ {L + 1}. Note that our state description
also involves static risk factors, including age at diagnosis,
gender, smoking status, and dynamic (but non-stochastic)
risk factors: SBP, HbA1C. Because these factors are not
affected by the patient’s treatment status, for notational
convenience we suppress the dependency on them.

Actions: The action in state � ∈ L is chosen from {W, I},
where W represents waiting for one more stage and I stands
for initiating treatment immediately. We assume that us-
ing statins reduces the patient’s LR level by a factor ω
which we call the patient’s treatment-effect factor. We de-
fine the treatment status of the patient by a binary indicator
m ∈ M = {0, 1}, where “0” and “1” refer to not using and
using statins, respectively. Because statin initiation is a one-
time irreversible decision, once the treatment is initiated m
switches from 0 to 1 and remains as such.

Probabilities: We have four types of probabilities in our
model: The probabilities of non-CHD or non-stroke-
related death, CHD, stroke, and the transition probabili-
ties among the LR-ranges. At epoch t ∈ T′, a non-CHD or
non-stroke-related death occurs with probability dt. Other-
wise, if the patient is in state � ∈ L′ under treatment status
m ∈ M, a CHD event occurs with probability πC

t (�,m)
and a stroke event occurs with probability π S

t (�,m). We let
π

�
t (�,m) = πC

t (�,m) + π S
t (�,m) denote the patient’s prob-

ability of having a CHD or a stroke event in state � ∈ L′
under treatment status m ∈ M in stage t.

Given the patient is in state � ∈ L under treatment sta-
tus m ∈ M at epoch t ∈ T′, the probability of moving
into the absorbing state L + 1 at epoch t + 1 is denoted
by pm

t (L + 1|�), where pm
t (L + 1|�) = dt + [1 − dt]π

�
t (�,m)

for (�,m) ∈ L′ × M and pm
t (L + 1|L + 1) = 1 for both

m ∈ M. Given the patient is in state � ∈ L′ at epoch t ∈ T′
and does not incur a terminal event in stage t, the proba-
bility of being in state �′ ∈ L′ at the next epoch is denoted
by q(�′|�). We define pm

t (�′|�) to be the patient’s probability

of being in state �′ ∈ L at epoch t + 1 given she is in state
� ∈ L under treatment status m ∈ M at epoch t ∈ T′, which
we write as:

pm
t (�′|�)=

⎧⎪⎨⎪⎩
[
1− pm

t (L+1|�)]q(�′|�) if �, �′ ∈ L′,
pm

t (L + 1|�) if � ∈ L′, �′ = L+1,
1 if � = �′ = L + 1,
0 otherwise.

(1)
We let Pm(t) = [pm

t (�′|�)] denote the patient’s transition
probability matrix under treatment status m ∈ M at epoch
t ∈ T′.

Rewards: We define rm(�) = τ (1 − mσ ) to be the im-
mediate reward in QALYs accrued in state � ∈ L′ un-
der treatment status m ∈ M, where σ ∈ [0, 1] denote the
quality-adjustment factor due to negative side effects of us-
ing statins (Pignone et al., 2006, Timbie et al., 2010). Since
our objective is to maximize the patient’s QALYs prior
to the first terminal event, we set all the immediate re-
wards associated with the absorbing state L + 1 to zero,
i.e., rm(L + 1) = 0 for both m ∈ M. Figure 1 illustrates the
states, transitions, and rewards, for a particular stage t. The
single node on the left represents the patient’s current LR-
range at epoch t. The nodes on the right are partitioned
into states for LR-ranges and terminal events.

In our model, the patient continues to accumulate re-
wards prior to his/her first CHD or stroke event. Once
she incurs a terminal event she transitions into state L + 1,
which is absorbing and provides no rewards. Therefore,
upon occurrence of a terminal event, the accumulation of
rewards stops and the patient terminates the process. Since
statin initiation is a one-time decision, we define µt(�) as
the patient’s expected post-treatment reward if the treat-
ment is initiated in state � ∈ L at epoch t ∈ T, which can
be recursively written as:

µt(�)=
{

r1(�)+λ∑
�′∈L p1

t (�′|�)µt+1(�′) for � ∈ L and t ∈ T′,

r1(�)+λ∑
�′∈L p1

t−1(�′|�)µt(�′) for � ∈ L and t = N;
(2)

where λ ∈ (0, 1) is the discount factor per stage (Gold
et al., 1996, Drummond et al., 1997). The expected post-
treatment rewards can be viewed as parameters of the
model since they are determined by a separate Markov
reward chain. For a patient with no history of CHD or
stroke in state � ∈ L at epoch t ∈ T, we let ut(�) denote
the maximum total expected discounted QALYs prior to
the first terminal event and we define at(�) as the corre-
sponding optimal action, which we determine by solving
the following optimality equations:

ut(�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

{
r0(�) + λ

∑
�′∈L p0

t (�′|�)ut+1(�′), µt(�)
}

for � ∈ L and t ∈ T′,

max
{
r0(�) + λ

∑
�′∈L p0

t−1(�′|�)ut(�′), µt(�)
}

for � ∈ L and t = N.
(3)
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52 Kurt et al.

Fig. 1. State transition diagram at epoch t ∈ T′ under treatment status m ∈ M.

3. Structural properties

In this section we derive our main theoretical results. While
MDP models have been applied in other clinical con-
texts (see Alagoz et al. (2010) for a review of discrete-time
MDP models in health care), we provide several extensions.
Specifically, Alagoz et al. (2004) provides sufficient condi-
tions to prove an optimal control-limit policy within the
context of living-donor liver transplantation. The authors
consider a stationary infinite-horizon MDP. Although rea-
sonable for liver transplant decisions this assumption is not
appropriate for long-term chronic diseases, such as diabetes
and heart disease, for which the risk of an event changes
significantly with age. We provide less restrictive and more
intuitive conditions to establish the optimality of control-
limit policies in a non-stationary context, and analyze how
the resulting control-limits change with respect to age (see
Appendix D for the proofs of our results). The latter results
are particularly noteworthy since most U.S. guidelines do
not consider age as a risk-factor for the treatment of pa-
tients with diabetes.

The monotonic behavior of the optimal value function
is commonly used to prove a threshold structure of the
optimal policy in MDPs. In contrast, we define an ex-
pected benefit loss function and guarantee the optimality of
control-limit policies given the monotonicity of this func-
tion. Therefore, our conditions do not require any special
structure for the optimal value function of the model, and
in this sense are less-restrictive than those of Alagoz et al.
(2004).

In our problem context, we define a control-limit pol-
icy as follows: A patient should initiate treatment if and
only if her LR is above some threshold. Note that many
published national lipid management guidelines, includ-
ing well known U.S. guidelines, have a control-limit struc-
ture (NCEP 2001, National Heart Foundation of Australia
2001, New Zealand Guidelines Group 2003, The British

Cardiac Society 2005, Fourth Joint Task Force 2007). Al-
most all of these guidelines define their thresholds in terms
of the patient’s long-term risk for a major cardiovascular
event. Of these, the British and New Zealand guidelines
also use explicit LR thresholds for their treatment recom-
mendations.

We begin our analyses by defining the notion of an “in-
creasing failure rate” (IFR) transition probability matrix,
which has been shown to be useful in proving the structural
properties of MDPs in maintenance and reliability theory
(Valdez-Flores and Feldman 1989) and appears to match
clinical data closely in varying contexts (Alagoz et al., 2004,
Kreke et al., 2008).

Definition 1. (Barlow and Proschan 1965) An n × n
stochastic matrix H = [

h( j |i )
]

is said to have the IFR prop-
erty if

∑k
j=1 h( j |i ) is nonincreasing in i for all k = 1, ..., n.

