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Abstract

We consider a general adversarial stochastic optimization model. Our model involves the design of a system that an
adversary may subsequently attempt to destroy or degrade. We introduce SPAR, which utilizes mixed-integer programming
for the design decision and a Markov decision process (MDP) for the modeling of our adversarial phase.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and background

We introduce a general modeling technique for
optimally designing a system that an adversary may
subsequently attempt to destroy or degrade. Such deci-
sions arise in various situations including the design of
computer networks, energy grids, military supply net-
works, and biological agent sensor placement. In our
framework, there are two types of uncertainty: design
uncertainty and adversarial uncertainty. The decision
maker must first make a design decision. Typically,
there will be a large number of such designs, such as
where to locate detectors, or how to allocate protec-
tive resources. Since many design decisions have long
implementation cycles, these decisions must be made
under design uncertainty that is not revealed until
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after a design has been selected. This uncertainty only
occurs once and impacts the parameters of the sub-
sequent adversarial uncertainty. Once the design has
been implemented, the decision maker faces threats
from an adversary who searches for optimal deci-
sions that negatively impact the system performance.
Therefore, the adversary selects his alternatives based
on those that create the most significant disruption of
service or system damage under the current design.
These adversarial decisions will typically occur over
multiple time periods, and are subject to the random-
ness that is inherent in the adversary’s system envi-
ronment, called adversarial uncertainty. The objective
of the designer is to select a design that minimizes the
installation cost plus the discounted expected expense
of the adversary’s optimal reaction. In this paper we
assume that system redesign is expensive and incurs
equally long implementation cycles. As a result, we are
modeling the one-time design decision and assume the
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objective is to minimize the cost of installation and
the impact of a long-run attack strategy. We propose a
technique for solving such adversarial, stochastic, and
dynamic decision models that combines the best as-
pects of stochastic programming (SP) and Markov de-
cision processes (MDPs). This new methodology has
many applications and extends the modeling and so-
lution techniques for adversarial multistage decisions
under uncertainty. We call this modeling methodol-
ogy SPAR: stochastic programming with adversarial
recourse.

SPAR generalizes the stochastic network interdic-
tion problem [6,10,15]. In these models the interdictor
is trying to maximize one of a variety of objectives,
including the expected minimum length between an
origin s and destination t; the probability of detecting
an adversary on a link in the network; or the probabil-
ity of causing the minimum length path to be above
a specified threshold. In Pan et al. [15], the stochas-
ticity arises from an uncertain origin and destination
of the evader. In Hemmecke et al. [10] and Cormi-
con et al. [6], the characteristics of the network are
not known in advance. However, in each case, after
the uncertainty is resolved the evader faces a deter-
ministic decision problem. In the case of maximizing
the shortest path in a network, this is equivalent to
the evader solving a deterministic dynamic program-
ming problem. Unlike previous work, SPAR is able
to incorporate a first-stage design cost and focus on
minimizing the negative impact of an adversary. In
addition to uncertainty between the design and adver-
sary phases, our adversary must make decisions in a
stochastic environment. While stochastic network in-
terdiction deals solely with an adversary facing eva-
sion decisions, SPAR models the adversary’s possible
decisions as a broader stochastic control or allocation
problem.

The problem of designing a system in anticipation
of adversarial attacks can also be modeled as a spe-
cial case of a discounted zero-sum stochastic game
[9], where the adversary’s only control choice during
the design stage is to wait, and the system designer
is inactive once the design has been selected. At this
point, the adversary can dynamically choose from
their action sets to decide how to negatively impact
the system. However, modeling this as a stochas-
tic game would require a state-space description
for every feasible design where the combinatorially

explosive number of design choices would cause sig-
nificant if not insurmountable computational burdens.

