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Abstract We consider two-stage quadratic integer programs with stochastic right-
hand sides, and present an equivalent reformulation using value functions. We propose
a two-phase solution approach. The first phase constructs value functions of quadratic
integer programs in both stages. The second phase solves the reformulation using a
global branch-and-bound algorithm or a level-set approach. We derive some basic
properties of value functions of quadratic integer programs and utilize them in our
algorithms. We show that our approach can solve instances whose extensive forms are
hundreds of orders of magnitude larger than the largest quadratic integer programming
instances solved in the literature.
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122 O. Y. Özaltın et al.

1 Introduction

We consider the following class of two-stage quadratic integer programs with stochas-
tic right-hand sides:

(P1) : max
1

2
xT�x + cT x + EωQ(x, ω) (1a)

subject to x ∈ X, (1b)

where X = {x ∈ Z
n1+ | Ax ≤ b} and,

Q(x, ω) = max
1

2
yT�y + dT y (2a)

subject to W y ≤ h(ω)− T x, (2b)

y ∈ Z
n2+ . (2c)

The random variable ω from probability space (�,F ,P) describes the realizations of
uncertain parameters, known as scenarios. The numbers of constraints and decision
variables in stage i are mi and ni , respectively, for i = 1, 2. The first-stage objective
vector c ∈ R

n1 , right-hand side vector b ∈ R
m1 and the second-stage objective vector

d ∈ R
n2 are known column vectors. The first-stage constraint matrix A ∈ R

m1×n1 ,
technology matrix T ∈ R

m2×n1 and recourse matrix W ∈ R
m2×n2 are all determin-

istic. Furthermore, � ∈ R
n1×n1 and � ∈ R

n2×n2 are known, and possibly indefinite,
symmetric matrices. The stochastic component consists of only h(ω) ∈ R

m2 ∀ω ∈ �.
The extensive form formulation of (P1) is given by:

max
1

2
xT�x + cT x + Eω

[
1

2
y(ω)T�y(ω)+ dT y(ω)

]
(3a)

subject to x ∈ X, (3b)

W y(ω) ≤ h(ω)− T x ∀ω ∈ �, (3c)

y(ω) ∈ Z
n2+ ∀ω ∈ �. (3d)

In this paper we make the following assumptions:

A1 The random variable ω follows a discrete distribution with finite support.
A2 The first-stage feasibility set X = {x ∈ Z

n1+ | Ax ≤ b} is nonempty and bounded.
A3 Q(x, ω) is finite for all x ∈ X and ω ∈ �.
A4 The first-stage constraint matrix A, technology matrix T and recourse matrix W

are all integral, i.e. A ∈ Z
m1×n1, T ∈ Z

m2×n1,W ∈ Z
m2×n2 .

Assumption A1 is justified by Schultz [49], who showed that the optimal solution to
any stochastic program with continuously distributed ω can be approximated within
any desired accuracy using a discrete distribution. Assumption A2 and integrality
restrictions in the first stage ensure that X is a finite set. Assumption A3 ensures that
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Two-stage quadratic integer programs with stochastic right-hand sides 123

Q(x, ω) is feasible for all x ∈ X and ω ∈ �, i.e. relatively complete recourse [58].
Assumption A4 is not too restrictive in a sense, as any rational matrix can be converted
to an integral one. Most of the stochastic programming studies in the literature make
assumptions similar to A1–A3 [9,16,35,51] and A4 [35]. Without loss of generality,
we also assume that b ∈ Z

m1 and h(ω) ∈ Z
m2 ∀ω ∈ �, as A, T and W are all integer

matrices. Note that all of the undesirable properties of stochastic integer programs,
e.g. discontinuity and nonconvexity of Q(x, ω), still exist in (P1).

We reformulate (P1) using the value functions of the first- and second-stage qua-
dratic integer programs. The advantage of this reformulation is that it is relatively
insensitive to the number of variables and scenarios. In the first phase of our solution
approach, we construct the value functions in both stages. In the second phase, we use
a global branch-and-bound algorithm or a level-set approach to optimize (P1) over
the set of feasible first-stage right-hand sides.

Our approach can solve very large instances of (P1) as measured by the size of the
extensive form. However, it is sensitive to the number of constraints in each stage and
the magnitude of h(ω). Note that the number of quadratic integer programs that must
be solved when constructing the value function grows exponentially in the number of
constraints. A major contribution of this paper is to propose algorithms that can miti-
gate the effect of this exponential growth to some extent by exploiting the properties
of value functions. Specifically, our approach can handle instances of (P1) that have
up to seven constraints in each stage.

The remainder of this paper is organized as follows. In Sect. 2, we review the
literature on quadratic integer programming and stochastic integer programming. In
Sect. 3, we present a value function reformulation of (P1). In Sect. 4, we present a
global branch-and-bound algorithm and a level-set approach to optimize the reformu-
lation over the set of feasible first-stage right-hand sides. In Sect. 5, we identify various
properties of value functions of quadratic integer programs, which are subsequently
exploited in our algorithms. In Sect. 6, we propose four algorithms to construct the
value function of a quadratic integer program. In Sect. 7, we discuss the details of
our implementation and present computational results. We conclude and give future
research directions in Sect. 8.

2 Literature review

2.1 Quadratic integer programming

Quadratic integer programs (QIPs) have been extensively studied, e.g. the quadratic
assignment problem [36], the quadratic knapsack problem [22] and the discrete version
of the bilinear programming problem [3].

Linearization is widely used for solving 0–1 QIPs [1,4,2,15,24,44,45,57]. The
original problem is transformed into an equivalent linear mixed-integer program by
introducing new variables and additional constraints. Major drawbacks of this method
is the substantial increase of the problem size and the weakness of the LP relax-
ation [1,4]. There are various branch-and-bound [5,7,10,14,21,30,39,40,46,48,56]
and cutting plane [6,11,27,28,37,38,47] algorithms proposed for general and 0–1
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124 O. Y. Özaltın et al.

QIPs. These methods often rely on some simplifying assumptions, e.g. unconstrained
0–1 problems [30,46], or convex and separable objective functions [14,48].

Value functions of linear integer programs have been considered in [13,31–33,59].
However, the literature on QIP value functions is very sparse. Sensitivity of definite
QIPs is studied in [18,25]. Granot and Skorin-Kapov [25] extends some of the lin-
ear integer programming proximity results derived in Schrijver et al. [17] to QIPs.
Bank and Hansel [12] investigates the stability of indefinite mixed-integer quadratic
programs. In terms of numerical and theoretical results of parameterized QIPs, an
early computational study by McBride and Yormark [41] considers a sequence of 0–1
QIPs parameterized over the right-hand side of a single constraint. More recently,
Dua et al. [20] develops a global optimization algorithm for solving a general class of
nonconvex mixed-integer programs parameterized over the right-hand sides of a set of
possibly nonlinear constraints. Their proposed algorithmic approach utilizes convex
under- and over-estimators within a generic branch-and-bound algorithm.

2.2 Stochastic integer programming

Stochastic programs have many applications, including supply chain network
design [53], telecommunications [34,52], server location [43] and dynamic capac-
ity acquisition [8]. Imposing integrality restrictions on the second-stage variables
increases the problem complexity significantly as the expected recourse function
becomes nonconvex and discontinuous in general [55]. In the literature, algorithms
developed for solving general stochastic programs with integer recourse utilize cut-
ting planes and/or branch-and-bound techniques in combination with decomposition
methods that exploit block-separability of the underlying problem structure. Here we
describe two papers that are most closely related to our work. We refer the reader to
Klein Haneveld and van der Vlerk [26] or Schultz [50] for detailed surveys.

Ahmed et al. [9] considers two-stage stochastic programs with discrete probabil-
ity distributions, mixed-integer first-stage and pure-integer second-stage problems.
A variable transformation is applied to make the discontinuities of the expected
recourse function orthogonal to the variable axes. This structure is exploited through
a rectangular branching strategy. Then a bounding strategy is employed to obtain the
value function of the second-stage integer program in the absence of discontinuities.
Finiteness of the method is established within a bounded search domain.

Kong et al. [35] considers a class of stochastic programs with stochastic right-hand
sides, pure-integer first- and second-stage problems that have linear objective func-
tions in both stages, i.e.� = � = 0 in (P1). Similar to Ahmed et al. [9], their approach
is based on an equivalent variable transformation that uses the value functions in both
stages. Moreover, superadditive duality properties are exploited to characterize value
functions efficiently. In contrast to [9], the value functions of both stages are calcu-
lated in advance, which are then utilized within a global branch-and-bound algorithm
or an implicit exhaustive search procedure. The extensive forms of the stochastic linear
integer programs that are solved by Kong et al. [35] are the largest ones reported in
the literature so far. Our solution approach extends that of Kong et al. [35], in that we
consider the more general problem of stochastic quadratic integer programs.
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Two-stage quadratic integer programs with stochastic right-hand sides 125

3 Value function reformulation

We reformulate (P1) using the value functions of QIPs in both stages. Let B1 denote
the set of vectors β1 ∈ R

m2 such that there exists x ∈ X satisfying β1 = T x , i.e.
B1 = {β1 ∈ R

m2 | ∃x ∈ X, β1 = T x}, where X ⊆ Z
n1+ is the first-stage feasibility set.

Furthermore, let B2 denote the set of vectors β2 ∈ R
m2 such that there exists β1 ∈ B1

and ω ∈ � satisfying β2 = h(ω) − β1, i.e. B2 = ⋃β1∈B1 ∪ω∈� {h(ω)− β1}. Note

that all vectors in B1 are integral since T ∈ Z
m2×n1 . Together with the condition that

h(ω) ∈ Z
m2 ∀ω ∈ �, all vectors in B2 are also integral.

For any β1 ∈ Z
m2 , we define the first-stage value function of (P1) as:

ψ(β1) = max

{
1

2
xT�x + cT x | x ∈ S1(β1)

}
, S1(β1) = {x ∈ X | T x ≤ β1}. (4)

Note that the condition T x = β1 in the definition of B1 is replaced by T x ≤ β1 in (4).
This is justified by nondecreasing property of the value function (see Proposition 8 in
Sect. 5.2).

Next, for any β2 ∈ Z
m2 , we define the second-stage value function of (P1) as:

φ(β2) = max

{
1

2
yT�y+dT y | y ∈ S2(β2)

}
, S2(β2)=

{
y ∈ Z

n2+ | W y ≤ β2
}
. (5)

We use ψ(·) and φ(·) to reformulate (P1) as:

(P2) : max
{
ψ(β)+ Eωφ(h(ω)− β) | β ∈ B1

}
. (6)

The variables β in (P2) are known as the tender variables [9,35]. Instead of searching
in X, we search in the space of tender variables to obtain a global optimal solution.
Theorem 1 establishes the correspondence between the optimal solutions of (P1) and
(P2), and is similar to Theorem 3.2 in Ahmed et al. [9].

Theorem 1 Let β∗ be an optimal solution to (P2). Then, x̂ ∈ argmax
{ 1

2 xT�x +
cT x |x ∈ S1(β

∗)
}

is an optimal solution to (P1). Furthermore, the optimal values of
the two problems are equal.

Next, we present a global branch-and-bound algorithm and a level-set approach to
optimize (P2) over the set of feasible first-stage right-hand sides given the value func-
tions of QIPs in both stages. These two methods motivate us to study the properties of
the QIP value function in Sect. 5, which are subsequently exploited in our algorithmic
developments in Sect. 6.

4 Finding the optimal tender

The first method is a global branch-and-bound algorithm in which bounds are derived
for hyper-rectangular partitions of B1. The second method is a level-set approach that
evaluates the objective function in (P2) only for a subset of B1.
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126 O. Y. Özaltın et al.

4.1 A global branch-and-bound algorithm

We propose a global branch-and-bound algorithm based on the framework described
in Horst and Tuy [29]. The algorithm partitions B1 into hyper-rectangles Pk . Each
hyper-rectangle is associated with a subproblem of the form

f k = max
{
ψ(β)+ Eξφ(h(ω)− β) |β ∈ Pk ∩ Z

m2
}
,

a lower boundμk ≤ f k , and an upper bound vk ≥ f k . A hyper-rectangle k is fathomed
if μk ≥ vk . We denote the list of unfathomed hyper-rectangles by M.

Algorithm 5. A global branch-and-bound algorithm to solve (P2).

Step 0: (Initialization) Construct a hyper-rectangle P0 := [λ0, η0
] = �m2

i=1

[
λ0

i , η
0
i

]
such that B1 ⊆ P0 ∩ Z

m2 . Initialize list M ← {
P0
}

and k ← 1. Set global
lower bound L = ψ(β0) + Eξφ(h(ω) − β0) using an arbitrary β0 ∈ B1. Set
μ0 = ψ(λ0)+ Eξφ(h(ω)− η0) and v0 = ψ(η0)+ Eξφ(h(ω)− λ0).