In our model, under treatment status m ∈ M at epoch
t ∈ T′, if the matrix Pm(t) is IFR, an intuitive explana-
tion is as follows: The higher the LR the patient has at
epoch t under treatment status m, the more likely she is
to have a higher LR or to incur a terminal event at epoch
t + 1. By Proposition 1, given the patient’s on- and off-
treatment transition probabilities have the IFR property at
each epoch, the maximum expected QALYs prior to the
first terminal event does not increase in LR.

Proposition 1. If Pm(t) is IFR for all m ∈ M and t ∈ T′, then
the optimal value function, ut(�), is nonincreasing in � ∈ L
for all t ∈ T.

Next, we define an expected benefit loss function which
we use to express our main results. We let Bt(�) denote the
patient’s expected benefit loss (in QALYs) from delaying the
initiation of treatment to the next epoch in LR-range � ∈ L′
of epoch t ∈ T′. More explicitly, for � ∈ L′ and t ∈ T′, we
define Bt(�) = µt(�) − λ

∑
�′∈L p0

t (�′|�)µt+1(�′). Note that
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The structure of optimal statin initiation policies for patients with Type 2 diabetes 53

since Bt(�) is a function of the expected post-treatment
rewards, it is a composite model parameter. Proposition
2 provides sufficient conditions for the optimality of LR-
based control-limit policies based on the comparison of the
patient’s expected benefit loss in different LR levels.

Proposition 2. Suppose P0(t) is IFR for all t ∈ T′ and Bt(�)
is nondecreasing in � ∈ L′ for all t ∈ T′. Then, there exists
an LR threshold �∗

t ∈ L′ for each t ∈ T such that the optimal
action in state � at epoch t is to initiate treatment if and
only if � ≥ �∗

t , i.e., at(�) = I for all � ≥ �∗
t , and at(�) = W

otherwise.

Next, we focus on how the optimal policy changes with
respect to age. We assume the patient’s non-CHD or non-
stroke-related death probability, dt, is nondecreasing in
t ∈ T′. Note that this assumption is consistent with pub-
lished mortality data (National Center for Health Statis-
tics (NCHS) 2005). It is also well established that age is
a positive-risk factor for CHD and stroke. We state this
assumption formally as follows:

pm
t+1(L + 1|�) ≥ pm

t (L + 1|�) for all � ∈ L,m ∈ M,

t ∈ T′ \ {N − 1}. (4)

Proposition 3 expresses the time-monotonicity of the pa-
tient’s optimal value function. Specifically, it states that the
patient’s expected QALYs prior to the first terminal event
do not increase as she ages.

Proposition 3. The optimal value function, ut(�), is nonin-
creasing in t ∈ T for all � ∈ L.

Next, we explore the structure of the optimal policy with
respect to age. Proposition 4 states that if the patient’s ex-
pected benefit loss from delaying the initiation of treatment
to the next epoch does not decrease over time then the op-
timal threshold for treatment does not increase as she ages.

Proposition 4. If Bt(�) is nondecreasing in t ∈ T′ for all � ∈
L′, then for any � ∈ L′ and t ∈ T′, at(�) = I implies at+1(�) =
I.

In the remainder of this section, we will explore the sensitiv-
ity of the patient’s optimal value function and policy with
respect to quality-adjustment and treatment-effect factors.
Proposition 5 compares two patients who are identical ex-
cept for their quality-adjustment and/or treatment-effect
factors, and addresses the relationship between the optimal
policy and patient’s response to treatment. For Patient i ,
we specify the problem parameters and the value functions
by a pre-superscript, i = 1, 2.

Proposition 5. Consider two patients who are identical except
2σ ≥ 1σ and/or 1ω ≥ 2ω. Then, for any � ∈ L′ and t ∈ T,
2at(�) = I implies 1at(�) = I.

In Proposition 5, if it is optimal to initiate treatment at a
given LR level, it must be optimal to do so if the patient’s

disutility of using statins decreases, and/or the treatment
effect factor increases.

Finally, Proposition 6 establishes the sensitivity of the pa-
tient’s optimal value function with respect to simultaneous
changes in quality-adjustment and treatment-effect factors.
It explicitly states that the lower the quality-adjustment fac-
tor the patient has, the higher the benefit she gains as the
treatment effect increases.

Proposition 6. Consider two patients who are identical except
1ω ≥ 2ω. Let σ1 and σ2 be two quality-adjustment factors,
with σ1 ≥ σ2, and let i, j ut(�) specify i ut(�) when the quality-
adjustment factor is σ j , for � ∈ L, t ∈ T and i, j = 1, 2.
Then, 1,2ut(�) − 1,1ut(�) ≥ 2,2ut(�) − 2,1ut(�) for all � ∈ L
and t ∈ T.

Note that as a side result provided by Proposition 6, the
patient’s optimal value function does not decrease as σ
decreases and/or ω increases.

4. Numerical study

In this section, we present numerical results to illustrate
our model. We also investigate the sensitivity of the pa-
tients’ optimal value functions and policies with respect to
their quality-adjustment and treatment-effect factors. Fi-
nally, we evaluate and compare the three most common
U.S. guidelines with respect to optimal policies from our
model.

We define two patient profiles, one for each gender, for
which we present the resulting optimal treatment policies
and the maximum expected QALYs prior to the first ter-
minal event. We describe the details on data sources and
estimation of model parameters in Appendix B.

For our numerical experiments, we consider a male pa-
tient and a female patient who are Caucasian, do not smoke
and were diagnosed with Type 2 diabetes at age 40 with no
history of CHD or stroke. Our data set provides insuffi-
cient observations for patients older than 80. Therefore,
we set annual decision epochs for a 40-year non-stationary
decision horizon, which starts at age 40, so that treatment
decisions are age-dependent prior to age 79 and remain
stationary after age 79 based on our infinite-horizon ap-
proximation, i.e., τ = 1, k = 0 and N = 40. We discretize
the continuous range of LR levels into L = 13 ranges the
boundaries of which are presented in Table 1.

Using our clinical dataset we estimate ω̂ = 0.19815. We
assume σ = 0.02 as our base case (Tsevat et al., 2001,
Pignone et al., 2006). In all numerical experiments we as-
sign λ = 0.97 as the annual discount factor, as is common
in the health policy and economics literature (Gold et al.,
1996). Because the patients’ optimal value functions and
actions remain stationary beyond age 79, we use 80+ in
figures and tables to refer to all ages beyond 79.

We solve our MDP model to find the optimal treat-
ment policies. In Table 2, we present the patients’ maximum
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Table 1. LR-range boundaries. Note that ranges are exclusive of their upper bounds.

LR-Range

Boundary 1 2 3 4 5 6 7 8 9 10 11 12 13

Lower Bound 0 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
Upper Bound 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 ∞

expected QALYs to their first terminal events from ages 40,
50, 60, 70 and 80. Table 2 confirms that the optimal value
functions are monotonically nonincreasing in both LR and
age. In Table 2 the differences between the optimal value
functions range from 2.09 to 2.69 QALYs, which is consis-
tent with gender-based differences in CHD and stroke risks
(Pilote et al., 2007). From Table 2, it is also clear that the
difference between the patients’ optimal value functions in
two different LR-ranges increases as they age. The opti-
mal value function of the male patient has a range of 0.77
QALYs at age 40 and 2.58 QALYs at age 80 and beyond.
Similarly, the optimal value function of the female patient
has a range of 0.69 QALYs at age 40 and increases up to
2.67 QALYs by age 80. Consistent with clinical trials and
published risk models, these imply that increased LR lev-
els are more risky, and more significantly affect expected
QALYs as patients age.