A hybrid SP/MDP method is also presented by
Cooper and Homem-de-Mello [5] for the problem of
revenue management. Their problem can be modeled
as a single large-scale finite-horizon MDP or a multi-
stage stochastic program. They develop a heuristic
method that can be viewed as a two-stage procedure
where the second stage is derived from the optimal
value function of the finite-horizon MDP. They present
a technique for solving this stochastic integer and
nonlinear optimization problem using Monte Carlo
simulation. This model differs from SPAR in that it is
not adversarial in nature and presents an approxima-
tion method for the solution of a problem that can be
represented using conventional techniques. SPAR is
an exact algorithm and modeling technique for prob-
lems for which there is no conventional modeling
representation.

In Section 2 we provide an overview of SPAR and
MDPs, illustrative applications, and a detailed math-
ematical formulation of SPAR. A computational il-
lustration and comparative solution methods are dis-
cussed in Section 3.

2. Stochastic programming with adversarial
recourse (SPAR)

In SPAR, the design decisions are modeled as
mixed-integer programs (MIPs), which select the ini-
tial design allocation denoted by the vector x with n1
elements from a mixed-integer set with an associated
cost of cTx and must satisfy the linear constraints
Gx = g. After the system design decision x is chosen,
the design uncertainty, denoted by a finite discrete
random variable �̃, is resolved, resulting in a scenario
�k with probability qk , k = 1, . . . , K . The result-
ing adversarial decision-making process is modeled
as an MDP defined by its state space S(�k), action
space A(�k), state-action rewards r(s, a, x, �k) for
(s, a) ∈ (S(�k), A(�k)), and probability transitions
p(j |s, a, �k) for (s, a) ∈ (S(�k), A(�k)) and j ∈
S(�k). We include the parameter �k to emphasize the
variability and dependency of the adversary’s model
parameters on the design uncertainty. Similarly, the
reward is linearly linked to the first-stage decision
as will be illustrated in Section 2.4. The decision
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sequence and dependencies are represented as:

Design decision x → Design uncertainty

�k realized → Adversarial MDP (x, �k).

By divorcing the design decisions from the adversary’s
MDP, SPAR is able to model detailed and complex in-
stances of the adversarial phase while simultaneously
considering a large number of initial design decisions.

Tying the design and adversary models together
is a two-stage stochastic program with an objective
of minimizing the first-stage costs plus the expected
damage from an adversary over all possible scenar-
ios. Although stochastic programming is computation-
ally efficient for two-stage problems, it is ill suited
for problems with a large number of stages in the ad-
versary phase. Conversely, MDP is an effective tool
for multi-stage sequential decisions with a relatively
small number of states, but an inefficient technique
for large-scale design decisions. Therefore, the princi-
ple advantage of SPAR is that it is a hybrid technique
that utilizes mixed-integer programming for the de-
sign decision, an MDP for the modeling of our adver-
sarial phase, and binds the two phases together with
the computational effectiveness of two-stage stochas-
tic programming.

The stochastic program has a mixed-integer first
stage, and the subproblems are MDPs. The feasible
actions of the subproblems will be linearly linked to
the first stage decisions through a penalty parame-
ter assigned to the adversary’s rewards. SPAR can
be extended to create varying state space, reward,
and probability transition structures for the underly-
ing MDP. SPAR exploits the fact that the expected re-
course based on the adversary’s MDP is piecewise lin-
ear and convex in the first-stage decision. As a result,
we show that SPAR satisfies the two-stage stochastic
programming framework. Additionally, the computa-
tional efficiencies of specialized MDP solution tech-
niques can be utilized to accelerate the solution of the
two-stage stochastic program.

2.1. Modeling illustrations

To illustrate the capabilities of SPAR we present
two applications where SPAR is appropriate. Consider
the problem of stochastic shortest path network inter-
diction [10]. In this model, the system designer (inter-

dictor) with a constrained budget and resources must
interdict links within a transportation network to max-
imize the expected minimum path of an adversary. The
interdiction of an arc (i, j) results in an increase of the
arc length by a distance of dij > 0. The expectation
results from the uncertainty in the possible network
configurations. However, for a given scenario the ad-
versary is facing a deterministic shortest path decision.
Consider a case where the adversary is traveling in a
network with uncertainty. This can occur when an ad-
versary can enter one of several queues whose occu-
pants are subsequently routed to one of several security
checkpoints. A network with uncertainty also results
if a vehicle’s route in an adversary’s supply network is
dynamic and stochastic due to hourly pickup/delivery
uncertainty. By selecting the route or queue the adver-
sary has some control over their travel, however the
realization of their path is uncertain. These and similar
extensions result in the adversary facing a stochastic
shortest path problem [3] that can be modeled as an
MDP.