Step 1: (Subproblem selection) If M = ∅, terminate with optimal solution β∗; other-
wise, select and delete from M a hyper-rectangle Pk := [λk, ηk

] = �m2
i=1

[
λk

i , η
k
i

]
.

Step 2: (Subproblem pruning)
(2a) If vk ≤ L or Pk ∩ B1 = ∅, go to Step 1.
(2b) If μk < vk , i.e. Pk is an unfathomed hyper-rectangle, go to Step 3.
(2c) If μk = vk and L < μk , update L = μk = vk = f k , and arbitrarily select

β ∈ Pk ∩ B1 and set β∗ = β.
(2d) Delete from M all hyper-rectangles Pk′ with vk′ ≤ L and go to Step 1.

Step 3: (Subproblem partitioning) Choose a dimension i ′, 1 ≤ i ′ ≤ m2, such that
λk

i ′ < ηk
i ′ . Divide Pk into two hyper-rectangles Pk1 and Pk2 along dimension

i ′ as: Pk1 := [
λk1 , ηk1

] = [
λk

i ′ ,
⌊
(ηk

i ′ + λk
i ′)/2

⌋] × �i �=i ′
[
λk

i , η
k
i

]
and Pk2 :=[

λk2 , ηk2
] = [⌊

(ηk
i ′ + λk

i ′)/2
⌋+ 1, ηk

i ′
] × �i �=i ′

[
λk

i , η
k
i

]
. Add the two hyper-

rectangles Pki , i = 1, 2, to M, i.e. M ← M ∪ {Pk1 ,Pk2
}
. Set μki =

ψ(λki ) + Eξφ(h(ω) − ηki ) and vki = ψ(ηki ) + Eξφ(h(ω) − λki ), i = 1, 2. Set
k ← k + 1 and go to Step 1.

Theorem 2 [35] There Algorithm 5 terminates with an optimal solution β∗ to (P2)
after a finite number of iterations.

4.2 The minimal tender approach

In this section we describe a level-set approach to reduce the search space when T in
(P1) is nonnegative so that B1 ⊂ Z

m2+ . In this case, there must exist an optimal right-
hand side β∗ to (P2) satisfying that each smaller right-hand side has also a strictly
smaller objective value in the first stage. We call such right-hand sides minimal tenders.
Let  ⊆ B1 be the set of all minimal tenders. The minimal tender approach is first
introduced in Kong et al. [35] for linear integer programs (IPs). We extend their results
to QIPs.
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Two-stage quadratic integer programs with stochastic right-hand sides 127

Definition 1 [35] There a vector β ∈ B1 is a minimal tender if, ∀i = 1, . . . ,m2,
either βi = 0 or ψ(β − ei ) < ψ(β), where ei is the i th unit vector.

Theorem 3 [35] There exists a minimal tender optimal solution to (P2). That is,

max
β∈

{
ψ(β)+ Eξφ(h(ω)− β)

} = max
β∈B1

{
ψ(β)+ Eξφ(h(ω)− β)

}
.

Let ρ = ||/|B1|. Intuitively, as ρ → 1, the computational benefit of searching
 may be surpassed by the computational burden of determining . Unfortunately,
the value of ρ is typically not known until ψ(·) is completely determined, although in
some special cases it can be identified analytically.

Remark 1 Suppose ∀i ci + 1
2�i i > 0 and ∀ j �= i�i j ≥ 0. If T contains Im2 , the

m2-dimensional identity matrix as a submatrix, then  = B1 and ρ = 1.

Let opt(β) ⊆ Z
n1+ denote the set of optimal solutions to ψ(β).

Lemma 1 [35] There for any β ∈  and x̂ ∈ opt(β), T x̂ = β.

Proposition 1 Let � = diag(�11, . . . , �nn) � 0 and x̂ ∈ opt(β). If β ∈ \{0},
then T x ∈  for all x �= 0 such that xi = 0 or xi = x̂i ∀i .
Proof ψ(·) is superadditive by Proposition 9 in Sect. 5.2. Let x �= 0 be such that
xi = x̂i or xi = 0 ∀i . Then ψ(T x) = 1

2 xT�x + cT x by Corollary 9 in Sect. 5.2.
Suppose that T x /∈ . Then there exists an i ∈ {1, . . . ,m2} such that T x − ei ≥ 0
and ψ(T x − ei ) = ψ(T x). Let y ∈ opt(T x − ei ). Thus y �= x, y ∈ S1(T x − ei ) and
1
2 xT�x+cT x = 1

2 yT�y+cT y. Consider x̃ = x̂−x+ y. Then T x̃ = T (x̂−x+ y) ≤
T x̂ − T x + T x − ei = T x̂ − ei and x̃ ∈ S1(T x̂ − ei ).

Note that
∑

i �i i x̂i xi = ∑i �i i x2
i as xi = 0 or xi = x̂i ∀i. Then the objective

value for x̃ :

1

2
(x̂ − x + y)T�(x̂ − x + y)+ cT (x̂ − x + y)

= 1

2

∑
i

�i i (x̂i − xi )
2 + 1

2

∑
i

�i i y2
i +

∑
i

�i i (x̂i − xi )yi + cT (x̂ − x + y)

≥ 1

2

∑
i

�i i x̂2
i −

∑
i

�i i x̂i xi + 1

2

∑
i

�i i x2
i +

1

2

∑
i

�i i y2
i + cT (x̂ − x + y)

= 1

2

∑
i

�i i x̂2
i + cT x̂ − 1

2

∑
i

�i i x2
i − cT x + 1

2

∑
i

�i i y2
i + cT y

= 1

2
x̂ T�x̂ + cT x̂,

which implies that ψ(T x̂ − ei ) = ψ(T x̂) contradicting T x̂ = β ∈ . ��
Corollary 1 Let� = diag(�11, . . . , �nn) � 0. For anyβ ∈ \ {0} and x̂ ∈ opt(β),
if x̂� ≥ 1, then x̂�t� ∈ .
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128 O. Y. Özaltın et al.

Proof Let x ∈ Z
n+ such that x� = x̂� and xi = 0 for all i �= �. Then the result follows

directly from Proposition 1. ��
Remark 2 Corollary 1 is a generalization of Kong et al.’s [35] result for linear integer
programs, which states that for any β ∈ \ {0} and x̂ ∈ opt(β), if x̂� ≥ 1, then
t� ∈ . Proposition 1 and Corollary 1 hold for linear IPs as well, however Kong et
al.’s [35] result does not hold for diagonal QIPs. Consider the following instance:

z(β) = max
{

3x2
1 + x2

2 + 2x1 + 4x2 | 2x1 + x2 ≤ β1, 2x1 + 2x2 ≤ β2, x ∈ Z
2+
}
.

Clearly, x̂ = (2, 0)T ∈ opt((4, 4)T ) and z((4, 4)T ) = 16. (4, 4)T is a minimal tender
since z((3, 4)T ) = 12 < 16 and z((4, 3)T ) = 5 < 16. Note that t1 = (2, 2)T and
x̂1t1 = (4, 4)T . However, t1 = (2, 2)T is not a minimal tender since z((2, 2)T ) =
z((1, 2)T ) = 5.

Corollary 2 Let� = diag(�11, . . . , �nn) � 0. For anyβ ∈ \ {0} and x̂ ∈ opt(β),
if x̂� ≥ 1 and ��� = 0, then t� ∈ .

4.3 Reduction of the primal formulation using minimal tenders

In this section we assume that � is a diagonal matrix with nonnegative diagonal ele-
ments, i.e. ∀i�i i ≥ 0 and ∀ j �= i�i j = 0. Let T be the index set of columns t j in T
such that kt j ∈  for some k ∈ Z

1+. For β ∈ Z
m2+ , we define

ψ ′(β) = max

⎧⎨
⎩

1

2

∑
j∈T

� j j x2
j +

∑
j∈T

c j x j | x ∈ S′1(β)

⎫⎬
⎭ , (7)

where

S′1(β) =
⎧⎨
⎩x ∈ Z

|T |
+

∣∣∣∣∣∣
∑
j∈T

a j x j ≤ b,
∑
j∈T

t j x j ≤ β
⎫⎬
⎭ . (8)

Then the reduced superadditive dual reformulation is

max
β∈

{
ψ ′(β)+ Eξφ(h(ω)− β)

}
. (9)

Lemma 2 For β ∈ ,ψ ′(β) = ψ(β).
Proof The result is trivial for β = 0. For any β ∈ \ {0} it follows directly from
Corollary 1. ��
Theorem 4 There exists an optimal solution to (P2) that is an optimal solution to
(9). That is,

max
β∈

{
ψ ′(β)+ Eξφ(h(ω)− β)

} = max
β∈B1

{
ψ ′(β)+ Eξφ(h(ω)− β)

}
.
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Two-stage quadratic integer programs with stochastic right-hand sides 129

The proof of Theorem 4 directly follows from Lemma 2 and Theorem 3.

Corollary 3 Let β∗ be an optimal solution to (9). Then x̂ ∈ opt(β∗) is an optimal
solution to (P1). Furthermore, the optimal objective values of the two problems are
equal.

Corollary 4 There exists an optimal solution x∗ to (P1) where x∗j = 0 for j /∈ T .

5 The value function of a quadratic integer program

We first review basic properties of linear IP value functions. We then consider value
functions of quadratic integer programs and describe various properties of them, which
are subsequently utilized in algorithmic developments in Sect. 6. These properties may
also be useful in other contexts, such as sensitivity analysis of quadratic integer pro-
grams [18,25].

5.1 Properties of linear IP value functions

Given G ∈ Z
m×n and γ ∈ Z

n , consider a family of parameterized linear IPs:

(PIP) : ζ(β) = max{γ T x | x ∈ S(β)}, S(β) = {x ∈ Z
n+ | Gx ≤ β} for β ∈ Z

m .

The function ζ(·) : Zm �→ Z, is called the value function of (PIP). Define ôpt(β) =
argmax{γ T x | Gx ≤ β, x ∈ Z

n+} and SL P (β) = {x ∈ R
n+ | Gx ≤ β}. Moreover, let

ζL P (β) = max{γ T x | x ∈ SL P (β)}. The following results are proved in [42].

Proposition 2 ζ(0) ∈ {0,∞}. If ζ(0) = ∞, then ζ(β) = ±∞ for all β ∈ R
m. If

ζ(0) = 0, then ζ(β) <∞ for all β ∈ Z
m .

Proposition 3 ζ(g j ) ≥ γ j for j = 1, . . . , n.

Proposition 4 ζ(·) is nondecreasing in β ∈ Z
m.

Proposition 5 ζ(·) is superadditive over D = {β ∈ Z
m | S(β) �= ∅}.

Proposition 6 (Integer Complementary Slackness) If x̂ ∈ ôpt(β), then ζ(Gx) = γ T x
and ζ(Gx)+ ζ(β − Gx) = ζ(Gx)+ ζ(G(x̂ − x)) = ζ(β), for all x ∈ Z

n+ such that
x ≤ x̂ .

Corollary 5 If ζ(g j ) > γ j , then for all β ∈ Z
m and x̂ ∈ ôpt(β), x̂ j = 0.

5.2 Properties of quadratic IP value function

Given a symmetric matrix Q ∈ Z
n×n , column vectors c ∈ Z

n, β ∈ Z
m and constraint

matrix G ∈ Z
m×n , we consider the following family of parametric QIPs:

(P Q I P) : z(β) = max

{
1

2
xT Qx + cT x | x ∈ S(β)

}
for β ∈ Z

m .
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130 O. Y. Özaltın et al.

The function z(·) : Zm �→ Z, is called the value function of (P Q I P). Define opt (β)=
argmax

{ 1
2 xT Qx + cT x | x ∈ S(β)

}
and zQ P (β) = max

{ 1
2 xT Qx + cT x | x ∈

SL P (β)
}
. We assume that z(β) = −∞ when S(β) = ∅; and zQ P (β) = −∞ when

SL P (β) = ∅. Let qi be i th column and qi j be (i, j)th element of matrix Q, respectively.

Proposition 7 z(g j ) ≥ c j + 1
2 q j j .

Proposition 8 z(·) is nondecreasing in β ∈ Z
m.

Proposition 9 If Q is nonnegative, then z(·) is superadditive over D = {
β ∈

Z
m | S(β) �= ∅}. Otherwise, there exists a matrix G such that z(·) is not superadditive.