Figure 2 depicts the optimal LR thresholds to initiate
treatment for each patient. For instance, the optimal policy
at age 40 can be interpreted as follows: Treatment should
be initiated for the male patient if his LR level falls into any
range that is higher than 6. On the other hand, treatment
is not recommended at any LR level for the female patient
at age 40. Consistent with Proposition 4, the optimal LR
thresholds are nonincreasing in age for both patients, which
implies that the patients are more likely initiate treatment as
they get older. Also, note that the male patient’s optimal LR
thresholds are never higher than those of the female patient,
and the deviation between their optimal LR thresholds are
more significant at younger ages. These results are consis-
tent with a recent epidemiological study that has shown

that relative cardiovascular risk reduction by treatment is
lower for female patients than it is for male patients (Karp
et al., 2007). Moreover, they also confirm a meta-analysis of
clinical trials for lipid-lowering treatment agents which has
demonstrated lesser benefit of treatment for female patients
than for male patients (Walsh and Pignone 2004).

4.1. Sensitivity analysis

To evaluate the effects of quality-adjustment factor, σ , and
treatment-effect factor, ω, on expected QALYs to first ter-
minal event and optimal policies, we perform one- and
two-way sensitivity analyses. Figures 3 and 4 present the op-
timal treatment policies under various quality-adjustment
factors, and illustrate the fact that the optimal threshold for
treatment decreases as the disutility of statins decreases.

It is clear that the optimal time to initiate statin treatment
is quite sensitive to disutility of using statins. However, for
the same disutility level the thresholds of the male patient
are never higher than those of the female patient.

In Figure 5, we illustrate the sensitivity of the optimal
policies with respect to treatment-effect factor within a
±3% region around the point estimate for ω. We observe
that the thresholds decrease as treatment reduces the pa-
tients’ LR levels further. It is notable that the male patient
has lower treatment thresholds than the female patient even
when his response to treatment is lower than that of the fe-
male.

In Table 3, we present the results from our two-way sen-
sitivity analyses. An increase in the efficacy of treatment

Table 2. Patients’ maximum expected QALYs prior to their first terminal events.

LR-Range

Age Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

80+ Male 5.93 5.69 5.47 5.29 5.08 4.92 4.74 4.59 4.47 4.35 4.26 4.01 3.65
Female 8.41 8.13 7.92 7.66 7.45 7.22 7.05 6.89 6.73 6.52 6.40 6.18 5.74

70 Male 7.60 7.41 7.22 7.07 6.89 6.76 6.60 6.47 6.37 6.28 6.21 5.99 5.73
Female 10.07 9.85 9.69 9.48 9.31 9.12 8.99 8.87 8.74 8.58 8.49 8.31 7.98

60 Male 11.10 10.94 10.78 10.65 10.50 10.38 10.24 10.14 10.05 9.97 9.92 9.73 9.52
Female 13.65 13.49 13.37 13.22 13.10 12.96 12.86 12.78 12.69 12.57 12.51 12.37 12.14

50 Male 14.87 14.75 14.63 14.54 14.42 14.34 14.23 14.16 14.10 14.04 14.01 13.87 13.73
Female 17.43 17.32 17.23 17.12 17.04 16.94 16.88 16.82 16.76 16.69 16.65 16.56 16.41

40 Male 18.44 18.36 18.26 18.19 18.11 18.05 17.98 17.93 17.89 17.86 17.84 17.75 17.67
Female 20.82 20.75 20.69 20.62 20.56 20.50 20.45 20.42 20.38 20.32 20.29 20.23 20.13
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Fig. 2. Optimal LR-range thresholds (�∗
t ) to initiate statin treatment for the base case.

Fig. 3. Sensitivity of the male patient’s optimal policy with respect to σ for the base case.
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Fig. 4. Sensitivity of the female patient’s optimal policy with respect to σ for the base case.

Fig. 5. Sensitivity of the patients’ optimal policies with respect to ω for the base case.
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Table 3. Patients’ QALY gains at the time of diagnosis when ω increases from 0.17 to 0.23.

LR-Range

σ Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

0.01 Male 0.18 0.19 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.23 0.23
Female 0.15 0.16 0.16 0.17 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.20 0.21

0.02 Male 0.15 0.16 0.17 0.17 0.18 0.19 0.20 0.21 0.22 0.22 0.22 0.23 0.23
Female 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.18

0.03 Male 0.12 0.13 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.16 0.18 0.19
Female 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12

Table 4. Patients’ QALY gain at the time of diagnosis when σ decreases from 0.05 to 0.01.

LR-Range

ω Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

0.17 Male 0.28 0.24 0.31 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.39 0.41 0.41
Female 0.23 0.23 0.24 0.24 0.25 0.26 0.27 0.27 0.28 0.29 0.29 0.30 0.32

0.19815 Male 0.34 0.36 0.38 0.39 0.41 0.42 0.44 0.45 0.46 0.46 0.47 0.48 0.49
Female 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.34 0.35 0.36 0.37 0.39

0.23 Male 0.40 0.42 0.44 0.46 0.48 0.49 0.51 0.52 0.53 0.54 0.54 0.56 0.57
Female 0.32 0.33 0.34 0.35 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.46

Table 5. Patients’ expected QALY gains from delaying the initiation of treatment rather than initiating it at the time of diagnosis (∗
denotes a value < 0.01).

LR-Range

σ Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

0.01 Male ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Female 0.02 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.02 Male 0.04 0.03 0.02 0.02 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Female 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.03 0.02 ∗

0.03 Male 0.14 0.12 0.10 0.09 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.01 ∗
Female 0.25 0.23 0.23 0.21 0.20 0.18 0.17 0.17 0.16 0.15 0.14 0.13 0.10

0.04 Male 0.41 0.40 0.39 0.37 0.36 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.25
Female 0.26 0.24 0.22 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.10 0.08

0.05 Male 0.41 0.39 0.37 0.35 0.33 0.32 0.30 0.29 0.27 0.26 0.26 0.23 0.21
Female 0.59 0.58 0.56 0.55 0.53 0.52 0.51 0.50 0.49 0.47 0.47 0.45 0.42

Table 6. Patients’ expected QALY gains at the time of diagnosis from following the optimal policy rather than ATP III guideline (∗
denotes a value < 0.01).

LR-Range

σ Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

0.01 Male 0.03 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Female 0.02 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.02 Male 0.07 0.09 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.03 0.02 0.01
Female 0.01 0.02 0.02 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.03 Male 0.14 0.21 0.22 0.21 0.20 0.18 0.17 0.17 0.16 0.15 0.14 0.13 0.11
Female 0.06 0.09 0.09 0.09 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.01 0.01

0.04 Male 0.25 0.36 0.38 0.37 0.36 0.34 0.33 0.32 0.31 0.30 0.30 0.28 0.26
Female 0.14 0.20 0.20 0.20 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.10

0.05 Male 0.37 0.53 0.55 0.54 0.53 0.52 0.51 0.50 0.49 0.47 0.47 0.46 0.44
Female 0.24 0.33 0.34 0.34 0.33 0.32 0.30 0.29 0.28 0.27 0.26 0.24 0.23
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Table 7. Patients’ expected QALY gains at the time of diagnosis from following the optimal policy rather than modified ATP III
guideline (∗ denotes a value < 0.01).