Another SPAR application is as follows: consider
a variant of the dynamic weapon target assignment
problem under stochastic demand with N possible tar-
gets [14]. This problem deals with the allocation of
weapons to targets that are revealed dynamically. At
time t = 1, . . . , T an adversary has only discovered
n(t)�N of the targets with varying values, n(t) is
nondecreasing with time. The adversary can allocate
some of their M < ∞ weapons to the known n(t)

targets or reserve them for undiscovered and possi-
bly more desirable targets. However, waiting incurs a
cost due to various factors, including the finite time
from deployment for the weapon to detect and en-
gage the targets. Now consider the military planning
decision of locating these N facilities within a finite
geographic region with the knowledge that the ad-
versary will seek out and attack the facilities. For a
given facility assignment, the adversary’s attack strate-
gies will dictate the number and order of the tar-
gets which are dynamically discovered. The military
planner must allocate these facilities so as to mini-
mize the expected impact of an eventual attack sub-
ject to the inherent installation constraints. This is an
instance of SPAR where the attack strategies are the
scenarios and the planning is forecasting the adver-
sary’s dynamic resource allocation decision using an
MDP framework.
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2.2. Markov decision processes

MDPs are a general technique to formulate prob-
lems involving a sequence of decisions made under
uncertainty to optimize a given performance criteria.
Aside from implicit separability assumptions about
these decisions, the framework is very general. The
formulation couples the decisions through state vari-
ables that succinctly summarize the impact on subse-
quent decisions of decisions made thus far.

The sequential nature of the problem allows for
the defining of stages or decision epochs. We fo-
cus on infinite-horizon problems, since finite-horizon
problems can be recast as infinite-horizon problems
through the standard augmentation of the state with
the stage. Following the notation of Puterman [16],
we define S as the finite state space of the MDP. For
every state s ∈ S, let the finite set of feasible deci-
sions or actions be As , where for every action a ∈ As

the decision maker receives reward r(s, a), where
|r(s, a)|�M < ∞. A transition from state s to state j
when action a ∈ As is chosen occurs with probability
p(j | s, a). A policy � = {d1, d2, . . .} is a sequence of
decision rules, where a decision rule di is a function
mapping states into actions such that di(s) ∈ As .

We seek a policy that will maximize the total ex-
pected discounted rewards with discount parameter
0�� < 1. It is well known that there exists an opti-
mal policy which is stationary, i.e. � = {d, d, . . .} for
some deterministic decision rule d. The optimal total
expected discounted reward for each state s ∈ S can
be found by solving the standard set of Bellman equa-
tions [1]:

v(s) = max
a∈As

⎧⎨
⎩r(s, a) + �

∑
j∈S

p(j | s, a)v(j)

⎫⎬
⎭ .

We can compute the total expected discounted reward
vector, vd , for a given stationary policy defined by de-
cision rule d as the solution of the following equation:

vd = rd + �Pdvd , (1)

where rd is the vector of rewards under decision rule
d, i.e. rd(s) = r(s, d(s)), and Pd is the probability
transition matrix under decision rule d, i.e. (Pd)ij =
p(j | i, d(i)). From (1), the value vector of a policy

can be found by

vd = (I − �Pd)−1rd , (2)

where the inverse of (I − �Pd) exists since Pd is
stochastic and 0�� < 1.

The separability of the MDP decisions allows for
the above decomposition of the problem into smaller
related subproblems. As a result, such decision prob-
lems can be solved by using a variety of techniques in-
cluding value iteration [17], policy iteration [11], mod-
ified policy iteration [13], or linear programming [8];
however Koehler [12] has shown that simplex-based
linear programming is typically not the most efficient
method for solving a single MDP.