Proof Let x1 ∈ opt (β1) and x2 ∈ opt (β2), then x1 + x2 ∈ S(β1 + β2), and

z(β1 + β2) ≥ cT (x1 + x2)+ 1

2
(x1 + x2)

T Q(x1 + x2)

= cT x1 + cT x2 + 1

2
xT

1 Qx1 + 1

2
xT

2 Qx2 + xT
1 Qx2

= z(β1)+ z(β2)+ xT
1 Qx2,

which implies that z(β1 + β2) ≥ z(β1)+ z(β2) since qi j ≥ 0 ∀i, j .
Next, suppose that ∃i, j such that qi j < 0. If i = j , i.e. qii < 0, consider the

following feasible region:

S(β) =
⎧⎨
⎩x ∈ Z

n+ |
∑

k:k �=i

xk ≤ β1, xi ≤ β2, −xi ≤ β3

⎫⎬
⎭ .

Let β = (0, 1,−1)T . Then for any given c, we obtain z(β) = ci + 1
2 qii and

z(2β) = 2ci + 2qii = z(β)+ z(β)+ qii < z(β)+ z(β).

Otherwise, if i �= j and qi j < 0. Consider the following feasible region:

S(β) =
⎧⎨
⎩x ∈ Z

n+ |
∑

k:k �=i,k �= j

xk ≤ β1, xi ≤ β2, −xi ≤ β3, x j ≤ β4, −x j ≤ β5

⎫⎬
⎭ .

Let β = (0, 1,−1, 0, 0)T and β ′ = (0, 0, 0, 1,−1)T . Then, for any given c, we obtain
z(β) = ci + 1

2 qii , z(β ′) = c j + 1
2 q j j and

z(β + β ′) = ci + c j + 1

2
qii + 1

2
q j j + qi j = z(β)+ z(β ′)+ qi j < z(β)+ z(β ′).

��
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Next, we investigate whether an analogue of Proposition 2 holds for QIPs. Note
that Assumptions A2 and A3 ensure that z(·) is finite for all β ∈ Z

m . We relax these
two assumptions for the results that are directly related to the finiteness of z(·).
Remark 3 There are instances of (P Q I P) such that z(0) /∈ {0,∞}. Consider the
following instance:

z(β) = max

{
3x1 − 3

2
x2

1 + x2 | x2 ≤ β and x ∈ Z
2+
}
.

Obviously, z(0) = 3
2 /∈ {0,∞} with x̂ = (1, 0)T . ��

If z(·) is superadditive, then the first two properties of Proposition 2 extend to QIPs.

Proposition 10 If z(·) is superadditive, then z(0) ∈ {0,∞}. Moreover, if z(0) = ∞,
then z(β) = ±∞ for all β ∈ Z

m.

Proof Suppose z(0) < ∞. Then z(0) ≤ 0 [42], but also z(0) ≥ 0 as 0 ∈ S(0). This
implies that z(0) = 0 ∈ {0,∞}.

Suppose z(0) = ∞. If S(β) = ∅, then z(β) = −∞. Otherwise, from superaddi-
tivity z(0)+ z(β) ≤ z(β)⇒∞ ≤ z(β). ��
Remark 4 There are instances of (P Q I P) such that z(β) = +∞ for some β ∈ Z

m

while z(0) = 0, which implies that the last statement of Proposition 2 does not hold.
Consider the following instance:

z(β) = max
{

x2 + x1x2 | x2 − x1 ≤ β1, x2 ≤ β2, x ∈ Z
2+
}
.

Note that z(0) = 0 and (1, 0)T ∈ opt (0). If β = (0, 1)T , then z(β) = +∞, since
x̂ = (1, 1)T + t (1, 0)T ∈ S(β) ∀t ∈ Z

1+. Note that z(·) is also superadditive as Q is
nonnegative. ��
Lemma 3 If z(0) = 0, then vT Qv ≤ 0 ∀v ∈ S(0).

Proof If v ∈ S(0), then tv ∈ S(0) ∀t ∈ Z
1+. Suppose that vT Qv > 0. Then cT (tv)+

1
2 (tv)

T Q(tv) > 0 as t →+∞, which contradicts z(0) = 0. ��
Proposition 11 If z(0) = 0 and xT Qv ≤ 0 ∀x ∈ S(β) and ∀v ∈ S(0), then z(β) <
∞ ∀β ∈ Z

m .

Proof Since z(0) = 0 Lemma 3 holds. Suppose z(β) = ∞ for some β ∈ Z
m . Then,

∃x ∈ S(β), v ∈ S(0) and t ∈ Z
1+ such that

cT (x + (t + 1)v)+ 1

2
(x + (t + 1)v)T Q (x + (t + 1)v)

−cT (x + tv)− 1

2
(x + tv)T Q(x + tv) > 0,

⇒ cT v + 1

2
vT Qv + tvT Qv + xT Qv > 0,
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which is a contradiction because vT Qv ≤ 0 from Lemma 3 and xT Qv ≤ 0 by the
assumption of the proposition. ��

Remark 5 The superadditivity of z(·) does not imply that xT Qv ≤ 0. Consider the
instance in Remark 4, where xT Qv = 1 for x = (1, 1)T and v = (1, 0)T . ��

Remark 6 If xT Qv ≤ 0 for all β ∈ Z
m, x ∈ S(β) and v ∈ S(0), then z(·) is not

necessarily superadditive. Consider the following instance:

z(β) = max
{

3x − x2 | x ≤ β, x ∈ Z
1+
}
.

z(·) is not superadditive since z(1) = 2, z(2) = 2 and z(3) = 2. Note that xT Qv = 0
for all x since v = 0 when β = 0. ��

As a result of Remarks 5 and 6, we may conclude that there is no direct relation
between the superadditivity of the value function z(·) and the sufficient condition for
its finiteness given by Proposition 11.

Next, we consider the extensions of Proposition 6 (Integer Complementary
Slackness) for QIPs.

Proposition 12 Let x̂ ∈ opt (β) for β ∈ Z
m. Then ∀x ≤ x̂ and x ∈ Z

n+,

z(Gx̂)− xT Q(x̂ − x) ≤ z(Gx)+ z(G(x̂ − x)) ≤ z(Gx)+ z(β − Gx).

Proof The right inequality follows since z(·) is nondecreasing and x̂ ∈ S(β). To show
the left inequality,

z(Gx)+ z(G(x̂ − x)) ≥ cT x + 1

2
xT Qx + cT (x̂ − x)+ 1

2
(x̂ − x)T Q(x̂ − x)

= cT x̂ + 1

2
xT Qx + 1

2
x̂ T Qx̂ + 1

2
xT Qx − xT Qx̂

= cT x̂ + 1

2
x̂ T Qx̂ − xT Q(x̂ − x) = z(Gx̂)− xT Q(x̂ − x).

��

Remark 7 Either bound in Proposition 12 can be tight. Consider the following
instance:

z(β) = max
{
−x2 + 6x | x ≤ β, x ∈ Z

1+
}
.

For β = 3, x̂ = 3 and z(Gx̂) = z(3) = 9. Let x = 2 ≤ x̂ = 3. Then, z(G(x̂ − x)) =
z(1) = 5, z(Gx) = z(2) = 8 and z(Gx̂)−xT Q(x̂−x) = z(Gx)+z(G(x̂−x)) = 13,
which implies that the left bound is tight. Note that z(β−Gx) = z(G(x̂ − x)) = z(1)
and the right bound is tight as well. ��
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Proposition 13 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z
m. Then ∀x ≤ x̂

and x ∈ Z
n+,

z(Gx) ≤ cT x + 1

2
xT Qx + xT Q(x̂ − x).

Proof Suppose z(Gx) > cT x + 1
2 xT Qx + xT Q(x̂ − x) for some x ≤ x̂, x ∈ Z

n+.
Then,

z(Gx)+ z(G(x̂ − x)) > cT x + 1

2
xT Qx + xT Q(x̂ − x)+ cT (x̂ − x)

+1

2
(x̂ − x)T Q(x̂ − x)

= cT x̂ + 1

2
xT Qx + xT Q(x̂ − x)+ 1

2
x̂ T Qx̂

+1

2
xT Qx − xT Qx̂

= cT x̂ + 1

2
x̂ T Qx̂ + xT Q(x̂ − x)+ xT Q(x − x̂) = z(Gx̂)

which contradicts the superadditivity of z(·). ��
Remark 8 The bound in Proposition 13 can be tight when xT Q(x̂− x) �= 0. Consider
the following instance:

z(β) = max
{

x2
1 + x1x2 − x1 + x2 | 2x1 + x2 ≤ β, x ∈ Z

+
2

}
.

Clearly, x̂ = (1, 2)T ∈ opt (4) and z(4) = 4. Consider x = (1, 1)T ≤ x̂ = (1, 2)T .
Then, Gx = 3 and (0, 3)T ∈ opt (3) and z(Gx) = z(3) = 3. Moreover, xT Q(x̂−x) =
1, cT x + 1

2 xT Qx = 2 and z(·) is superadditive since Q is nonnegative. As a result,
cT x + 1

2 xT Qx + xT Q(x̂ − x) = 3 = z(Gx). ��
Remark 9 For linear IPs, ζ(β − Gx) = ζ(G(x̂ − x)) ∀x ≤ x̂ ∈ ôpt(β) and x ∈ Z

n+.
This property does not necessarily hold for QIPs even if the value function z(·) is
superadditive. Consider the following instance:

z(β) = max
{

x1 + x2
2 + 2x2 + 2x1x2 | x1 + 3x2 ≤ β1, x1 + x2 ≤ β2, x ∈ Z

+
2

}
.

Clearly, x̂ = (2, 2)T ∈ opt ((9, 4)T ) and z((9, 4)T ) = 18.z(·) is superadditive since
Q is nonnegative. Let x = (0, 2)T ≤ x̂ = (2, 2)T . Then, Gx = (6, 2)T and β−Gx =
(3, 2)T . Moreover, Gx̂ = (8, 4)T and G(x̂ − x) = (2, 2)T . We have z(β − Gx) =
z((3, 2)T ) = 3 (with a solution of (0, 1)T ) and z(G(x̂ − x)) = z((2, 2)T ) = 2 (with
a solution of (2, 0)T ). As a result, z(β − Gx) > z(G(x̂ − x)). ��
However, if z(·) is superadditive, we can find an upper bound on the difference between
z(β − Gx) − z(G(x̂ − x)), which also provides us with some necessary optimality
conditions as a corollary.
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Proposition 14 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z
m. Then ∀x ≤ x̂

and x ∈ Z
n+,

0 ≤ z(β − Gx)− z(G(x̂ − x)) ≤ xT Q(x̂ − x).

Proof The left inequality follows from Proposition 8. To show the right inequality,
since z(·) is superadditive,

z(β − Gx)− z(G(x̂ − x)) ≤ z(β)− z(Gx)− z(G(x̂ − x))

≤ cT x̂ + 1

2
x̂ T Qx̂ − cT x − 1

2
xT Qx − cT (x̂ − x)− 1

2
(x̂ − x)T Q(x̂ − x)

= 1

2
x̂ T Qx̂ − 1

2
xT Qx − 1

2
x̂ T Qx̂ − 1

2
xT Qx + xT Qx̂ = xT Q(x̂ − x).

��
Corollary 6 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z

m. Then xT Q(x̂ −
x) ≥ 0 ∀x ≤ x̂ and x ∈ Z

n+.

Corollary 7 generalizes Proposition 6 (Integer Complementary Slackness) for QIPs.

Corollary 7 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z
m. Then ∀x ≤ x̂ and

x ∈ Z
n+,

cT x + 1

2
xT Qx ≤ z(Gx) ≤ cT x + 1

2
xT Qx + xT Q(x̂ − x) and

z(Gx̂)− xT Q(x̂ − x) ≤ z(Gx)+ z(G(x̂ − x)) ≤ z(Gx)+ z(β − Gx) ≤ z(Gx̂).

Note that when Q = 0, Proposition 6 (Integer Complementary Slackness) directly
follows from Corollary 7. Next, Corollaries 8 and 9 allow us to get either exact values
or perform some simple column/value elimination.

Corollary 8 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z
m. If there exists

j such that qi j = q ji = 0 ∀i �= j, then z(x̂ j g j ) = c j x̂ j + 1
2 q j j x̂2

j .

Proof Consider vector x = (0, . . . , 0, x̂ j , 0, . . . , 0)T with x j = x̂ j and
xi = 0 ∀i �= j . Then x ≤ x̂,Gx = x̂ j g j and xT Q(x̂ − x) = 0. The result fol-
lows from Corollary 7. ��
Corollary 9 Let Q = diag(q11, . . . , qnn) � 0 and x̂ ∈ opt (β) for β ∈ Z

m. Then
z(Gx) = cT x + 1

2 xT Qx for all x such that xi = 0 or xi = x̂i ∀i.