LR-Range

σ Gender 1 2 3 4 5 6 7 8 9 10 11 12 13

0.01 Male 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Female 0.02 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.02 Male 0.01 0.02 0.02 0.01 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Female 0.05 0.09 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.03 0.02 0.01

0.03 Male 0.06 0.10 0.09 0.09 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.01 0.01
Female 0.14 0.22 0.22 0.21 0.20 0.18 0.17 0.17 0.16 0.15 0.14 0.13 0.11

0.04 Male 0.13 0.20 0.20 0.20 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.10
Female 0.26 0.37 0.38 0.37 0.36 0.34 0.33 0.32 0.32 0.30 0.30 0.28 0.26

0.05 Male 0.23 0.33 0.34 0.34 0.33 0.32 0.30 0.29 0.28 0.27 0.26 0.24 0.23
Female 0.40 0.55 0.55 0.54 0.53 0.52 0.51 0.50 0.49 0.47 0.47 0.46 0.44

has greater impact on the optimal value function when the
disutility of using statins is lower. When both patients have
the same quality-adjustment factor, an increase in the treat-
ment efficacy increases QALYs more for the male patient
than the female patient. Regardless of the efficacy of treat-
ment, when the disutility of using statins decreases, the male
patient gains more than the female patient. Since increases
in expected QALYs with increasing treatment-effect and/or
decreasing quality-adjustment factors are greater for higher
LR levels, patients that are relatively at higher risk of CHD
and stroke benefit more from such changes.

4.2. Comparison to current treatment guidelines

In the remainder of this section, we evaluate the perfor-
mance of three common U.S. guidelines. We consider ATP
III guideline, which specifies treatment decisions on the
basis of long term CHD risk, and its modification, which
sets a tighter thresholds specific to diabetes patients. We
also consider recent recommendations from the ADA that
call for initiation of statins immediately after the diagno-
sis. We calculate the patients’ expected QALY gains from
following our optimal policies rather than these guide-
lines (see Appendix C for details on how we estimate
expected QALYs under these guidelines). Results for ex-
pected QALY gains with respect to ADA, ATP III and
modified ATP III guidelines are presented in Tables 5, 6
and 7, respectively. Clearly the gain is lower under ATP
III guidelines than under ADA guidelines, owing to the
more aggressive use of statins in the latter. From Tables
5, 6 and 7, we observe that the expected QALY gain for
the male patient is lower than that for the female patient
which we can attribute to the earlier onset of elevated car-
diovascular risk in males. We also observe that patients’
expected gains increase as the disutility of using statins
increases, highlighting the importance of incorporating
the effect of disutility of using statins into the treatment
decisions.

5. Conclusions

Cardiovascular risk models serve as a guide to clinicians for
selecting the type of intervention and the aggressiveness of
treatment. However, their use in practice has focused on
providing raw information about the risk of complications.
Unfortunately there has been little direction on how to use
this information to make treatment decisions that trade-
off the benefits of risk reduction with the side effects of
treatment. We empirically show the importance of tailoring
guidelines to short-term CHD and stroke probabilities, and
individual patient preferences and responses to statins. We
also provide scientific evidence for the threshold-structured
treatment policies.

Our study has some limitations. We focus on lipid con-
trol, but in practice statin treatment may be combined with
other treatments, including blood pressure control medica-
tions. We leave the development and the analysis of a more
extensive and sophisticated multi-treatment model as a fu-
ture study. Second, the source data that we use to estimate
the LR progression rates belong to a single medical center,
and the population that the data belongs to is likely to be
healthier than a typical population that may not receive
continuous access to health care. Finally, due to limited
availability of clinical data, a limitation for our numerical
experiments is that we focus only on Caucasian non-smoker
patients, and due to possible uncertainties in disutility and
treatment effect factors, which we do not include in our
model, our results should be cautiously generalized to com-
ment on population-based treatment decisions.
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Appendix A: Estimating CHD and Stroke Probabilities

We briefly summarize how the UKPDS risk model predicts
the CHD and stroke probabilities of a patient who was
diagnosed with Type 2 diabetes k years before epoch 0 with
no abnormal heart rhythm due to fibrillation of atrial heart
muscles. We use the CHD probability equation of Stevens
et al. (2001) and stroke probability equation of Kothari
et al. (2004). For (�,m) ∈ L′ × M and t ∈ T′, we define
the probabilities πC

t (�,m) and π S
t (�,m) by the following

equations:

πC
t (�,m)=1−exp

{
−ηC

t (�,m)(δC)k+tτ
(

1−(δC)τ

1−δC

)}
, (1a)

π S
t (�,m)=1−exp

{
−ηS

t (�,m)(δS)k+tτ
(

1−(δS)τ

1−δS

)}
; (1b)

where, δC ≥ 0 and δS ≥ 0 are constant and identical for all
patients, and

ηC
t (�,m) = β0β

(Age−55)
1 βGender

2 β
Ethnici ty
3 β

Smoking
4 β

HbA1c(t)−6.72
5

×β [SBP(t)−135.7]/10
6 β

ln[(1−mω)LR�]−1.59
7 , (2a)

ηS
t (�,m) = γ0γ

(Age−55)
1 γ Gender

2 γ
Smoking

3 γ
[SBP(t)−135.5]/10
4

× γ (1−mω)LR�−5.11
5 . (2b)

In (2a) and (2b), β0 and γ0 are referred as intercepts, and
each βi , i = 1, ..., 7, and γ j , j = 1, ..., 5, is a nonnegative
parameter and called the risk ratio for the risk factor ap-
pearing as its exponent. Of these risk factors, LR� denotes
the patient’s off-treatment LR in state � ∈ L′, and HbA1c(t)
(%) and SBP(t) (mmHg) denote the patient’s HbA1c and
SBP levels at epoch t, respectively, and Age, Gender, Ethnic-
ity and Smoking are static variables with values determined
as follows:

� Age: Age when diagnosed.
� Gender: 1 for female; 0 for male.
� Ethnicity: 1 for Afro-Caribbean; 0 for Caucasian or

Asian-Indian.
� Smoking: 1 for a smoker at diagnosis of the disease; 0,

otherwise.

Consistent with the results of randomized clinical trials and
the parameter estimates of Stevens et al. (2001) and Kothari
et al. (2004), we assume that β7, γ5 ≥ 1, i.e.,LR is a positive
risk factor for a CHD or a stroke event. More explicitly,
given all factors other than the patient’s cholesterol levels
are fixed, an increase in the patient’s LR levels does not
decrease the patient’s CHD and stroke probabilities.

Appendix B: Data Sources and Parameter Estimation

We estimate the transition probabilities of our model using
the Mayo Clinic Diabetes Electronic Management System
(DEMS) data Gorman et al. (2000), and NCHS mortality
rate tables (2009). DEMS consists of longitudinal medical
records for patients with Type 2 diabetes at Mayo Clinic.
The patient data in DEMS are available quarterly with de-
tailed treatment information and laboratory measurements
for TC, HDL, SBP, HbA1c and triglyceride levels. The ma-
jority of the patients in DEMS are non-smoker Caucasian
patients with no prior CHD or stroke and no abnormal
heart rhythm due to fibrillation of atrial heart muscles at
the age of diagnosis. Therefore, we limit our study to such
patients with data in the years 1993–2005, creating a co-
hort of M = 663 patients. To maximize the utilization of
sparsely available data, we estimate incomplete data points
and obtain complete sequences of quarterly available TC
and HDL levels. We fit cubic splines to each patient’s se-
quence of TC and HDL measurements in an approach
similar to that of Shechter (2006).