2.3. MDP extensive formulation

If there are a finite number of design decisions, the
model as we have described, could in its entirety be
formulated as a large-scale MDP. However, this would
effectively require enumerating all the feasible designs
to create the action space in the design phase and then
computing the maximum-expected cost over each of
the scenarios for the adversarial phase. To solve a
problem instance using an MDP formulation for the
first- and second-stage problems, where there are n1
binary decisions in the design phase and K adversar-
ial scenarios, could require the solution of 2n1K ad-
versary subproblems. Typically, even relatively small
design problems could have exponentially many pos-
sible solutions. Enumerating all possible complete de-
signs would be burdensome, let alone making optimal
decisions over this action space. SPAR decomposes
the problem into many smaller problems using a vari-
ant of Benders’ decomposition [2], thus allowing for
the solution of significantly fewer first-stage and ad-
versarial problems than would be required in solving
a single large-scale MDP.

2.4. Mathematical formulation of SPAR

We now formally introduce the relationship be-
tween the design decision and the adversary’s decision
framework. We demonstrate that these interlinked
problems satisfy the standard two-stage stochastic
programming framework by showing that the expected
recourse function (the adversary’s expected impact) is
piecewise linear and convex over {x ∈ X | Gx = g}.
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In addition, for decomposition purposes we illustrate
a supporting hyperplane based on the optimal policies
of the adversary’s MDPs for a given first-stage design
vector.

In a conventional two-stage stochastic linear pro-
gram [4], a first-stage LP must be solved before all of
the problem parameters are known with certainty. The
uncertainty is realized after this first stage is solved. At
this point, the decision-maker solves a second linear
program, known as a recourse problem, that consid-
ers the solution to the first LP as well as the outcome
of the random event. The objective is to minimize the
first-stage cost plus the expected second-stage cost.
Let m1(n1) be the number of rows (columns) in stage
1. Let X=Rl ×Zn1−l for some 0� l�n1, so that {x ∈
X | Gx = g} is the set of feasible designs for the first
stage, where G is a known matrix of size m1 ×n1 and
g is a known vector in Rm1 . The cost of design x is
given by cTx, where c is a known vector in Rn1 . Let �̃
be a discretely distributed random variable describing
the design uncertainty and let � be the finite support
of �̃. For k = 1, . . . , K = |�|, let �k describe the kth
element in �, called the design scenario, and let qk

be the probability that design scenario �k is realized.
Suppose that the adversary’s rewards r, transition

probabilities p, and/or the discount factor � are un-
known before the design phase. The interpretation of
the rewards is dependent on the decision maker: for a
system designer these are costs to be minimized over
the long run and for the adversary they are rewards
for system disruption to be maximized over the long
run. After the design decision x has been made and
�k is realized, the parameters defining the adversary’s
MDP are known.

For any design scenario �k , k = 1, . . . , K , let
p(j |s, a, �k) be the adversary’s transition probability
from state s ∈ S(�k) to j ∈ S(�k) when action

a ∈ As(�
k) is chosen under scenario �k . Similarly,

let r(s, a, �k) be the reward for state-action pair (s, a)

under scenario �k . Let �(�k) be the discount rate un-
der scenario �k . In addition, we define bounded ad-
versary impediment values (benefiting the system de-
signer), ti (s, a, �k)�0 for i = 1, . . . , n1, s ∈ S(�k),

a ∈ As(�
k), that link the ith element of the design de-

cision vector x to the reward of an action choice from
the states in the adversary’s realized MDP. The adver-
sary’s reward r(s, a, �k) is reduced by ti (s, a, �k)xi for

i = 1, . . . , n1. As an example of modeling flexibility,
if the given impediment value ti (s, a, �k) is very large
this may represent the ability of the designer to elim-
inate a decision possibility at this state if the first-
stage decision variable is nonzero. This is analogous
to removing an arc in a classic deterministic network.
Typically, it will reflect an added “cost” the adversary
must incur to choose this action as a result of the sys-
tem designer’s decisions.