Proof If x is such that xi = 0 or xi = x̂i ∀i , then x ≤ x̂ and xT Q(x̂ − x) = 0 as Q
is diagonal. The result follows from Corollary 7. ��
Corollary 10 Let z(·) be superadditive and x̂ ∈ opt (β) for β ∈ Z

m. If there exists
j such that qi j = q ji = 0 ∀i and z(g j ) > c j , then x̂ j = 0.
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Proof Suppose x̂ j ≥ 1, then from Proposition 13, z(g j ) ≤ cT e j+ 1
2 eT

j Qe j+eT
j Q(x̂−

e j ) = c j , which contradicts z(g j ) > c j . ��

Corollary 10 is analogous to Corollary 5 for the linear case. It holds when z(·) is
superadditive and the respective variable does not appear in the nonlinear part of the
objective function. Corollary 11 is a generalization of Corollary 10.

Corollary 11 Let Q = diag(q11, . . . , qnn) � 0 and x̂ ∈ opt (β) for β ∈ Z
m. If there

exists j such that z(hg j ) > hc j + h(k − 1
2 h)q j j for k ≥ h ≥ 1, then x̂ j /∈ [h, k].

Proof Note that z(·) is superadditive from Proposition 9. If x̂ j ∈ [h, k], then from
Proposition 13

z(hg j ) ≤ hcT e j + 1

2
h2eT

j Qe j + heT
j Q(x̂ − he j ) = hc j + h

(
x̂ j − 1

2
h

)
q j j .

��

6 Constructing the value function of a parameterized quadratic IP

Motivated by some of the ideas used in the linear case [35], we develop four algo-
rithms to construct the QIP value function. Note that assumptions A1 and A2 ensure
the finiteness of the feasible right-hand side set. Hence, we consider (P Q I P) param-
eterized over a finite set of right-hand sides β ∈ B ⊆ Z

m . Under assumptions A2 and
A3, the value function is finite, so we assume that z(β) <∞ ∀β ∈ B.

Our first algorithm is based on the bounds derived in Sect. 5 for the superadditive
QIP value function. The next three algorithms are designed for problems with non-
negative constraint matrix G. The second algorithm applies to problems with diagonal
Q � 0, and the remaining two assume that the objective function can be decomposed
into sum of a small number of products of linear functions.

6.1 An exact algorithm based on superadditivity

In this section we assume that z(·) is superadditive. Let l(·) and u(·) be lower and upper
bounds of z(·), respectively. We maintain l(β) ≤ z(β) ≤ u(β) ∀β ∈ B and z(β) is
known when l(β) = u(β). The algorithm terminates when z(β) is determined ∀β ∈ B.
In addition to the bounds derived in Sect. 5, we utilize the following properties.

Lemma 4 Let x̂ ∈ opt (β) for β ∈ Z
m. Then ∀β̄ ∈ Z

m and 0 ≤ β̄ ≤ β − Gx̂,
z(β̄) = 0.

Lemma 5 Let x̂ ∈ opt (β) for β ∈ Z
m. Then ∀β̄ ∈ Z

m and Gx̂ ≤ β̄ ≤ β,

z(β̄) = z(β).

At each iteration, we update l(β) and u(β) for some β ∈ B by performing the
following two main operations:
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1. Solve the quadratic integer program exactly for a given right-hand side β ∈ B
(e.g. using dynamic programming or any QIP solver) to obtain optimal solution x̂ .

2. Update the lower and upper bounds for a subset of right-hand sides in B utilizing:
i. properties of value functions given by Lemmas 4 and 5;

ii. nondecreasing and superadditivity properties of z(·) (Propositions 8 and
9), bounds from Proposition 13 and some feasibility arguments (see details
below).

Algorithm 1. The Exact-Superadditive Algorithm.

Step 0: Initialize the lower bound l0(β) = −∞ ∀β ∈ B. For j = 1, . . . , n, if
g j ∈ B, set l0(g j ) = 1

2 q j j +c j . Without loss of generality, we assume that there are
no duplicate columns. Initialize the upper bound u0(β) = +∞ ∀β ∈ B. Initialize
Lk = ∅ and set k ← 1.
Step 1: Set lk(β) ← lk−1(β) and uk(β) ← uk−1(β) ∀β ∈ B. Select βk ∈ B\Lk .
Solve the QIP with right-hand side βk to obtain an optimal solution x̂ k .
(1a) For all β ∈ B\Lk such that Gx̂k ≤ β ≤ βk , set lk(β) = uk(β) = cT x̂k +

1
2 x̂ kT Qx̂k and Lk ← Lk ∪ {β},

(1b) For all β ∈ B\Lk such that 0 ≤ β ≤ βk − Gx̂k , set lk(β) = uk(β) = 0 and
Lk ← Lk ∪ {β}.

(1c) For all β ∈ B\Lk such that β ≥ βk , set lk(β) ← max
{
lk(β), lk(βk)

}
. If

β − βk ∈ B\Lk then lk(β)← max
{
lk(β), lk(βk)+ lk(β − βk)

}
.

(1d) For all β ∈ B\Lk such that β ≤ βk , set uk(β) ← min
{
uk(β), uk(βk)

}
. If

βk − β ∈ B\Lk then uk(β)← min
{
uk(β), uk(βk)− lk(βk − β)}.

(1e) For all β ∈ B\Lk , if β + βk ∈ B\Lk, uk(β)← min
{
uk(β), uk(β + βk) −

lk(βk)
}
.

Step 2: Select all x ∈ Z
n+ such that x ≤ x̂ k .

If Gx ∈ B then
(2a) lk(Gx)← max

{
lk(Gx), cT x + 1

2 xT Qx
}
,

(2b) uk(Gx)← min
{
uk(Gx), cT x + 1

2 xT Qx + xT Q(x̂ − x)
}
.

If βk − Gx ∈ B then
(2c) lk(βk−Gx)← max

{
lk(βk−Gx), lk(Gx̂k)−xT Q(x̂ k−x)−cT x− 1

2 xT Qx
}
,

(2d) uk(βk − Gx)← min
{
uk(βk − Gx), uk(Gx̂k)− cT x − 1

2 xT Qx
}
.

Step 3: If lk(β) = uk(β) for all β ∈ B, terminate with solution z(·) = lk(·) = uk(·);
otherwise, set k ← k + 1 and go to Step 1.

Lemma 6 At any iteration k of the Exact-Superadditive Algorithm, lk(β) ≤ z(β) ≤
uk(β) for all β ∈ B.

Proof The lower bounds in Step 0 follows from Proposition 7. Suppose that at iteration
k − 1 ≥ 0, Lemma 6 holds. Consider iteration k.

– Steps (1a) and (1b) are due to Lemmas 4 and 5, respectively.
– Steps (1c)-(1e) are due to the nondecreasing and superadditivity properties of z(·).
– Step (2a) holds since x ∈ S(Gx).
– Step (2b) follows from Proposition 13.
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– Step (2c) holds since (x̂ k−x) ∈ S(βk−Gx) and z(·) is nondecreasing. Specifically,
z(β − Gx) ≥ z(G(x̂ − x)) ≥ cT (x̂ − x)+ 1

2 (x̂ − x)T Q(x̂ − x).
– Step (2d) holds since x ∈ S(Gx) and z(·) is superadditive. Specifically,

z(β − Gx) ≤ z(Gx̂)− z(Gx) ≤ z(Gx̂)− cT x − 1
2 xT Qx . ��

Proposition 15 The Exact-Superadditive Algorithm terminates finitely with optimal
z(β) ∀β ∈ B.

Proof Consider any iteration k ≥ 1. After Step 1, there exists at least one β ∈ B such
that lk(β) = uk(β) = z(β) while lk−1(β) �= z(β) or uk−1(β) �= z(β). The proof
follows since lk(β) ≤ z(β) ≤ uk(β) ∀β ∈ B at any iteration k and B is finite. ��

The size of the instances that can be handled and the overall performance of the
Exact-Superadditive Algorithm depend on the method used for solving the QIPs aris-
ing in Step 1. Our implementation, which is based on dynamic programming, can
solve instances up to 400 variables. We leave the investigation of other methods for
solving the QIP subproblems for future research.

6.2 A DP-based algorithm for diagonal Q � 0

In this section we assume that Q = diag(q11, . . . , qnn) � 0, i.e. Q is a diagonal
matrix and all qii ’s are nonnegative. Therefore, by Proposition 9, z(·) is superadditive.
We also assume that G is a nonnegative matrix. As B is finite, there exists a nonnegative
hyper-rectangle B rooted at the origin that contains B. Let b = (b1, . . . , bm) denote
the largest vector in B componentwise. We set B = B ∩ Z

m+ in the rest of Sect. 6,
where B = {[0, b1] × [0, b2] × · · · × [0, bm]}. Let B j denote the set of all β ∈ B such
that β ≥ g j .

Lemma 7 For all β ∈ B\ ∪n
j=1 B j , ζ(β) = 0 and z(β) = 0.

The following result is due to Gilmore and Gomory [23] for linear IPs:

Theorem 5 ζ(β) = max{0, γ j + ζ(β − g j ) | g j ∈ B, j = 1, . . . , n} ∀β ∈ ∪n
j=1 B j .

We extend Theorem 5 to (P Q I P) with diagonal Q � 0 as follows:

Lemma 8 For all β ∈ ∪n
j=1 B j and for all j ∈ {1, . . . , n} such that g j ∈ B,

z(β) = max
μ∈Z+

{
c jμ+ 1

2
q j jμ

2 + z(β − μg j ) | β − μg j ≥ 0
}
.

In contrast to the exact superadditive algorithm, the following algorithm only defines
l(·) and does not solve any quadratic integer program. We update l(·) using the superad-
ditive property of z(·). This approach is motivated by a DP-based algorithm proposed
for finding the value function of linear IPs [35]. The major difference of our algorithm
is the initialization of lower bounds in Step 0, which follows from Lemma 8.
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Algorithm 2. The Diagonal-Q Algorithm.

Step 0: Initialize the lower bound l0(β) = 0 ∀β ∈ B. For j = 1, . . . , n, if g j ∈
B, l0(μg j ) ← max{l0(μg j ), c jμ + 1

2 q j jμ
2} ∀μ ∈ Z+ such that b − μg j ≥ 0.

Insert μg j into a vector list L. Set l1(β) = l0(β) for all β ∈ B. Set k ← 1.
Step 1: Denote the kth vector in L by βk and the i th element of a vector β by βi .
Let β = βk . Update all vectors β ′ such that β ′ ∈ B and β ′ ≥ βk with the following
lexicographic order:

(1a) Set β1 ← β1 + 1 and lk(β)← max{lk(β), lk(βk)+ lk(β − βk)}.
(1b) If β1 ≥ b1, go to Step (1c); otherwise, go to Step (1a).
(1c) If for all i = 1, . . . ,m, βi ≥ bi , go to Step 2. Otherwise, let s = min{i : βi <

bi }. Set βi ← βk
i for i = 1, . . . , s − 1. Set βs ← βs + 1 and go to Step (1a).

Step 2: If k = |L|, terminate with solution z(·) = lk(·). Otherwise, put lk+1(β)←
lk(β) for all β ∈ B, set k ← k + 1 and go to Step 1.

Let μmax denote the maximum feasible scalar value that any variable can take in a
solution. Note that μmax is finite since G is nonnegative and B is finite.

Proposition 16 The Diagonal-Q Algorithm terminates with optimal z(·) for allβ ∈ B
in at most nμmax iterations.

Proof For any β ∈ B\ ∪n
j=1 B j , we initialize l0(β) = 0 in Step 0 and do not update

them subsequently. By Lemma 7, z(β) = 0, ∀β ∈ B\ ∪n
j=1 B j . Assume that the

algorithm terminates at iteration k∗ = |L|. Then lk∗(β) = z(β), ∀β ∈ B\ ∪n
j=1 B j .

Suppose there exists β ∈ ∪n
j=1 B j such that lk∗(β) �= z(β) and lk∗(β ′) = z(β ′) ∀β ′ ≤

β, β ′ ∈ ∪n
j=1 B j . Then lk∗(β) < z(β) by construction of the algorithm. It follows that

there exists a j∗ ∈ {1, . . . , n} and μ∗ ≥ 1 such that lk∗(β) < c j∗μ∗ + 1
2 q j∗ j∗μ2∗ +

z(β − g j∗μ∗) by Lemma 8. Since lk∗(g j∗μ∗) ≥ c j∗μ∗ + 1
2 q j∗ j∗μ2∗ and lk∗(β −

g j∗μ∗) = z(β − g j∗μ∗), it follows that lk∗(g j∗μ∗) + lk∗(β − g j∗μ∗) ≥ c j∗μ∗ +
1
2 q j∗ j∗μ2∗ + z(β − g j∗μ∗) > lk∗(β), which contradicts the superaddivity of lk∗(·).
Hence, lk∗(β) = z(β) ∀β ∈ ∪n

j=1 B j and the result follows since k∗ = |L| ≤ nμmax.
��

Proposition 17 The running time of the Diagonal-Q Algorithm is O(nμmax|B|).