The effects of using statins on patient’s LR levels have
been reported as relative reductions in patients’ TC and
HDL levels in clinical trials (Herbert et al. 1997; Maron
et al. 2000). Therefore, we estimate the patients’ treat-
ment effect factors implicitly through relative reductions
in their TC and HDL levels, and assume that using statins
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changes the patients’ current TC and HDL levels by factors
c and h, respectively, where 0 < c < 1 and h > 1. To esti-
mate c and h, since the decision of initiating treatment
is revisited annually, we observe the treatment’s impact
on TC and HDL levels by focusing on 6-month inter-
vals immediately before and after the initiation of treat-
ment. Although it is not clinically recommended (Snow
et al. 2004; Vijan and Hayward 2004), in the DEMS data
set we observe some patients who gave up using statins
and have initiated treatment more than once. We consider
all initiations and re-initiations to estimate c and h. We
let K(i ) denote the number of times that patient i ini-
tiated treatment for i = 1, ...,M. Then we let the pairs
[vi

TC( j, k, 0), vi
HDL( j, k, 0)] and [vi

TC( j, k, 1), vi
HDL( j, k, 1)]

denote the i th patient’s total cholesterol and HDL levels
j quarters before and after the kth initiation of treatment,
respectively, for i = 1, ...,M, j = 1, 2, and k = 1, ..., K(i ),
and estimate c and h by the following formulae:

ĉ =

∑M

i=1

1
K(i )

∑K(i )

k=1

∑2
j=1 v

i
TC( j, k, 1)∑2

j=1 v
i
TC( j, k, 0)

M
and

ĥ =

∑M

i=1

1
K(i )

∑K(i )

k=1

∑2
j=1 v

i
HDL( j, k, 1)∑2

j=1 v
i
HDL( j, k, 0)

M
. (3)

In (3), each ratio term within the inner sum of the nu-
merator corresponds to the ratio of the average TC or
HDL level within 6 months after an initiation of treat-
ment to that within 6 months before that initiation. Using
(3) over the spline-fitted data we estimate ĉ = 0.86026 and
ĥ = 1.07284, respectively, which imply a 19.815 % reduc-
tion in LR levels by treatment, i.e., ω̂ = 1 − ĉ/̂h = 0.19815.

To estimate the conditional transition probabilities
among the LR-ranges for each gender, we use the patients’
off-treatment LR levels. We calculate a corresponding off-
treatment LR level for each spline-fitted on-treatment LR
level. We assume 1/̂c and 1/̂h denote the factors for the
inverse effects of statin treatment on TC and HDL lev-
els; that is, stopping using statins changes the level of
TC by a factor of 1/̂c, and the level HDL by a factor
of 1/̂h. By using the estimates 1/̂c, and 1/̂h, we normal-
ize the patients’ spline-fitted on-treatment TC and HDL
levels so that we obtain sequences of TC and HDL esti-
mates in which all patients are assumed to be off-treatment.
We calculate the off-treatment LR levels over these se-
quences and discretize the continuous range of LR lev-
els into L = 13 ranges. We let state � ∈ L′ refer to range[
LBLR(�),U BLR(�)

)
, where LBLR(�) and U BLR(�) denote

the respective lower and upper bounds of the range �. For
each patient, we calculate the total number of off-treatment
LR estimates in each range in all quarters and ages. Then,
we count the number of transitions from each range to all
other ranges between the same quarters of successive ages,

and compute the gender-specific conditional LR transi-
tion probabilities. We formalize this process for male pa-
tients as follows: We let bi

TC(t, j ) and bi
HDL(t, j ) denote

the off-treatment TC and HDL values of male patient i
in the j th quarter of age t for i = 1, ...,Mm, j = 1, ..., 4
and t = 40, ..., 80, respectively, where Mm is the number
of male patients in the data set. We define two indica-
tor functions: ψ(z) = {

� ∈ L′ : z ∈ [
LBLR(�),U BLR(�)

)}
,

and

Ii
t, j (�) =

{
1 if ψ

(
bi

TC(t, j )/bi
HDL(t, j )

) = �,

0 otherwise,
(4)

for i = 1, ...,Mm, j = 1, ..., 4, t = 40, ..., 80 and �, �′ ∈ L′.
Then the transition probability between ranges �, �′ ∈ L′ is
estimated as:

q(�′|�) =
Mm∑
i=1

4∑
j=1

79∑
t=40

Ii
t, j (�)Ii

t+1, j (�
′)
/

⎛⎝ Mm∑
i=1

4∑
j=1

79∑
t=40

∑
�′∈L′

Ii
t, j (�)Ii

t+1, j (�
′)

⎞⎠ .

We calculate gender-specific LR averages in each range and
assign them as the corresponding values of LR�. Finally,
because our model assumes deterministic evolution of the
patient’s SBP and HbA1c levels, we use gender-specific SBP
and HbA1c estimates from Denton et al. (2009), and use the
NCHS (2001) mortality rate tables to estimate the patients’
non-CHD or non-stroke-related death probabilities.

Appendix C: Calculating Expected QALYs under ATP
III Guidelines

ATP III guideline and its variants (NCEP 2001) categorize
the patients with respect to their 10-year CHD risks and
set a specific LDL target for each of these categories. If
a patient’s LDL level exceeds the LDL threshold that is
set for her CHD risk category, then she is considered for
statin therapy. For instance, if the patient’s 10-year CHD
risk is below 10% and her LDL is above 100 mg/dL, then
she should initiate statins (Table 1 summarizes ATP III
guidelines).

Therefore, to estimate the patients’ expected QALYs
prior to their first terminal events under ATP III guide-
lines we need to assess their off-treatment 10-year CHD
probabilities and LDL levels. We let ϕt(�) denote the pa-
tient’s probability of incurring a CHD event within the next
10 years when she is in state � ∈ L′ at epoch t ∈ T′ and by
the CHD probability equation of Stevens et al. (2001) we
calculate it as:

ϕt(�) = 1 − exp
{
−ηC

t (�, 0)(δC)k+tτ
(

1 − (δC)10

1 − δC

)}
,
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Table 1. Description of ATP III guidelines (LDL units are in
mg/dL).

Guideline Treatment Policy

ATP III Treat based on long-term risk-level-based
LDL targets

10-year CHD Risk ≥ 20 % and LDL > 100,
10-year CHD Risk in between 10–20 % and

LDL > 160,
10-year CHD Risk < 10 % and LDL > 190

Modified ATP
III

Consider diabetes as a cardiovascular risk
equivalent for treatment

Consider everyone as high risk and,
Treat according to ATP III guideline if LDL

exceeds 100

where ηC
t (�, 0) is defined by (2a). In general, physi-

cians do not measure the patients’ LDL levels di-
rectly, but rather estimate them implicitly by the Friede-
wald’s equation using TC, HDL and triglycerides (War-
nick et al. 1990). Because LR is defined only in terms
of the patient’s TC and HDL levels, we estimate the
patients’ triglyceride levels only as a function of age.
We estimate the patients’ yearly triglyceride levels by first
fitting cubic splines to their incomplete data and taking
the average observation of each age over the spline-fitted
data of the whole cohort. We let TRt denote the patient’s
triglyceride level at epoch t ∈ T′.

Because the patient’s HDL is uncertain with respect
to her LR, we define an LR-range-specific probability
mass function for her HDL. We discretize the contin-
uous range of HDL levels into 14 ranges where each
h ∈ H = {1, 2, ..., 14} refers to an HDL-range. We define
D(h|�) to be the patient’s probability of having an HDL
in range h ∈ H given her LR is in range � ∈ L′. Because
LR is the ratio of the patient’s TC to her HDL, we count
the total number of HDL estimates in each HDL-range
corresponding to each specific LR-range and estimate the
probability D(h|�) by dividing the number of HDL esti-
mates in HDL-range h ∈ H to the total number of esti-
mates in all HDL-ranges corresponding to range � ∈ L′.
The formalization of this process is similar to that of esti-
mating the conditional LR-transition probabilies. To com-
pute the patients’ LDL levels, we calculate HDLh as the
gender-specific HDL average in HDL-range h ∈ H. Then,
we let LDLt(�, h) denote the LDL of a patient with an
LR in range � ∈ L′ and HDL in range h ∈ H at epoch
t ∈ T′, and calculate it by the Friedewald’s equation as
LDLt(�, h) = HDLh(LR� − 1) − 0.2TRt for � ∈ L′, h ∈ H
and t ∈ T′. To compute the patients’ expected QALYs prior
to their first terminal events under ATP III and modified
ATP III guidelines, we define dt(�, h) as the decision recom-
mended by the guideline in LDL-range � ∈ L′ and HDL-

range h ∈ H at epoch t ∈ T′; that is,

dt(�, h)=

⎧⎪⎨⎪⎩
I if ϕt(�) ≥ 0.2 and LDLt(�, h)≥100 mg/dL,

or ϕt(�) ≥ 0.1 and LDLt(�, h)
≥ 160 mg/dL, or LDLt(�, h)≥190 mg/dL,

W otherwise,

for ATP III guideline and,

dt(�, h) =
{

I if LDLt(�, h) ≥ 100 mg/dL,
W otherwise;

for modified ATP III guideline, respectively.
Since the patient’s HDL is implicit with respect to her