Let Q(x, �k) be the expected reward of the optimal
policy of the adversarial MDP resulting from design
x under scenario �k and �(�k) the scenario specific
probability vector over the initial states in the MDP
subproblem. Then,

Q(x, �k) = �T(�k)v∗(x, �k),

where the |S(�k)|-dimensional vector v∗(x, �k) is the
solution of the Bellman equations for the adversarial
MDP under design x and scenario �k ,

v(s) = max
a∈As(�

k
)

⎧⎨
⎩r(s, a, �k) −

n1∑
i=1

ti (s, a, �k)xi

+�(�k)
∑

j∈S(�k
)

p(j | s, a, �k)v(j)

⎫⎬
⎭

for all s ∈ S(�k). We define Q(x), the expected adver-
sarial recourse function, by

Q(x) = E�̃[Q(x, �̃)].
The objective of SPAR is to find a design that min-
imizes cx + Q(x) subject to Gx = g, x ∈ X. Since
a maximization MDP can be formulated as a mini-
mization linear program [8], it is possible to formu-
late SPAR as a two-stage stochastic linear program.
However, to provide insight into the fundamental na-
ture of SPAR in terms of the adversarial policies, we
prove the following proposition directly, even though
they follow from the two-stage stochastic LP formu-
lation of SPAR. This proposition allows us to exploit
the computational efficiencies of algorithms specific
to two-stage stochastic programming and MDPs.

Proposition 1.

(a) The expected adversarial recourse function Q(x)

is a piecewise linear convex function.
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(b) Let d∗(x̂, �k) be the decision rule defining the
optimal stationary policy for a given design x̂

and scenario �k , k = 1, . . . , K . Then

K∑
k=1

qk�T(�k)[I − �(�k)P
d∗(x̂,�k

)
(�k)]−1

× [r
d∗(x̂,�k

)
(�k) − T

d∗(x̂,�k
)
(�k)x] (3)

is a supporting hyperplane of Q(x) at x̂.

Proof. For an MDP defined by x and �k , let d be a
deterministic decision rule defining a stationary pol-
icy with reward vector rd(�k) and probability transi-
tion matrix Pd(�k). Define Td(�k) as the |S(�k)| × n1
designer-benefit matrix where element (s, i) of the
matrix is the adversary impediment value for state-
action pair (s, d(s)) linked to the first-stage design
decision value xi under scenario �k , i.e. [Td(�k)]si =
ti (s, d(s), �k). Let vd(x, �k) be the value vector of the
policy defined by d. Then by (2),

vd(x, �k) = [I − �(�k)Pd(�k)]−1[rd(�k) − Td(�k)x],
which is linear in x. Now,

v∗(x, �k) = max
d∈D

{vd(x, �k)},

where D is the set of all deterministic decision rules.
Therefore, v∗(x, �k) is clearly piecewise linear and
convex. As a convex combination of these functions,
�T(�k)v∗(x, �k) is also piecewise linear and convex.
Similarly, Q(x) = E�̃[Q(x, �̃)] is piecewise linear and
convex, completing the proof of (a).

For a design x and scenario �k , the expected reward
of the resulting MDP under stationary policy d∗(x̂, �k)

is

�T(�k)[I − �(�k)P
d∗(x̂,�k

)
(�k)]−1

× [r
d∗(x̂,�k

)
(�k) − T

d∗(x̂,�k
)
(�k)x] (4)

by (2). However, since d∗(x̂, �k) is not necessarily
optimal for x and �k ,

�T(�k)[I − �(�k)P
d∗(x,�k

)
(�k)]−1

× [r
d∗(x,�k

)
(�k) − T

d∗(x,�k
)
(�k)x] (5)

lies above (4).