Proof Step 0 requires O(nμmax) calculations. Step 1 of the algorithm requires at most
O(|B|) calculations. Since Step 1 is executed at most nμmax times, the overall running
time of the algorithm is O(nμmax|B|). ��

We note that in the linear case the running time of the most efficient algorithm of
Kong et al. [35] is O(n|B|). Since μmax << |B|, the running time of the Diagonal-Q
Algorithm is almost as good.
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6.3 An iterative fixing algorithm for low-rank Q

For some � ≤ n, the quadratic objective function of (P Q I P) can be represented as:

1

2
xT Qx + cT x =

(
χT

1 x
) (
σ T

1 x
)
+ · · · +

(
χT
� x
) (
σ T
� x
)
+ cT x, (10)

where χi and σi are vectors in Z
n for i = 1, . . . , �. We are interested in classes of

(10) with small � << n and either all χ ’s or all σ ’s are nonnegative integer vectors.
To motivate the representation in (10), note that any quadratic function can be written
as:

1

2
xT Qx + cT x = 1

2

n∑
i=1

n∑
j=1

qi j xi x j + cT x = 1

2

n∑
i=1

⎛
⎝xi ·

n∑
j=1

qi j x j

⎞
⎠+ cT x . (11)

Suppose that for every nonlinear term xi x j in (11) either i or j ∈ {1, . . . , �}. Then
due to symmetry of Q, quadratic function in (11) simplifies to

1

2
xT Qx + cT x =

�∑
i=1

⎛
⎝xi ·

n∑
j=1

qi j x j

⎞
⎠+ cT x, (12)

where χ1 = (1, 0, . . . , 0)T , …, χ� = (0, . . . , 0, 1, 0, . . . , 0)T , and σ1 = (q11, . . . ,

q1n)
T , . . . , σ� = (q�1, . . . , q�n)T . That is, columns and rows of Q can be rearranged

in a such way that only first � rows and � columns may contain nonzero elements for
some small �, while the rest of Q contains only zero elements.

Another motivation is that any symmetric matrix Q can be decomposed into

Q = U diag(λ1, . . . , λn) U T , (13)

where U is the matrix of eigenvectors u1, . . . , un (stored as columns) and λ1, . . . , λn

are eigenvalues of Q, respectively. If only � eigenvalues of Q are nonzero, which for
small � corresponds to a low-rank matrix Q, then

1

2
xT Qx + cT x = λ1

(
uT

1 x
)2 + · · · + λ�

(
uT
� x
)2 + cT x, (14)

and we can set χ1 = λ1u1, …, χ� = λ�u�, and σ1 = u1, . . . , σ� = u�.
Let H and � be �× n matrices with rows composed by (χi )

T ’s and (σi )
T ’s for

i = 1, . . . , �, respectively. We assume that H ∈ Z
�×n+ and � << n. Note that we do

not require z(·) to be superadditive in this section.
For y ∈ Z

�+ and β ∈ B, we define problem Py(β) by:

zy(β) = max
x∈Zn+

{
yT�x + cT x | Gx ≤ β, Hx = y

}
. (15)
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Moreover, for δ ∈ Z
�+, we formulate an auxiliary problem Pδ,y(β) where the equality

constraint of Py(β) is replaced with an inequality.

zδ,y(β) = max
x∈Zn+

{
δT Hx + yT�x + cT x | Gx ≤ β, Hx ≤ y

}
. (16)

Let δ ∈ Z
�+ be such that 1

2δ
T ei > max

x

{∣∣yT�x + cT x
∣∣ | Gx ≤ b, Hx ≤ y

}
for

all i = 1 . . . �. Then the following results hold.

Lemma 9 Let x̂ be an optimal solution to Pδ,y(β). Then zδ,y(β) ≥ δT y− 1
2 mini δ

T ei

if and only if y = Hx̂ .

Proof “⇐” If y = Hx̂ then zδ,y(β) = δT y + yT� x̂ + cT x̂ . This value is at least as
large as δT y − 1

2 mini δ
T ei because 1

2δ
T ei + yT�x + cT x > 0 for all i and for all

feasible x by definition of δ.
“⇒” If zδ,y(β) ≥ δT y − 1

2 mini δ
T ei then

δT Hx̂ + yT� x̂ + cT x̂ ≥ δT y − 1

2
min

i
δT ei

⇒ yT� x̂ + cT x̂ ≥ δT (y −Hx̂)− 1

2
min

i
δT ei ⇒ y = Hx̂ .

The last equality holds as Hx̂ ≤ y and 1
2δ

T ei > max
{ ∣∣yT�x + cT x

∣∣ |Gx ≤
b,Hx ≤ y

}
for all i and for all feasible x by definition of δ. Note that if Hx̂ < y,

then δT (y −Hx̂) ≥ mini δ
T ei since both y and Hx̂ are integer vectors. ��

Corollary 12 If zδ,y(β) ≥ δT y − 1
2 mini δ

T ei , then zy(β) = zδ,y(β)− δT y.

Lemma 10 Let R = {y ∈ Z
�+ | Gx ≤ b, Hx = y, x ∈ Z

n+}. Then

z(β) = max
y∈R

zy(β) ∀β ∈ B.

Lemma 10 directly follows since set R contains all possible values that Hx can take for
β ∈ B. If � is small and H is sparse, then all possible y’s in set R might be enumerated.
Otherwise, let ȳi = maxx {(Hx)T ei | Gx ≤ b}, i = 1, . . . , � and define R′ ⊇ R by

R′ = {y ∈ Z
�+ | 0 ≤ y ≤ ȳ}.

We first give an iterative algorithm that searches over R′. Then, in Sect. 6.4 we present
a modification of this algorithm which enumerates all vectors in R. Define

�y =
{
π ∈ Z

m+�+ |πi ≤ bi ,∀i ≤ m and πi ≤ yi−m,∀i > m
}
∀y ∈ R′.

Let G = [G H] and �y j denote the set of vectors π ∈ �y such that π ≥ g j ∈ G,
where g j is the j th column of G.
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Algorithm 3. Sparse-Fixing Algorithm.

Step 0: Set τ ← 1. Denote the τ th vector in R′ by r τ . Initialize the global bound
v0(β) = 0 for all β ∈ B.
Step 1: Set y ← r τ . Let γ T = δT H + yT� + cT and h̄ = [b y]. Initialize the
lower bound l0(π) = 0 for all π ∈ �y . For j = 1, . . . , n, if g j ∈ �y, l0(g j ) = γ j

and insert g j into a vector list L. Set l1(π) = l0(π) for all π ∈ �y . Set k ← 1.
Step 2: Denote the kth vector in L by πk and the i th element of π by πi . Let
π = πk . Update all vectors π ′ such that π ′ ∈ �y and π ′ ≥ πk with the following
lexicographic order:
(2a) Set π1 ← π1 + 1 and lk(π)← max

{
lk(π), lk

(
πk
)+ lk

(
π − πk

)}
.

(2b) If π1 ≥ h̄1, go to Step (2c); otherwise, go to Step (2a).
(2c) If πi ≥ h̄i for all i = 1, . . . ,m + �, go to Step 3. Otherwise, let s = min{i :

πi < h̄i }. Set πi ← πk
i for i = 1, . . . , s− 1. Set πs ← πs + 1 and go to Step

(2a).
Step 3: If k = |L|, go to Step 4. Otherwise, lk+1(π)← lk(π) for all π ∈ �y , set
k ← k + 1 and go to Step 2.
Step 4: For all β ∈ ∪n

j=1 B j , let βy = [β y]. If lk(βy) ≥ δT y − 1
2 mini δ

T ei , then

update vτ (β)← max{lk(βy)− δT y, vτ−1(β)}. If τ = |R′|, stop. Otherwise, empty
out vector list L, set τ ← τ + 1 and go to Step 1.

Lemma 11 If β ∈ B\ ∪n
j=1 B j , then βy = [β y] ∈ �y\ ∪n

j=1 �y j for all y ∈ R′.

Lemma 12 zδ,y(β) = 0 ∀β ∈ B\ ∪n
j=1 B j .

For π ∈ �y , we define π+ to be the subvector composed by the first m elements
of π ; and π− to be the subvector composed by the last � elements of π .

Theorem 6 The Sparse-Fixing Algorithm terminates with optimal solutions to z(·) in
at most |R′| iterations of τ .

Proof Consider a y ∈ R′. For anyπ ∈ �y\∪n
j=1�y j , we initialize l0(π) = 0 in Step 1

and do not update them subsequently. By Lemma 12, zδ,y(β) = 0 ∀β ∈ B\ ∪n
j=1 B j .

Assume the algorithm enters Step 4, when k∗ = |L|. Then∀β ∈ B\∪n
j=1 B j , lk∗(βy) =

zδ,y(β) as βy = [β y] ∈ �y\ ∪n
j=1 �y j by Lemma 11. Suppose there exists β ∈

∪n
j=1 B j such that lk∗(βy) �= zδ,y(β) and lk∗(π) = zδ,π

−
(π+) ∀π ≤ βy, π ∈ �y .

Then lk∗(βy) < zδ,y(β) by construction of the algorithm. It follows that there exists a

j∗ ∈ {1, . . . , n} such that lk∗(βy) < γ j∗ + zδ,(y−g−j∗ )(β − g+j∗) by Theorem 5. Since

lk∗(g j∗) ≥ γ j∗ and lk∗(βy − g j∗) = z
δ,(y−g−j∗ )(β − g+j∗), it follows that lk∗(g j∗) +

lk∗(βy − g j∗) ≥ γ j∗ + z
δ,(y−g−j∗ )(β − g+j∗) > lk∗(βy), which contradicts the super-

additivity of lk∗(·). As a result, lk∗(βy) = zδ,y(β) ∀β ∈ ∪n
j=1 B j when the algorithm

enters Step 4. From Lemma 9, lk∗(βy) = zδ,y(β) ≥ δT y− 1
2 mini δ

T ei ∀β ∈ ∪n
j=1 B j

if and only if y ∈ R. When this condition is satisfied, in Step 4, we subtract δT y from
zδ,y(β) to obtain zy(β) by Corollary 12.

123

Author's personal copy



142 O. Y. Özaltın et al.

The algorithm searches over every y ∈ R′ by updating the global lower bound
vτ (β) if y ∈ R. As a result, v|R′|(β) = maxy∈R zy(β) = z(β) ∀β ∈ ∪n

j=1 B j by
Lemma 10. ��

Proposition 18 The Sparse-Fixing Algorithm runs in O
(∑

y∈R′ n|�y |
)

time.

Proof For each y∈ R′, the algorithm makes O
(
n|�y |

)
calculations since |L| is at most

n and Step 2 requires O
(|�y |

)
calculations. The algorithm iterates over all y ∈ R′,

so the overall running time is O
(∑

y∈R′ n|�y |
)

. ��

6.4 An iterative fixing algorithm for low-rank Q with enumeration of the set R

In this section, we present a modified version of the sparse fixing algorithm which
enumerates all y’s in set R. Our computational experiments show that this version
runs much faster than the previous one if � is small and matrix H is sparse.

Let Ĥ be the set of nonzero columns in H. We define Ĝ ⊆ G and �̂ ⊆ � to be the
submatrices corresponding to the columns in Ĥ. Likewise, let ĉ be the linear part of
the objective function corresponding to the columns in Ĥ. We give the set of feasible
solutions for the columns in Ĥ by:

X̂ =
{

x ∈ Z
|Ĥ|
+ : Ĝx ≤ b

}
.

Algorithm 4. Sparse-Enumeration Algorithm.

Step 0: Set t ← 1. Denote the t th vector in X̂ by xt . Initialize the global bound
v0(β) = 0 for all β ∈ B.
Step 1: Set y ← Ĥxt . Let γ T = yT� + cT and h̄ = b − Ĝxt . Define the set
Bt = {β ∈ Z

m |βi ≤ h̄i ,∀i ≤ m} and ∀ j /∈ Ĥ let Bt
j to be the set of all β ∈ Bt

such that β ≥ g j . Initialize the lower bound l0(β) = 0 ∀β ∈ Bt . For all j /∈ Ĥ, if
g j ∈ Bt , set l0(g j ) = γ j and insert g j into a vector list L. Set l1(β) = l0(β) for all
β ∈ Bt . Set k ← 1.
Step 2: Denote the kth vector in L by βk and the i th element of a vector β by βi .
Let β = βk . Update all vectors β ′ such that β ′ ∈ Bt and β ′ ≥ βk with the following
lexicographic order:
(2a) Set β1 ← β1 + 1 and lk(β)← max{lk(β), lk(βk)+ lk(β − βk)}.
(2b) If β1 ≥ h̄1, go to Step (2c); otherwise, go to Step (2a).
(2c) If βi ≥ h̄i for all i = 1, . . . ,m, go to Step 3. Otherwise, let s = min{i : βi <

h̄i }. Set βi ← βk
i for i = 1, . . . , s − 1. Set βs ← βs + 1 and go to Step (2a).