LR, in our modeling framework, the decision recom-
mended by the guidelines is probabilistic with respect to
her LR-range. We define αt(�) = ∑

{h:dt(�,h)=I} D(h|�) as the
probability of initiating treatment in range � ∈ L′ at epoch
t ∈ T′ under each of the aforementioned guidelines. Then,
for each of the guidelines, we let ϑt(�) denote the patient’s
expected QALYs prior to her first terminal event in range
� ∈ L′ at epoch t ∈ T′ and recursively calculate it as:

ϑt(�)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
αt(�)µt(�) +

[
1 − αt(�)

][
r 0(�) + λ

∑
�′∈L′ p0

t (�′|�)ϑt+1(�′)
]

for � ∈ L′ and t < N,

αt−1(�)µt(�) +
[
1 − αt−1(�)

][
r 0(�) + λ

∑
�′∈L′ p0

t−1(�′|�)ϑt(�′)
]

for � ∈ L′ and t = N.

Appendix D: Proofs of Propositions

In this appendix, we present the proofs of mathemat-
ical statements. Throughout the appendix, we let the
terms in bold refer to a real-valued L + 1 dimensional
vector, i.e., v refers to the vector [v(�)]�∈L. For conve-
nience, given v ∈ R

L+1, � ∈ L, m ∈ {0, 1} and t ∈ T′, we let
Fm

t (�, v) = λ
∑

�′∈L pm
t (�′|�)v(�′). We also represent com-

ponentwise operations and relations between two vectors
in vector notation. For instance, given v1 = [v1(�)]�∈L and
v2 = [v2(�)]�∈L, v1 = v2 refers to v1(�) = v2(�) for all � ∈ L.

In the proofs that we proceed by induction on the iterates
of the value iteration algorithm at epoch t = N, for � ∈ L
we let uk

N(�) andµk
N(�) denote the associated values of uN(�)

and µN(�) at iteration k, respectively. More explicitly, for
� ∈ L and k ≥ 0, we define µk+1

N (�) = r1(�) + F1
N−1(�,µk

N)
and uk+1

N (�) = max
{
r0(�) + F0

N−1(�, uk
N), µN(�)

}
. Because

the state space and rewards are finite and, λ < 1, if µ0
N

and u0
N are finite, by Theorem 6.3.1 of Puterman [8],

limk→∞ µk
N(�) = µN(�) and limk→∞ uk

N(�) = uN(�) for all
� ∈ L. Because L + 1 is an absorbing state which does
not provide any rewards, uk

N(L + 1) = µk
N(L + 1) = 0 at

each iteration k of the value iteration algorithm. There-
fore, uN(L + 1) = µN(L + 1) = 0. Also, by backwards in-
duction on t ∈ T, it can be observed that ut(L + 1) =
µt(L + 1) = 0 for all t ∈ T.
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Proof. of Proposition 1: Because P1(t) is IFR for all t ∈ T′
and r1(�) is nonincreasing in � ∈ L, by the infinite-horizon
extension of Theorem 4.7.3 of Puterman (1994), µN(�) is
nonincreasing in � ∈ L. Then, Theorem 4.7.3 of Puterman
[8] itself implies that µt(�) is nonincreasing in � ∈ L for all
t ∈ T′. Because r0(�) is nonincreasing in � ∈ L and µt(�)
is nonincreasing in � ∈ L for all t ∈ T′, the proof of the
monotonicity of ut(�) is similar by applying Theorem 4.7.3
of Puterman (1994) and its infinite-horizon extension. �
Proof. of Proposition 2: It is sufficient to show that ut(�) −
µt(�) is nonincreasing in � ∈ L for all t ∈ T. For t = N,
we will prove the result by induction on the iterates of the
value iteration algorithm. Initialize u0

N = µN, and for some
n ≥ 0, suppose uk

N(�) − µN(�) is nonincreasing in � ∈ L.
Then, for any arbitrary � ∈ L′, consider the two possible
cases for un+1

N (�) − un+1
N (�+ 1).

1. If un+1
N (�+ 1) = µN(�+ 1), then un+1

N (�) − un+1
N (�+

1) ≥ µN(�) − µN(�+ 1).
2. If un+1

N (�+ 1) > µN(�+ 1), then

un+1
N (�) − un+1

N (�+ 1) ≥ F0
N−1(�, un

N) − F0
N−1(�+ 1, un

N)

≥ F0
N−1(�,µN)−F0

N−1(�+1,µN)
≥ µN−1(�)−µN−1(�+1)=µN(�)

−µN(�+ 1). (5)

Since P0(N − 1) is IFR, by the induction hypothesis,
Lemma 4.7.2 of Puterman (1994) implies F0

N−1(�, un
N −

µN) ≥ F0
N−1(�+ 1, un

N − µN) and this yields the first in-
equality in (5). The second inequality follows from the
assumption that BN−1(�) is nondecreasing in � ∈ L′.
Then, since µN−1 = µN, the equality in (5) follows.

Thus, un+1
N (�) − µN(�) is nonincreasing in � ∈ L. Then,

the convergence of the algorithm implies that uN(�) −
µN(�) is nonincreasing in � ∈ L. The rest of the proof is
similar by backwards induction on t ∈ T. �

Proof. of Proposition 3: First, by backwards induction on
t ∈ T, we will show that µt(�) is nonincreasing in t ∈ T
for all � ∈ L. By definition, we have µN−1 = µN. As the
induction hypothesis, for some k + 1 < N − 1, assume that
µk+1 ≥ µk+2. Then, for an arbitrary � ∈ L′:

µk(�) − µk+1(�) = F1
k (�,µk+1) − F1

k+1(�,µk+2)

≥ F1
k+1(�,µk+1 − µk+2) ≥ 0. (6)

Since p1
t+1(L + 1|�) ≥ p1

t (L + 1|�) for all � ∈ L and t ∈ T′ \
{N − 1}, by definition, p1

k(�′|�) ≥ p1
k+1(�′|�) for all �′ ∈ L′

and the first inequality in (6) follows. Then, the second
inequality in (6) follows from the induction hypothesis.
Hence, µk ≥ µk+1, and by induction µt(�) is nonincreas-
ing in t ∈ T for all � ∈ L. By this fact, the proof of the
monotonicity of ut(�) in t ∈ T is similar. �
Proof. of Proposition 4: It is sufficient to show that ut(�) −
µt(�) is nonincreasing in t ∈ T for all � ∈ L, which we will
prove by backwards induction on t. By definition, µN−1 =

µN. By definition, we also have uN−1 = uN. Therefore, uN −
µN = uN−1 − µN−1. As the induction hypothesis, for some
k + 1 < N, suppose uk+1 − µk+1 ≥ uk+2 − µk+2. Now, for
fixed � ∈ L′ consider the possible cases for uk(�) − uk+1(�).