The fact that (3) is a supporting hyperplane of Q(x)

is seen by observing that (3) and Q(x) are the expected
values of (4) and (5) respectively and

Q(x̂) =
K∑

k=1

qk�T(�k)[I − �(�k)P
d∗(x̂,�k

)
(�k)]−1

× [r
d∗(x̂,�k

)
(�k) − T

d∗(x̂,�k
)
(�k)x̂],

completing the proof of (b). �

By Proposition 1, each x̂ ∈ {x ∈ X | Gx = g}
induces a supporting hyperplane for Q(x) based on
the stationary policies defined by the decision rules
d∗(x̂, �1), d∗(x̂, �2), . . . , d∗(x̂, �K). Since each ad-
versarial MDP has a finite number of states and ac-
tions, there are only a finite number of decision rules
and hence stationary policies for each �k . Let D∗(�k)

be the set of stationary policies which are optimal for
a first-stage decision under scenario �k . Therefore, if
(x∗, �∗) is an optimal solution to the following MIP:

min cTx + �

subject to

Gx = g (6)

��
K∑

k=1

qk�T(�k)[I − �(�k)P
d(�k

)
(�k)]−1

× [r
d(�k

)
(�k) − T

d(�k
)
(�k)x], (7)

for all d(�k) ∈ D∗(�k), k = 1, . . . , K,

x ∈ X, � ∈ R,

then x∗ is the optimal first-stage decision.
Applying these results, we present the SPAR algo-

rithm based on a simplified version of the L-shaped
method of Van Slyke and Wets [18]. It is clear that
as long as the first-stage decision does not impact
the states or actions then we have relatively complete
recourse, which means that every solution to {x ∈
X | Gx =g} results in feasible subproblems for every
scenario. As a result, it is not necessary to consider fea-
sibility cuts in the SPAR algorithm. In addition, since
there are a finite number of stationary policies for each
scenario, the SPAR algorithm terminates finitely with
an optimal solution.

Step 0: Set s = � = 0.
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Step 1: Set � = � + 1. Solve the master problem

min cTx + �

subject to

Gx = g

Elx + ��el, l = 1, . . . , s, (8)

x ∈ X, � ∈ R.

Let x�, �� be an optimal solution. If no constraint (8)
is present, set �� =−∞ and it is not considered in the
solution of x�. El and el are defined in step 2.

Step 2: For all scenarios k = 1, . . . , K , find the
optimal stationary policy for the MDP with Bellman
equations

v(s) = max
a∈nAs(�

k
)

⎧⎨
⎩r(s, a, �k) −

n1∑
i=1

ti (s, a, �k)xi

+�(�k)
∑

j∈S(�k
)

p(j | s, a, �k) v(j)

⎫⎬
⎭

for all s ∈ S(�k). Define

Es+1 =
K∑

k=1

qk�T(�k)[I − �(�k)P
d∗(x�,�k

)
(�k)]−1

× [T
d∗(x�,�k

)
(�k)]

and

es+1 =
K∑

k=1

qk�T(�k)[I − �(�k)P
d∗(x�,�k

)
(�k)]−1

× [r
d∗(x�,�k

)
(�k)].

If Es+1x
� + �� �es+1, that is, the s + 1st cut of the

form (8) does not cut off the current solution (x�, ��),
stop; (x�, ��) is the optimal solution. Otherwise, set
s = s + 1 and add the current cut to the constraint set
(8) and return to step 1.

3. Computational results

The effectiveness of SPAR lies in its ability to re-
duce the number of adversarial subproblem MDPs that

must be solved. To illustrate SPAR’s effectiveness, we
present a simplified computational example on ran-
domly generated instances. In these instances, each
element of the first-stage decision vector has a nega-
tive effect on the adversary’s reward in the MDP sub-
problem. We restrict ourselves to the case where only
the adversary impediment values, ti (s, a, �k), vary for
each scenario �k , k=1, . . . , K and X=Bn1 . As stated
previously the simplex method can be used to solve
the MDP, however it is typically inefficient for solv-
ing single instances of MDPs. In these instances, we
are solving several MDPs for which only the rewards
are altered. This motivates the use of the dual-simplex
method for efficiently finding the solution of one ad-
versary’s subproblem when provided with the basis
from a previous solution in step 2 of the SPAR algo-
rithm. We will compare the computational efficiencies
of this methodology with standard policy iteration. The
basic problem parameters are provided in Table 1.