Step 3: If k = |L|, go to Step 4. Otherwise, lk+1(β) ← lk(β) for all β ∈ Bt , set
k ← k + 1 and go to Step 2.
Step 4: For all β ∈ ∪ j /∈ĤBt

j , update vt (β + Ĝxt ) ← max{lk(β) + yT �̂xt +
ĉT xt , vt−1(β + Ĝxt )}. If t = |X̂ |, stop. Otherwise, empty out vector list L, set
t ← t + 1 and go to Step 1.
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Theorem 7 The Sparse-Enumeration Algorithm terminates with optimal solutions to
z(·) in at most |X̂ | iterations of t .

Proposition 19 The Sparse-Enumeration Algorithm runs in O(
∑

xt∈X̂ n|Bt |) time.

The proofs of Theorem 7 and Proposition 19 are similar to those of Theorem 6 and
Proposition 18, respectively.

7 Computational experiments

7.1 Design of experiments

Our computational experiments consist of two main sections. In Sect. 7.3 we test
the algorithms for constructing the value function of parameterized QIPs. Then in
Sect. 7.4 we test the algorithms for finding the optimal tender of (P2). Given value
functions of the first- and second-stage QIPs, to find an optimal tender we consider
using the branch-and-bound algorithm (B&B), the minimal tender approach (MT) and
also exhaustive search over B1. In all of our computational tests, exhaustive search
was several orders of magnitude slower than both the B&B algorithm and the MT
approach. Hence, we do not report computational results on the exhaustive search
approach.

In our implementation of the B&B algorithm, we follow standard strategies. In Step
1 (subproblem selection), we choose the hyper-rectangle k that has the smallest upper
bound vk . In Step 3 (subproblem partitioning), we choose the dimension i ′ that has
the largest range, i.e. i ′ ∈ argmax{(ηk

i − λk
i ) | i ∈ {1, . . . ,m2}}. Moreover, we set the

initial global lower bound to the maximum between the objective values of (P2) with
respect to 0 and b1, i.e. max{Eξφ(h(ω)), ψ(b1)+ Eξφ(h(ω)− b1)}, where b1 is the
largest vector in B1 componentwise. Note that proper selection of the rules used in
Step 1 and Step 3 as well as the method to generate the initial global lower bound may
affect the performance of the B&B algorithm significantly. We leave further tuning of
these parameters for future research.

With the MT approach, we do not explore the possible computational benefits of
the reduced formulation (9). After obtaining the first-stage value function, we check
if each β ∈ B1 is a minimal tender by definition, and then form the minimal tender set
. An optimal solution to (P2) is obtained by evaluating the objective function with
respect to each β ∈ .

Computational experiments are conducted on an SGI Altix 4700 shared-memory
machine with a single 1.66 GHz CPU. All reported solution times in Tables 3, 4, 5, 6, 7,
8, 9 and 10 are in seconds.

7.2 Instance generation

We consider two-stage stochastic quadratic integer programming instances whose
first- and second-stage objective functions are given by (χT

1 x̄)(σ T
1 x) + cT x and

(χT
2 ȳ)(σ T

2 y) + dT y, respectively. We have that σ1 ∈ Z
n1, σ2 ∈ Z

n2 , χ1 ∈ Z
a1 for
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a1 ≤ n1 and χ2 ∈ Z
a2 for a2 ≤ n2. Note that x̄ ∈ Z

a1 and ȳ ∈ Z
a2 are variable vectors

whose elements are composed of a1 and a2 dimensional subsets of the indices in x
and y, respectively. We do not consider the first-stage constraints Ax ≤ b as they can
be embedded into the technology matrix T by setting the corresponding rows of the
recourse matrix W to 0. To test all four algorithms for finding the value function in the
first phase and both approaches for finding the optimal tender in the second phase we
assume that Bk = Bk ∩ Z

m2+ , where Bk =∏m2
i=1[0, bk

i ] for k = 1, 2 were constructed
such that b1

i = minω∈� hi (ω) and b2
i = maxω∈� hi (ω) for i = 1, . . . ,m2.

We randomly generate two different testbeds under the assumptions A1 − A4.
Testbed 1 in Table 1 has 45 instance classes and Testbed 2 in Table 2 has 15 instance
classes. There are more instances in Testbed 1 as we vary a1 and a2 between 10 and
20; whereas in Testbed 2 we always set a1 = n1 and a2 = n2. Note that the quadratic
objective functions of Testbed 1 instances are specially structured (i.e. sparse) so that
the Sparse-Fixing Algorithm and the Sparse-Enumeration Algorithm apply. However,
instances in Testbed 2 do not exhibit any special structure.

The instances are named ICm − K X , where m = 1, 2 is the testbed index, K =
1, . . . , 45 is the instance class index, and X ∈ {S, L} is the instance size index. For
a particular instance class K in testbed m, size index S denotes the smaller instance;
whereas size index L denotes the larger instance. There are |�| = 279936 scenarios
for each instance in Testbed 1 and 2, which is equal to the largest number of scenarios
in Kong et al. [35]. Deterministic parameters c, χ1, σ1, d, χ2, σ2 are generated from
U [1, 1000]. We set the density of technology matrix T and recourse matrix W to 0.7,
which is modeled by a Bernoulli distribution. In Tables 1 and 2, the numbers listed
under T,W and h(ω) are the lower and upper bounds of the uniform distribution that
is used to generate nonzero elements of these parameters. Our instances are available
online [54].

7.3 Finding the value function

7.3.1 The diagonal-Q algorithm versus the exact-superadditive algorithm

In this section we test the Exact-Superadditive Algorithm and the Diagonal-Q
Algorithm. To obtain diagonal instances we delete the off-diagonal elements of the
instances in Testbed 1 and Testbed 2. First, we run both algorithms on small instances
of Testbed 2, and present the computational results in Table 3.

Note that in Table 3 the Exact-Superadditive Algorithm is often faster than the Diag-
onal-Q Algorithm as the number of constraints increases. This is due to the fact that |B|
grows exponentially as the number of constraints increases, and from Proposition 17
the running time of the Diagonal-Q Algorithm is O(nμmax|B|).

We also test the Diagonal-Q Algorithm on large instances of Testbed 2. The goal
of this test is to demonstrate that the size of diagonal instances of (P1) (as measured
by the size of the extensive form) that can be solved efficiently using the Diagonal-Q
Algorithm is much larger than that of the Exact-Superadditive Algorithm. We present
the computational results in Table 4. Note that the Exact-Superadditive Algorithm can
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Table 1 Characteristics of instances in Testbed 1, e.g. instance IC1 − 1S has n1 = 200, IC1 − 1L has
n1 = 500

IC1-KX m2 IC1-KS IC1-KL

a1/n1 a2/n2 T W h(ω) a1/n1 a2/n2 T W h(ω)

IC1-1X 3 10/200 20/200 [10,100] [50,150] [100,200] 10/500 20/500 [10,100] [100,350] [200,500]

IC1-2X 3 10/300 20/300 [10,100] [50,200] [100,300] 10/750 20/500 [10,100] [200,475] [200,750]

IC1-3X 3 10/400 20/400 [10,100] [75,250] [100,400] 10/1000 20/500 [10,100] [500,750] [200,1000]

IC1-4X 3 15/200 15/200 [10,100] [50,150] [100,200] 15/500 15/500 [10,100] [100,350] [200,500]

IC1-5X 3 15/300 15/300 [10,100] [50,200] [100,300] 15/750 15/500 [10,100] [200,475] [200,750]

IC1-6X 3 15/400 15/400 [10,100] [75,250] [100,400] 15/1000 15/500 [10,100] [500,750] [200,1000]

IC1-7X 3 20/200 10/200 [10,100] [50,150] [100,200] 20/500 10/500 [10,100] [100,350] [200,500]

IC1-8X 3 20/300 10/300 [10,100] [50,200] [100,300] 20/750 10/500 [10,100] [200,475] [200,750]

IC1-9X 3 20/400 10/400 [10,100] [75,250] [100,400] 20/1000 10/500 [10,100] [500,750] [200,1000]

IC1-10X 4 10/200 20/200 [10,50] [25,62] [50,75] 10/500 20/500 [1,25] [25,75] [50,100]

IC1-11X 4 10/300 20/300 [10,50] [25,75] [50,100] 10/750 20/500 [1,25] [50,100] [50,150]

IC1-12X 4 10/400 20/400 [10,50] [25,87] [50,125] 10/1000 20/500 [1,25] [75,125] [50,200]

IC1-13X 4 15/200 15/200 [10,50] [25,62] [50,75] 15/500 15/500 [1,25] [25,75] [50,100]

IC1-14X 4 15/300 15/300 [10,50] [25,75] [50,100] 15/750 15/500 [1,25] [50,100] [50,150]

IC1-15X 4 15/400 15/400 [10,50] [75,87] [50,125] 15/1000 15/500 [1,25] [75,125] [50,200]

IC1-16X 4 20/200 10/200 [10,50] [25,62] [50,75] 20/500 10/500 [1,25] [25,75] [50,100]

IC1-17X 4 20/300 10/300 [10,50] [25,75] [50,100] 20/750 10/500 [1,25] [50,100] [50,150]

IC1-18X 4 20/400 10/400 [10,50] [25,87] [50,125] 20/1000 10/500 [1,25] [75,125] [50,200]

IC1-19X 5 10/200 20/200 [1,20] [15,30] [20,35] 10/500 20/500 [1,10] [15,30] [20,50]

IC1-20X 5 10/300 20/300 [1,20] [15,30] [20,40] 10/750 20/500 [1,10] [15,30] [20,60]

IC1-21X 5 10/400 20/400 [1,20] [15,30] [20,45] 10/1000 20/500 [1,10] [15,30] [20,70]

IC1-22X 5 15/200 15/200 [1,20] [15,30] [20,35] 15/500 15/500 [1,10] [15,30] [20,50]

IC1-23X 5 15/300 15/300 [1,20] [15,30] [20,40] 15/750 15/500 [1,10] [15,30] [20,60]

IC1-24X 5 15/400 15/400 [1,20] [15,30] [20,45] 15/1000 15/500 [1,10] [15,30] [20,70]

IC1-25X 5 20/200 10/200 [1,20] [15,30] [20,35] 20/500 10/500 [1,10] [15,30] [20,50]

IC1-26X 5 20/300 10/300 [1,20] [15,30] [20,40] 20/750 10/500 [1,10] [15,30] [20,60]

IC1-27X 5 20/400 10/400 [1,20] [15,30] [20,45] 20/1000 10/500 [1,10] [20,35] [20,70]

IC1-28X 6 10/200 20/200 [1,10] [10,20] [10,20] 10/500 20/500 [1,5] [10,20] [10,25]

IC1-29X 6 10/300 20/300 [1,10] [10,20] [10,23] 10/750 20/500 [1,5] [10,20] [10,30]

IC1-30X 6 10/400 20/400 [1,10] [10,20] [10,25] 10/1000 20/500 [1,5] [10,20] [10,35]

IC1-31X 6 15/200 15/200 [1,10] [10,20] [10,20] 15/500 15/500 [1,5] [10,20] [10,25]

IC1-32X 6 15/300 15/300 [1,10] [10,20] [10,23] 15/750 15/500 [1,5] [10,20] [10,30]

IC1-33X 6 15/400 15/400 [1,10] [10,20] [10,25] 15/1000 15/500 [1,5] [10,20] [10,35]

IC1-34X 6 20/200 10/200 [1,10] [10,20] [10,20] 20/500 10/500 [1,5] [10,20] [10,25]

IC1-35X 6 20/300 10/300 [1,10] [10,20] [10,23] 20/750 10/500 [1,5] [10,20] [10,30]

IC1-36X 6 20/400 10/400 [1,10] [10,20] [10,25] 20/1000 10/500 [1,5] [10,20] [10,35]

IC1-37X 7 10/200 20/200 [1,5] [5,10] [5,10] 10/500 20/500 [1,5] [5,10] [5,10]

IC1-38X 7 10/300 20/300 [1,5] [5,10] [5,13] 10/750 20/500 [1,5] [5,10] [5,15]

IC1-39X 7 10/400 20/400 [1,5] [5,10] [5,15] 10/1000 20/500 [1,5] [5,10] [5,20]