1. If uk+1(�) = µk+1(�), then because uk(�) ≥ µk(�), we
have uk(�) − uk+1(�) ≥ µk(�) − µk+1(�).

2. If uk+1(�) > µk+1(�), then

uk(�) − uk+1(�) ≥ F0
k (�, uk+1) − F0

k+1(�, uk+2)

≥ F0
k+1(�, uk+1 − uk+2)

≥ F0
k+1(�,µk+1 − µk+2). (7)

Since p0
t+1(L + 1|�) ≥ p0

t (L + 1|�) for all � ∈ L and t ∈
T′ \ {N − 1}, by definition, p0

k(�′|�) ≥ p0
k+1(�′|�) for all

�′ ∈ L′, and this yields the first inequality (7). Then, the
second inequality is implied by the induction hypothe-
sis. Since Bk+1(�) ≥ Bk(�), (7) implies uk(�) − uk+1(�) ≥
µk(�) − µk+1(�).

Thus, uk − µk ≥ uk+1 − µk+1, and the result follows by
induction on t. �

If we consider m continuous, 0 ≤ m ≤ 1, because ω < 1,
it can be easily shown that ∂πC

t (�,m)
∂m and ∂π S

t (�,m)
∂m are both

nonpositive for all � ∈ L′. Then, by definition, it is easy
to see that p0

t (�′|�) ≤ p1
t (�′|�) for all �, �′ ∈ L′ and t ∈ T′.

Also, given two patients with quality-adjustment factors
1σ ≤ 2σ , if 1 p1

t (�′|�) ≥ 2 p1
t (�′|�) for �, �′ ∈ L′ and t ∈ T′,

then it can be shown that 1µt ≥ 2µt for all t ∈ T.

Proof. of Proposition 5: First, we will establish an auxiliary
result. Given two patients with 1σ ≤ 2σ , if

1 p0
t (�′|�) ≤ 2 p0

t (�′|�), and 1 p1
t (�′|�)

≥ 2 p1
t (�′|�) for all �, �′ ∈ L′ and t ∈ T′, (8)

then for any � ∈ L′ and t ∈ T, 2at(�) = I implies 1at(�) = I.
To prove the claim, it is sufficient to show that 1ut − 1µt ≤
2ut − 2µt for all t ∈ T. To establish this result for t = N,
we will proceed by induction on the iterates of the value
iteration algorithm. We will apply the algorithm to i uN
simultaneously for both i = 1, 2. By the convergence of
the algorithm it is sufficient to show that 1uk

N − 1µN ≤
2uk

N − 2µN for all k ≥ 0. Initialize i u0
N = iµN for i = 1, 2

and for some n ≥ 0, suppose 1un
N − 1µN ≤ 2un

N − 2µN.
Now, for an arbitrary � ∈ L′ consider the possible cases for
2un+1

N (�) − 1un+1
N (�).

1. If 1un+1
N (�) = 1µN(�), then because 2un+1

N (�) ≥ 2µN(�),
we have 2un+1

N (�) − 1un+1
N (�) ≥ 2µN(�) − 1µN(�).

2. If 1un+1
N (�) > 1µN(�), then

2un+1
N (�)−1un+1

N (�) ≥ 2 F0
N−1(�, 2un

N)−1 F0
N−1(�, 1un

N)

= 2 F0
N−1(�, 2un

N −2 µN) +2 F0
N−1(�, 2µN)

− 1 F0
N−1(�, 1un

N −1 µN) −1 F0
N−1(�, 1µN) (9)

≥ 2 F0
N−1(�,1 un

N −1 µN) −1 F0
N−1(�,1 un

N −1 µN)

+ 2 F0
N−1(�, 2µN) −1 F0

N−1(�, 1µN) (10)
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64 Kurt et al.

≥ 2 F0
N−1(�, 2µN) −1 F0

N−1(�, 1µN) (11)

≥ 2 F1
N−1(�, 2µN) −1 F1

N−1(�, 1µN) + τ (1σ −2 σ )

= 2µN(�) −1 µN(�), (12)

where (9) is implied by the fact that 2un+1
N (�) ≥ r0(�) +

2 F0
N−1(�, 2un

N) and (10) is implied by the induction
hypothesis. Then, since 2 p0

N−1(�′|�) ≥ 1 p0
N−1(�′|�) and

1un
N ≥ 1µN and 1un

N(L + 1) = 1µN(L + 1) = 0, (11) is
implied by 2 F0

N−1(�, 1un
N − 1µN) ≥ 1 F0

N−1(�, 1un
N −

1µN). Finally, we show the last inequality in
(12) as follows: By (8), 1 p1

N−1(�′|�) − 1 p0
N−1(�′|�) ≥

2 p1
N−1(�′|�) − 2 p0

N−1(�′|�) for all �, �′ ∈ L′. Also, be-
cause 1σ ≤ 2σ and (8) holds, 1µN ≥ 2µN. Because
iµN−1(L + 1) = 0 for both i = 1, 2, 1 F1

N−1(�, 1µN) −
1 F0

N−1(�, 1µN) ≥ 2 F1
N−1(�, 2µN) − 2 F0

N−1(�, 2µN). By
the fact that 1σ ≤ 2σ , this yields the last inequality in
(12).

Thus, 1un+1
N − 1µN ≤ 2un+1

N − 2µN, and the result for
t = N follows by induction. The rest of the proof is similar
by backwards induction on t ∈ T, and is omitted.

Now, we will treat each “or” case separately, and omit
the proof of “and” case since it is similar. If the pa-
tients are identical except 1σ ≤ 2σ , then the result di-
rectly follows from the auxiliary result that has been shown
above. Otherwise, if the patients are identical except 1ω ≥
2ω, by (1a)–(2b), 1π

�
t (�, 0) = 2π

�
t (�, 0) and 1π

�
t (�, 1) ≤

2π
�
t (�, 1) for all � ∈ L′ and t ∈ T′. Then, since 1q(�′|�) =

2q(�′|�) for all �, �′ ∈ L′ and 1dt = 2dt for all t ∈ T′, by
definition, we have 1 p1

t (�′|�) ≥ 2 p1
t (�′|�) and 1 p0

t (�′|�) =
2 p0

t (�′|�) for all �, �′ ∈ L′ and t ∈ T′, and the result follows
from the auxiliary result that has been shown above. �

Proof. of Proposition 6: For brevity, we will establish the
result only for t = N. Let i, jµN(�) denote the expected
post-treatment reward of patient i , i = 1, 2, in state � ∈ L
at epoch t = N when her quality-adjustment factor is
σ j , j = 1, 2. First, we will show that 1,2µN − 1,1µN ≥
2,2µN − 2,1µN. We will proceed by induction on the iter-
ates of the value iteration algorithm. We will apply the
algorithm to 1, jµN for both j = 1, 2. Initialize 1, jµ0

N =
2, jµN for j = 1, 2 so that 1,2µ0

N − 1,1µ0
N ≥ 2,2µN − 2,1µN.

As the induction hypothesis, for some n ≥ 0, suppose
1,2µn

N − 1,1µn
N ≥ 2,2µN − 2,1µN. Then, for an arbitrary

� ∈ L′,
1,2µn+1

N (�) − 1,1µn+1
N (�) − [2,2µN(�) − 2,1µN(�)

]
= 1 F1

N−1(�, 1,2µn
N−1,1µn

N)−2 F1
N−1(�,2,2µN−2,1µN)

≥ 1 F1
N−1(�, 1,2µn

N − 1,1µn
N − 2,2µN + 2,1µN) ≥ 0.

(13)

Because the patients are identical except 1ω ≥ 2ω:

1 p1
N−1(�′|�) ≥ 2 p1

N−1(�′|�) and 1 p0
N−1(�′|�)

= 2 p0
N−1(�′|�) for all �, �′ ∈ L′. (14)

Now, because σ1 ≥ σ2, 2,2µN ≥ 2,1µN. Because
2,2µN(L + 1) = 2,1µN(L + 1) = 0, by (14) this implies
1 F1

N−1(�, 2,2µN − 2,1µN) ≥ 2 F1
N−1(�, 2,2µN − 2,1µN),

implying the first inequality in (13). The second in-
equality in (13) directly follows from the induction
hypothesis. Thus, 1,2µn+1

N − 1,1µn+1
N ≥ 2,2µN − 2,1µN.