In Table 2, we report the average results for 30 in-
stances of each problem class in Table 1, where each
replication involves randomly generated probability
transitions, rewards/costs and adversary impediment
values. We compare the subproblem and total solution
times when the subproblems are solved with CPLEX
7.0 [7] using dual simplex and when the subproblems
are solved as MDPs using standard policy iteration.
In addition, we report the average number of subprob-
lems solved in the computation of the optimal solu-
tion. The difference in the number of iterations be-
tween the dual-simplex method and policy iteration is
due to alternate optimal dual solutions.

From Table 2, we see that the SPAR algorithm is a
significant improvement over the solution of the MDP
extensive form, which can be estimated by multiply-
ing |X| by K and the average subproblem solution
time. In addition, for these problem instances policy
iteration presents a significant improvement over dual
simplex. However, in practice the probability transi-
tion matrices will come from a process with typically
only a proportion of their states accessible from each
state, and so they will not be completely dense. As a
result, we investigate the effect of varying this density.

Tables 3 and 4 reveal the dependence of the results
on the density of the probability transition matrix. In
Tables 3 and 4, for each probability transition density
we generated 30 instances and computed average so-
lution times using policy iteration and dual simplex for
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Table 1
Problem instance data

First-stage Adversary’s MDP

SPAR Number of Number of Number of Number of Number of
parameter variables feasible scenarios states actions
set (n1) designs (|X|) (|�|) (|S|) (|A|)
1 30 1.07 E9 20 100 20
2 50 1.13 E15 20 150 30

Table 2
Comparative average solution times of SPAR (in seconds) for completely dense transition matrices

Policy iteration Dual simplex

Average Average Average Average Average Average
SPAR number of total subproblem number total subproblem
parameter set iterations time time iterations time time

1 215 9.62 0.04 213 17.48 0.08
2 607 107.94 0.13 602 366.00 0.59

Table 3
The effect of probability transition density with SPAR parameter set 1

Average computation time (seconds)

Probability transition matrix density 0.15 0.175 0.2 0.225 0.25 0.275

SPAR (dual simplex) 8.95 9.63 10.07 10.99 11.68 11.67
SPAR (policy iteration) 10.68 10.52 10.25 10.29 10.05 9.66
Ratio (dual simplex/policy iteration) 0.84 0.92 0.98 1.07 1.16 1.21

Table 4
The effect of probability transition density on SPAR parameter set 2

Average computation time (seconds)

Probability transition matrix density 0.025 0.05 0.075 0.1 0.125 0.15

SPAR (dual simplex) 104.94 135.79 148.23 176.56 189.62 196.99
SPAR (policy iteration) 188.50 157.02 130.61 129.42 122.92 120.05
Ratio (dual simplex/policy iteration) 0.56 0.86 1.13 1.36 1.54 1.64

the adversary subproblems. For relatively low proba-
bility transition densities and therefore sparse proba-
bility transition matrices dual simplex was more ef-
ficient. However, for problems with densities at least
.225 for SPAR parameter set 1 and at least .075 for
SPAR parameter set 2 policy iteration appears to be
the preferred technique. In addition, we see that pol-
icy iteration is faster as the density increases, not just

relatively faster. Again, since only the rewards are
varying for each scenario instance, we utilized the
dual-simplex method to update the solution of an ad-
versary subproblem efficiently.

Even with the computational benefit of solving
the related MDPs as LPs and using the dual simplex
method, standard MDP methods are still more com-
putationally effective in the problems with higher
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Table 5
Average solution time (seconds) of adversary LPs for SPAR parameter set 2

Average computation time (seconds)

Probability transition matrix density 0.025 0.05 0.075 0.1 0.125 0.15

Initial LP 0.466 0.576 0.723 0.873 0.979 1.099
Average subsequent LPs 0.141 0.182 0.224 0.261 0.286 0.303

densities. However, we see in Table 5 that the major-
ity of the LP solution time is spent solving the LP
of the first adversary problem investigated and each
subsequent solution is quickly updated. Therefore,
our results suggest that the most effective solution
technique for SPAR may be a hybrid technique which
selects the solution method (dual simplex, policy it-
eration, or a combination) depending on the density
(and other parameters) of the resulting subproblem.
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