IC1-40X 7 15/200 15/200 [1,5] [5,10] [5,10] 15/500 15/500 [1,5] [5,10] [5,10]
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Table 1 continued

IC1-KX m2 IC1-KS IC1-KL

a1/n1 a2/n2 T W h(ω) a1/n1 a2/n2 T W h(ω)

IC1-41X 7 15/300 15/300 [1,5] [5,10] [5,13] 15/750 15/500 [1,5] [5,10] [5,15]

IC1-42X 7 15/400 15/400 [1,5] [5,10] [5,15] 15/1000 15/500 [1,5] [5,10] [5,20]

IC1-43X 7 20/200 10/200 [1,5] [5,10] [5,10] 20/500 10/500 [1,5] [5,10] [5,10]

IC1-44X 7 20/300 10/300 [1,5] [5,10] [5,13] 20/750 10/500 [1,5] [5,10] [5,15]

IC1-45X 7 20/400 10/400 [1,5] [5,10] [5,15] 20/1000 10/500 [1,5] [5,10] [5,20]

Table 2 Characteristics of instances in Testbed 2, e.g. instance IC2 − 1S has a1 = n1 = 200, IC2 − 1L
has a1 = n1 = 500

IC2-KX m2 IC2-KS IC2-KL

a1/n1 a2/n2 T W h(ω) a1/n1 a2/n2 T W h(ω)

IC2-1X 3 200/200 200/200 [10,100] [50,150] [100,200] 500/500 500/500 [1,100] [50,150] [100,200]

IC2-2X 3 300/300 300/300 [10,100] [50,200] [100,300] 750/750 500/500 [1,100] [50,200] [100,300]

IC2-3X 3 400/400 400/400 [10,100] [75,250] [100,400] 1000/1000 500/500 [1,100] [50,250] [100,400]

IC2-4X 4 200/200 200/200 [10,50] [25,62] [50,75] 500/500 500/500 [1,50] [25,62] [50,75]

IC2-5X 4 300/300 300/300 [10,50] [25,75] [50,100] 750/750 500/500 [1,50] [25,75] [50,100]

IC2-6X 4 400/400 400/400 [10,50] [25,87] [50,125] 1000/1000 500/500 [1,50] [25,87] [50,125]

IC2-7X 5 200/200 200/200 [5,20] [15,30] [20,35] 500/500 500/500 [1,10] [15,30] [20,50]

IC2-8X 5 300/300 300/300 [5,20] [15,30] [20,40] 750/750 500/500 [1,10] [15,30] [20,60]

IC2-9X 5 400/400 400/400 [5,20] [15,30] [20,45] 1000/1000 500/500 [1,10] [20,35] [20,70]

IC2-10X 6 200/200 200/200 [5,10] [10,20] [10,20] 500/500 500/500 [1,5] [10,20] [10,25]

IC2-11X 6 300/300 300/300 [5,10] [10,20] [10,23] 750/750 500/500 [1,5] [10,20] [10,30]

IC2-12X 6 400/400 400/400 [5,10] [10,20] [10,25] 1000/1000 500/500 [1,5] [10,20] [10,35]

IC2-13X 7 200/200 200/200 [1,5] [5,10] [5,10] 500/500 500/500 [1,5] [5,10] [5,10]

IC2-14X 7 300/300 300/300 [1,5] [5,10] [5,13] 750/750 500/500 [1,5] [5,10] [5,15]

IC2-15X 7 400/400 400/400 [1,5] [5,10] [5,15] 1000/1000 500/500 [1,5] [5,10] [5,20]

not solve any of the instances reported in Table 4 in a reasonable amount of time as
they have too many variables to solve using a DP algorithm.

7.3.2 The Sparse-enumeration Algorithm versus the Exact-Superadditive Algorithm

In this section we test the Exact-Superadditive Algorithm and the Sparse-Enumera-
tion Algorithm. First, we run both algorithms on small instances of Testbed 1. Table 5
presents the number iterations as well as the total solution time required for construct-
ing both value functions.

As seen in Table 5, the Exact-Superadditive Algorithm outperforms the Sparse-
Enumeration Algorithm in only 2 instances in the first stage; and in 32 instances in
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Table 3 Evaluating the value function of diagonal small instances in Testbed 2 using the Exact-Superad-
ditive Algorithm and the Diagonal-Q Algorithm

IC2-KS First stage Second stage

Exact-sup. Diagonal-Q Exact-sup. Diagonal-Q

Iters Time Iters Time Iters Time Iters Time

IC2-1S 17 3 500 5 158 7 470 40

IC2-2S 47 85 814 7 31 150 938 313

IC2-3S 309 403 1042 9 389 806 1254 1015

IC2-4S 375 4 402 14 591 13 418 77

IC2-5S 323 9 652 25 575 35 686 576

IC2-6S 964 35 856 30 589 184 986 2313

IC2-7S 470 5 414 6 721 42 402 89

IC2-8S 1100 19 624 10 2731 86 614 354

IC2-9S 2864 60 820 11 258 69 894 1269

IC2-10S 711 4 400 2 1727 173 400 46

IC2-11S 1090 9 600 2 1408 79 604 244

IC2-12S 706 6 800 3 2518 215 804 638

IC2-13S 4588 19 400 1 2289 24 406 9

IC2-14S 5062 56 624 0 3087 85 604 159

IC2-15S 1713 23 822 0 1612 160 832 879

Table 4 Evaluating the value
function of diagonal large
instances in Testbed 2 using the
Diagonal-Q Algorithm

IC2-KL First stage Second stage

Iters Time Iters Time

IC2-1L 1476 14 1204 103

IC2-2L 2284 21 1506 508

IC2-3L 3154 30 1786 1526

IC2-4L 1316 75 1050 198

IC2-5L 1846 109 1140 1012

IC2-6L 2428 121 1292 3019

IC2-7L 2398 135 1246 3254

IC2-8L 3500 198 2026 12261

IC2-9L 4616 262 2008 24374

IC2-10L 2132 37 1006 815

IC2-11L 3246 64 1080 4481

IC2-12L 4282 82 1242 17621

IC2-13L 1006 1 1000 23

IC2-14L 1528 2 1044 1085

IC2-15L 2040 2 2006 17408
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Table 5 Evaluating the value function of small instances in Testbed 1 using the Exact-Superadditive
Algorithm and the Sparse-Enumeration Algorithm

IC1-KS First stage Second stage

Exact-sup. Sparse-enum. Exact-sup. Sparse-enum.

Iters Time Iters Time Iters Time Iters Time

IC1-1S 846 134 12 5 252 16 46 59

IC1-2S 220 2936 69 26 624 2009 219 1151

IC1-3S 395 792 12 10 446 4800 196 3537

IC1-4S 120 16 72 12 252 15 87 92

IC1-5S 151 529 113 31 405 1075 89 811

IC1-6S 654 1580 46 15 1243 10942 146 2777

IC1-7S 453 67 82 8 351 34 35 66

IC1-8S 537 1271 184 23 773 2375 122 929

IC1-9S 269 3953 95 32 762 3882 80 3097

IC1-10S 630 16 16 20 665 16 23 89

IC1-11S 1425 44 11 23 458 74 79 1074

IC1-12S 297 62 20 55 3074 3081 121 4700

IC1-13S 694 19 16 19 458 14 19 94

IC1-14S 617 37 19 31 1124 117 33 733

IC1-15S 820 119 29 39 2216 2068 58 3453

IC1-16S 1027 11 22 17 285 10 25 102

IC1-17S 579 36 31 34 990 120 14 803

IC1-18S 789 65 36 47 2337 2000 35 3368

IC1-19S 1363 155 14 13 654 33 21 96

IC1-20S 16523 6278 16 22 529 39 30 403

IC1-21S 3608 3002 36 43 2719 324 56 1330

IC1-22S 3092 125 33 16 594 27 16 105

IC1-23S 18763 2959 77 52 2227 75 18 388

IC1-24S 11934 13002 28 38 2005 311 22 1318

IC1-25S 7703 542 56 16 316 27 13 103

IC1-26S 17271 6100 119 47 876 53 14 421

IC1-27S 26982 8831 38 32 2404 233 17 1364

IC1-28S 7358 55 12 3 330 43 21 71

IC1-29S 17913 447 14 6 2442 140 21 296

IC1-30S 5168 813 22 12 2866 248 21 812

IC1-31S 11360 142 17 4 1180 111 16 65

IC1-32S 8139 172 20 6 1814 210 16 279

IC1-33S 15148 2817 48 12 3379 306 17 702

IC1-34S 4651 78 44 6 1683 130 11 62

IC1-35S 9442 425 36 6 1177 177 11 256

IC1-36S 5003 609 76 14 4894 298 11 730

IC1-37S 3566 22 12 1 1919 52 21 13
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Table 5 continued

IC1-KS First stage Second stage

Exact-sup. Sparse-enum. Exact-sup. Sparse-enum.

Iters Time Iters Time Iters Time Iters Time

IC1-38S 6050 75 13 0 3106 108 21 191

IC1-39S 6626 279 16 1 16064 1099 31 969

IC1-40S 3330 23 20 1 2569 50 16 13

IC1-41S 1812 66 21 1 3120 118 19 186

IC1-42S 5424 213 18 1 12796 841 24 1088

IC1-43S 4776 23 22 1 2777 61 11 13

IC1-44S 2743 29 38 1 6308 130 11 183

IC1-45S 2203 173 36 1 26800 1638 15 1047

Table 6 Evaluating the value
function of small instances in
Testbed 2 using the
Exact-Superadditive Algorithm

IC2-KS First stage Second stage

Iters Time Iters Time

IC2-1S 17 3 158 7

IC2-2S 47 85 31 150

IC2-3S 309 403 389 806

IC2-4S 375 4 591 13

IC2-5S 323 9 575 35

IC2-6S 964 35 589 184

IC2-7S 470 5 721 42

IC2-8S 1100 19 2731 86

IC2-9S 2864 60 258 69

IC2-10S 711 4 1727 173

IC2-11S 1090 9 1408 79

IC2-12S 706 6 2518 215

IC2-13S 4588 19 2289 24

IC2-14S 5062 56 3087 85

IC2-15S 1713 23 1612 160

the second stage. This result is due to the fact that the first-stage variable ranges of
Testbed 1 instances are relatively higher than that of the second-stage variables.

We further test the individual performance of the Exact-Superadditive Algorithm
on small instances of Testbed 2 in which a1 and a2 increase up to 400. The computa-
tional results are reported in Table 6. Note that the Sparse-Enumeration Algorithm can
not solve any one of these instances in a reasonable amount of time as their quadratic
objective functions are not sparse.

Finally, we run the Sparse-Enumeration Algorithm on large instances of Testbed 1
in which the number of variables n1 and n2 increase up to 1000. The goal of this test is
to demonstrate that the size of the instances (as measured by the size of the extensive
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Table 7 Evaluating the value function of large instances in Testbed 1 using the Sparse-Enumeration Algo-
rithm

IC1-KL First stage Second stage IC1-KL First stage Second stage

Iters Time Iters Time Iters Time Iters Time

IC1-1L 409 3755 202 7037 IC1-28L 223 143 22 930

IC1-2L 274 2493 123 14261 IC1-29L 301 251 41 5602

IC1-3L 93 1891 21 8674 IC1-30L 99 187 122 28444

IC1-4L 27 15 93 4661 IC1-31L 464 146 17 993

IC1-5L 600 3474 95 17395 IC1-32L 525 294 35 5856

IC1-6L 1165 12150 16 8981 IC1-33L 607 391 97 31619

IC1-7L 2992 10796 37 3276 IC1-34L 1289 245 11 867

IC1-8L 4060 13425 41 12320 IC1-35L 991 329 12 5401

IC1-9L 2516 17575 11 10337 IC1-36L 3221 1027 37 26350

IC1-10L 910 2820 75 1351 IC1-37L 13 1 21 26

IC1-11L 521 4172 71 6575 IC1-38L 13 2 41 1301

IC1-12L 399 3102 42 19571 IC1-39L 32 3 240 29852

IC1-13L 1053 2486 41 1440 IC1-40L 23 1 16 25

IC1-14L 2542 6877 67 7216 IC1-41L 22 1 21 1179

IC1-15L 2283 14964 43 21746 IC1-42L 20 2 140 28255

IC1-16L 1432 1942 25 1187 IC1-43L 77 2 11 24

IC1-17L 2673 6462 21 5295 IC1-44L 37 2 22 1362

IC1-18L 3525 10178 34 20144 IC1-45L 30 3 66 24037

IC1-19L 117 324 146 5900

IC1-20L 164 630 250 25515

IC1-21L 114 591 233 56721

IC1-22L 1037 1104 49 3780

IC1-23L 1017 1457 187 30283

IC1-24L 854 1688 142 42716

IC1-25L 2250 1292 42 3774

IC1-26L 2868 3837 72 21241

IC1-27L 3173 5122 66 34799

form) that can be solved efficiently using the Sparse-Enumeration Algorithm is much
larger than that of the Exact-Superadditive Algorithm. Table 7 presents the compu-
tational results. Note that the Exact-Superadditive Algorithm can not solve any one
of these instances in a reasonable amount of time as they have too many variables to
solve using a DP algorithm.