Then, the convergence of the algorithm yields
1,2µN − 1,1µN ≥ 2,2µN − 2,1µN. Next, for t = N,
we will apply the algorithm simultaneously to i, j uN for
i, j = 1, 2 to show that 1,2uN − 1,1uN ≥ 2,2uN − 2,1uN.
We will proceed by induction on the iterates of the algo-
rithm. Initialize i, j u0

N = i, jµN for � ∈ L and i, j = 1, 2.
Because 1,2µN − 1,1µN ≥ 2,2µN − 2,1µN, this implies
1,2u0

N − 1,1u0
N ≥ 2,2u0

N − 2,1u0
N. For some n ≥ 0, sup-

pose 1,2un
N − 1,1un

N ≥ 2,2un
N − 2,1un

N. We will make use
of the following set of auxiliary results to establish
1,2un+1

N − 1,1un+1
N ≥ 2,2un+1

N − 2,1un+1
N .

� Since σ1 ≥ σ2, by treating each patient as two identi-
cal patients with different quality-adjustment factors we
have,

i,1un
N − i,1µN ≥ i,2un

N − i,2µN for i = 1, 2. (15)

Similarly, since (14) is satisfied,
2, j un

N − 2, jµN ≥ 1, j un
N − 1, jµN for j = 1, 2. (16)

(The proofs of (15) and (16) are given in the proof of
Proposition 5).

� Define i, jU(�) = r0(�) + i F0
N−1(�, i, j un

N) for � ∈ L and
i, j = 1, 2. For an arbitrary � ∈ L, consider 1,2U(�) −
1,1U(�) − [

2,2U(�) − 2,1U(�)
]
.

1,2U(�) − 1,1U(�) − [2,2U(�) − 2,1U(�)
] = 1 F0

N−1

× (�,1,2un
N−1,1un

N) −2 F0
N−1(�, 2,2un

N − 2,1un
N) ≥ 0,

where the inequality is implied by the fact that
2 p0

N−1(�′|�) = 1 p0
N−1(�′|�) for all �′ ∈ L and the induc-

tion hypothesis. Thus, 1,2U − 1,1U ≥ 2,2U − 2,1U.
� 1,2µN − 2,2µN ≥ 1,2U − 2,2U. The proof of this fact is

as follows. For fixed � ∈ L:
1,2µN(�) − 2,2µN(�)

= 1 F1
N−1(�, 1,2µN) − 2 F1

N−1(�, 2,2µN)

≥ 1 F0
N−1(�, 1,2µN) − 2 F0

N−1(�, 2,2µN) (17)

≥ 1 F0
N−1(�, 1,2un

N) − 2 F0
N−1(�, 2,2un

N)

= 1,2U(�) − 2,2U(�), (18)

Since 1 p1
N−1(�′|�) ≥ 2 p1

N−1(�′|�) for all �′ ∈ L, it
can be easily shown that 1,2µN ≥ 2,2µN. Then,
(by (14)), because 1 p1

N−1(�′|�) − 1 p0
N−1(�′|�) ≥

2 p1
N−1(�′|�) − 2 p0

N−1(�′|�) ≥ 0 for all �, �′ ∈
L′, 1 F1

N−1(�, 1,2µN) − 1 F0
N−1(�, 1,2µN) ≥

2 F1
N−1(�, 2,2µN) − 2 F0

N−1(�, 2,2µN), and this yields
the inequality in (17). Then, the inequality in
(18) is implied by 1 F0

N−1(�, 1,2µN − 1,2un
N) ≥
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2 F0
N−1(�, 2,2µN − 2,2un

N) which follows from (16)
and the fact that 1 p0

N−1(�′|�) = 2 p0
N−1(�′|�) for all

�′ ∈ L.

Next, for an arbitrary � ∈ L′ consider the possible
cases for 1,2un+1

N (�) − 2,2un+1
N (�). Note that i, j un+1

N (�) =
max

{i, jU(�),i, j µN(�)
}

for � ∈ L and i, j = 1, 2.

1. If 1,1un+1
N (�) = 1,1µN(�), then by (15), 1,2un+1

N (�) ≤
1,2µN(�). By the definition of 1,2un+1

N (�), we also
have 1,2un+1

N (�) ≥ 1,2µN(�). These imply 1,2un+1
N (�) =

1,2µN(�). Then, by (16) we achieve
1,2un+1

N (�) − 1,1un+1
N (�) − [ 2,2un+1

N (�) − 2,1un+1
N (�)

]
= 1,2µN(�) − 1,1µN(�) − [2,2un+1

N (�) − 2,1un+1
N (�)

]
≥ 1,2µN(�) − 1,1µN(�) − 2,2µN(�) + 2,1µN(�) ≥ 0.

2. If 1,1un+1
N (�) = 1,1U(�), then by (16), 2,1un+1

N (�) =
2,1U(�). Now, consider the possible subcases:

(a) If 2,2un+1
N (�) = 2,2µN(�), then by (15), 1,2un+1

N (�) ≤
1,2µN(�). By the definition of 1,2un+1

N (�), we also have
1,2un+1

N (�) ≥ 1,2µN(�). These imply 1,2un+1
N (�) =

1,2µN(�). Then,
1,2un+1

N (�) − 1,1un+1
N (�) − [2,2un+1

N (�) − 2,1un+1
N (�)

]
= 1,2µN(�) − 1,1U(�) − 2,2µN(�) + 2,1U(�)

≥ 1,2U(�) − 1,1U(�) − 2,2U(�) + 2,1U(�) ≥ 0.

(b) If 2,2un+1
N (�) = 2,2UN(�), then because 1,2un+1

N (�) ≥
1,2U(�),

1,2un+1
N (�) − 1,1un+1

N (�) − [2,2un+1
N (�) − 2,1un+1

N (�)
]

≥ 1,2U(�) − 1,1U(�) − [2,2U(�) − 2,1U(�)
] ≥ 0.

Thus, 1,2un+1
N − 1,1un+1

N ≥ 2,2un+1
N − 2,1un+1

N . Then, the
convergence of the algorithm yields 1,2uN − 1,1uN ≥
2,2uN − 2,1uN. The proof for the case t < N is similar by
backwards induction on t ∈ T. �

Appendix E: Measuring the Violations of the
Assumptions

In this section we evaluate the maximum violations of the
assumptions and the conditions presented in Section 3. We
let a+ = max{a, 0} for a ∈ R and quantify the magnitudes
of the maximum violations of the assumptions by the met-
rics below.
� For Pm(t) being IFR, ε1 = max

�∈L\{L+1},k∈L,m∈M,t∈T′[∑k
�′=1

[
pm

t (�′|�+ 1) − pm
t (�′|�)

]+
.

� For Bt(�) being nondecreasing in
� ∈ L′, ε2 = max

�∈L′\{L}, t∈T′
[Bt(�) − Bt(�+ 1)]+.

� For the time-monotonicity of the terminal event proba-
bilities, ε3 = max

�∈L′, m∈M, t∈T′\{N−1}[
pm

t (L + 1|�) − pm
t+1(L + 1|�)]+

(0.01).
� For Bt(�) being nondecreasing in

t ∈ T′, ε4 = max
�∈L′, t∈T′\{N−1}

[Bt(�) − Bt+1(�)]+.

For our data set, the maximum value of the metrics ε1 −
ε3 are observed as follows: ε1 = 0.0243, ε2 = 0.0245 and
ε3 = 0.0171. We also observe that Bt(�) is nondecreasing in
t ∈ T′ for all � ∈ L in all of our instances; that is, ε4 = 0
across our experiments.
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