7.3.3 The Sparse-Fixing Algorithm versus the Sparse-Enumeration Algorithm

In this section we test the Sparse-Fixing Algorithm and the Sparse-Enumeration Algo-
rithm. First, we run both algorithms on small instances of Testbed 1. Table 8 reports
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Table 8 Evaluating the value function of small instances in Testbed 1 using the Sparse-Fixing and the
Sparse-Enumeration Algorithms

IC1-KS First stage Second stage

Sparse fixing Sparse enum. Sparse fixing Sparse enum.

Iter Time Iter Time Iter Time Iter Time

IC1-1S 6 98 12 5 11 2575 46 60

IC1-2S 19 1338 69 26 12 − 219 1152

IC1-3S 7 263 12 10 13 − 196 3536

IC1-4S 25 1456 72 11 25 3683 87 91

IC1-5S 22 1682 113 32 − − 89 811

IC1-6S 9 561 46 15 − − 146 2781

IC1-7S 10 408 82 8 14 2354 35 66

IC1-8S 22 1681 184 23 − − 122 931

IC1-9S 12 707 95 32 − − 80 3096

IC1-10S 9 835 16 20 6 1827 23 89

IC1-11S 5 402 11 28 − − 79 1073

IC1-12S 8 1263 20 47 − − 121 4697

IC1-13S 6 385 16 18 8 3533 19 93

IC1-14S 9 1010 19 29 − − 33 868

IC1-15S 10 2018 29 45 − − 58 3446

IC1-16S 7 495 22 17 10 4955 25 101

IC1-17S 12 1790 31 32 − − 14 627

IC1-18S 8 1164 36 40 − − 35 3367

IC1-19S 7 333 14 13 5 1439 21 97

IC1-20S 8 709 16 21 − − 30 405

IC1-21S 14 3483 36 43 − − 56 1336

IC1-22S 15 1309 33 16 6 1919 16 105

IC1-23S 38 12675 77 52 − − 18 391

IC1-24S 9 1063 28 37 − − 22 1320

IC1-25S 7 976 56 17 13 2465 13 104

IC1-26S 14 1996 119 48 − − 14 422

IC1-27S 10 1261 38 31 − − 17 1372

IC1-28S 5 50 12 4 6 880 21 71

IC1-29S 8 207 14 6 − − 21 294

IC1-30S 12 720 22 11 − − 21 807

IC1-31S 6 75 17 4 6 838 16 64

IC1-32S 8 176 20 5 − − 16 277

IC1-33S 12 530 48 11 − − 17 697

IC1-34S 6 421 44 5 15 750 11 61

IC1-35S 8 180 36 6 − − 11 255

IC1-36S 20 1558 76 14 − − 11 724

IC1-37S 6 8 12 0 6 134 21 13
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Table 8 continued

IC1-KS First stage Second stage

Sparse fixing Sparse enum. Sparse fixing Sparse enum.

Iter Time Iter Time Iter Time Iter Time

IC1-38S 7 15 13 1 6 3277 21 188

IC1-39S 9 50 16 1 – – 31 947

IC1-40S 7 11 20 0 6 136 16 13

IC1-41S 8 21 21 0 – – 19 182

IC1-42S 7 23 18 1 – – 24 1061

IC1-43S 6 9 22 1 6 128 11 12

IC1-44S 8 18 38 1 6 3462 11 183

IC1-45S 13 70 36 1 – – 15 1020

“–” means that the algorithm runs out of memory

Table 9 The Sparse-Fixing
Algorithm outperforms the
Sparse-Enumeration Algorithm

when
(
χT x̄

)
has a small range

and large domain

m βmax Sparse-fixing Sparse-enum.

Iters Time Iters Time

3 7 22 3 1735000 18

3 8 25 6 4506125 54

3 9 28 15 11079200 153

4 7 29 7 5778720 122

4 8 33 15 15130125 478

4 9 37 1959 38542900 7894

5 7 36 655 13475808 5415

5 8 41 2102 − >20 h

5 9 46 6390 − >20 h

6 7 43 1378 − >20 h

6 8 49 4018 − >20 h

6 9 55 13950 − >20 h

7 7 50 7882 − >20 h

7 8 57 32330 − >20 h

the number iterations as well as the total solution time required for constructing value
functions. The Sparse-Fixing algorithm is sensitive to the magnitudes of the determin-
istic parameters χ1, χ2. Hence, for the instances reported in Table 8, these parameters
are generated from U [1, 5]. As seen in Table 8, the Sparse-Enumeration Algorithm
runs faster than the Sparse-Fixing Algorithm for all considered instances, sometimes
by several orders of magnitude.

Recall that the Sparse-Fixing Algorithm enumerates all possible (χT
1 x̄) values,

whereas the Sparse-Enumeration Algorithm iterates over a1−dimensional candidate
solution vectors to x̄ . In Table 9, we demonstrate that the Sparse-Fixing Algorithm
may also outperform the Sparse-Enumeration Algorithm in some cases where (χT x̄)
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Table 10 Finding the optimal tender of large instances in Testbed 1

IC1-KL Solution time Search space size

B&B MT |Θ|
∣∣∣B1
∣∣∣

∣∣∣B2
∣∣∣

IC1-1L 305 137 1489 8000000 125000000

IC1-2L 167 368 3675 8000000 421875000

IC1-3L 42 387 3196 8000000 1000000000

IC1-4L 14 46 512 8000000 125000000

IC1-5L 88 204 1989 8000000 421875000

IC1-6L 268 325 2673 8000000 1000000000

IC1-7L 655 111 1185 8000000 125000000

IC1-8L 188 207 2040 8000000 421875000

IC1-9L 122 1035 8620 8000000 1000000000

IC1-10L 32 19166 224027 6250000 100000000

IC1-11L 150 3334 33385 6250000 506250000

IC1-12L 59 13735 89910 6250000 1600000000

IC1-13L 89 4471 52202 6250000 100000000

IC1-14L 12 20849 210458 6250000 506250000

IC1-15L 165 3529 23448 6250000 1600000000

IC1-16L 41 5836 68224 6250000 100000000

IC1-17L 38 2481 24896 6250000 506250000

IC1-18L 20 33175 160343 6250000 1600000000

IC1-19L 33 5371 56196 3200000 312500000

IC1-20L 75 1554 14355 3200000 777600000

IC1-21L 85 17872 126713 3200000 1680700000

IC1-22L 99 1757 18605 3200000 312500000

IC1-23L 20 12532 117717 3200000 777600000

IC1-24L 24 26301 178154 3200000 1680700000

IC1-25L 174 1816 19227 3200000 312500000

IC1-26L 15 220 2032 3200000 777600000

IC1-27L 70 1121 7384 3200000 1680700000

IC1-28L 18 4609 47046 1000000 244140625

IC1-29L 70 2017 18148 1000000 729000000

IC1-30L 30 10369 66766 1000000 1838265625

IC1-31L 24 2174 22189 1000000 244140625

IC1-32L 126 4475 40083 1000000 729000000

IC1-33L 36 14815 75078 1000000 1838265625

IC1-34L 21 2530 25829 1000000 244140625

IC1-35L 22 4076 36442 1000000 729000000

IC1-36L 30 18059 68271 1000000 1838265625

IC1-37L 11 77 935 78125 10000000

IC1-38L 30 195 1806 78125 170859375

IC1-39L 59 288 1839 78125 1280000000
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Table 10 continued

IC1-KL Solution time Search space size

B&B MT |Θ|
∣∣∣B1
∣∣∣

∣∣∣B2
∣∣∣

IC1-40L 52 78 953 78125 10000000

IC1-41L 21 198 1075 78125 170859375

IC1-42L 42 419 2057 78125 1280000000

IC1-43L 526 64 784 78125 10000000

IC1-44L 18 96 891 78125 170859375

IC1-45L 22 273 1543 78125 1280000000

has a small range and large domain on a set of (P Q I P) instances in which 1
2 xT Qx =

(χT x̄)(σ T x). We generate these instances by setting each element of χ ∈ Z
a to 1, and

each column of the G matrix that appears as a variable in theχ vector to a random 0−1
unit vector. All other nonzero elements of the G matrix are generated from U [3, 5].
Furthermore, we set a = 10, n = 200, and generate σ and c vectors from U [1, 1000].
As seen in Table 9, the number iterations of the Sparse-Enumeration Algorithm is very
large for such instances.

7.4 Finding the optimal tender

In this section we test the algorithms proposed for finding the optimal tender. These
tests are conducted on large instances of Testbed 1 after computing value functions
in both stages. Note that performances of the algorithms presented in this section do
not depend on the number of variables. Therefore, we do not repeat our experiments
neither with small instances of Tesbed 1 nor with any instance from Testbed 2.

Table 10 reports the time required for finding an optimal tender using the branch-
and-bound algorithm (B&B) and the minimal tender approach (MT). We also report
the size of the minimal tender set ||, and the sizes of the first- and second-stage
feasible right-hand side sets |B1| and |B2|.

Recall that the MT approach eliminates the first-stage right-hand sides that are not
minimal tenders (see Theorem 3). Then it enumerates over all right-hand sides in the
minimal tender set. Not surprisingly, the MT approach tends to outperform the B&B
algorithm when || is small, e.g. IC1−1L , IC1−7L and IC1−43L instances. Gener-
ally, the B&B algorithm outperforms the MT approach in most instances. Furthermore,
its performance does not vary a lot as || gets larger.

7.5 Observations from the computational experiments

The overall computational results show that our approach is relatively insensitive to the
number of decision variables in both stages but sensitive to the number of constraints
and the numbers of feasible right-hand sides in B1 and B2. We note that the portion
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of the total running time spent in the first and second phase varies depending on the
algorithms used in those phases.

In the literature, the largest QIPs that have been solved so far are diagonal instances
and they have no more than 2000 columns and 2000 rows [48]. By exploiting the
special structure of the two-stage stochastic quadratic integer programs, we can solve
(possibly indefinite) instances of (P1) whose extensive forms (3) are hundreds of
orders of magnitude larger than those instances solved in the literature.

Usually integer programs with (possibly indefinite) quadratic objectives are sub-
stantially harder to solve than their linear objective counterparts. However, extensive
forms (3) of the instances that we solve in this paper have the similar order of magnitude
as those of Kong et al. [35], which are the largest stochastic linear integer programs
solved in the literature so far (as measured by the extensive form size). From this
observation we conclude that our proposed two-phase solution framework alleviates
the difficulties arising due to quadratic objective functions for the class of problems
considered in this paper.

8 Concluding remarks

We present an algorithmic framework for a class of two-stage stochastic quadratic
integer programs where the uncertainty only appears in the second-stage right-hand
sides. The main contribution of the paper is twofold. First, we derive some theoretical
properties of QIP value functions. These properties may be useful in sensitivity anal-
ysis of quadratic integer programs [18,25]. Second, we use these properties as well
as superadditivity to develop efficient algorithms for computing value functions of
QIPs. We then apply a dual reformulation and use a generic global branch-and-bound
algorithm and a level-set approach to find an optimal tender.

This paper represents an important first step towards more general two-stage
stochastic quadratic integer programs where uncertainty appears in the second-
stage objective and constraint matrix, as well as the right-hand side. We note
that our approach is amenable to solve general two-stage stochastic quadratic
integer programs as long as the scenarios may be divided into relatively few
groups that share the same objective functions and constraint matrices. For such
instances, the value function must be found for the first stage and each group of
scenarios.

The Exact-Superadditive Algorithm presented in Sect. 6.1 provides the flexibility
for improvements that would be interesting for further investigation. We use a DP algo-
rithm to solve the quadratic integer programs arising in Step 1, which limits the number
of variables that can be handled. Various objectives regarding the computational pref-
erence between solving quadratic integer programs and applying superadditive dual
properties may lead to different procedural selections.

The major limitation of our two-phase solution approach is the explicit storage
of value functions in computer memory. This is why our computations are based on
instances that have large number of columns and scenarios but relatively few rows.
One approach to overcome this limitation is to seek more efficient ways to store value
functions, such as using generating functions [19]. Another approach is to modify the
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global branch-and-bound algorithm to calculate the solution on a subset of right-hand
sides so that only a portion of the value function needs to be stored at any time.
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