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1 Introduction

Since the first successful kidney transplant in 1954, organ transplantation has been an important

therapy for many diseases. Organs that can safely be transplanted include kidneys, livers, intestines,

hearts, pancreata, lungs and heart-lung combinations. The vast majority of transplanted organs

are kidneys and livers, which are the focus of this chapter. Organ transplantation is the only viable

therapy for patients with end-stage liver diseases (ESLD) and the preferred treatment for patients

with end-stage renal diseases (ESRD). As a result of the the urgent need for transplantations,

donated organs are very scarce. The demand for organs has greatly outstripped the supply. Thus

organ allocation is a natural application area for optimization. In fact, organ allocation is one of

the first application of medical optimization, with the first paper appearing twenty years ago.

The United Network for Organ Sharing (UNOS) is responsible for managing the national organ

donation and allocation system. The organ allocation system is rapidly changing. For instance,

according to the General Accounting Office, the liver allocation policy, the most controversial

allocation system [14], has been changed four times in the last six years [17, 28]. The multiple

changes in policy over a short time period is evidence of the ever-changing opinions surrounding

the optimal allocation of organs. For example, although the new liver allocation policy is anticipated

to “better identify urgent patients and reduce deaths among patients awaiting liver transplants”

[28], anecdotal evidence suggests that there is some question among the transplant community as

to whether the new allocation rules are satisfactory [10, 26].

UNOS manages the organ donation and procurement via Organ Procurement Organizations

(OPOs), which are non-profit agencies responsible for approaching families about donation, eval-

uating the medical suitability of potential donors, coordinating the recovery, preservation, and

transportation of organs donated for transplantation, and educating the public about the critical

need for organ donation. There are currently 59 OPOs that operate in designated service areas;
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these service areas may cover multiple states, a single state, or just parts of a state [28]. The

national UNOS membership is also divided into 11 geographic regions, each consisting of several

OPOs. This regional structure was developed to facilitate organ allocation and to provide indi-

viduals with the opportunity to identify concerns regarding organ procurement, allocation, and

transplantation that are unique to their particular geographic area [28].

Organs lose viability rapidly once they are harvested, but the rate is organ-specific. The time

lag between when an organ is harvested and when it is transplanted is called the cold ischemia time

(CIT). During this time, organs are bathed in storage solutions. The limits of CIT range from a

few hours for heart-lung combinations, to nearly three days for kidneys. Stahl et al. [24] estimated

the relationship between CIT and liver viability. The Scientific Registry of Transplant Recipients

states that the acceptable cold ischemia time limit for a liver is 12 to 18 hours [22], whereas the

Center for Organ Recovery and Education gives the maximum limit as 18 to 24 hours [5].

There are two major classes of decision makers in organ allocation. The first class of decision

makers is the individual patient, or the patient and his/her physician. Typically, the objective for

such a perspective is to maximize some measure of that patient’s benefit, typically life expectancy.

The second class may be described as “society,” and its goal is to design an organ allocation system

so as to maximize some given criteria. Some examples of these criteria include total clinical benefit

and some measure of equity. Equity is a critical issue in the societal perspective on organ allocation

since there is considerable evidence that certain racial, geographic and socioeconomic groups have

greater access to organs than others [27].

We limit our discussion to the U.S. organ allocation system. The remainder of this chapter

is organized as follows. In Section 2 we describe the kidney allocation system, and in Section

3 we detail the liver allocation system. These two organs comprise the vast majority of organ

transplantations; the details for other organs are described on the UNOS webpage [28]. Previous

3



research on the patient’s perspective is discussed in Section 4, while the societal perspective is

described in Section 5. We provide conclusions and directions for future work in Section 6.

2 Kidney Allocation System

Over 60,000 patients are on the nationwide kidney waiting list. In 2003, 15,000 patients received

a kidney transplant, of which over 40% were from living donors [29]. The kidney waiting list and

number of transplants are larger than those of all other organs combined. However, this need is

somewhat mitigated by the fact that an alternate kidney replacement therapy (dialysis) is widely

available. We describe the kidney allocation system as of late 2004 below. This allocation system

is subject to frequent revision; readers are referred to the UNOS webpage [28] for updates to these

and other allocation policies.

Kidneys are typically offered singly; however, there are certain cases when a high risk of graft

failure requires the transplant of both kidneys simultaneously. UNOS defines two classes of cadav-

eric kidneys: standard and expanded. Kidneys in both classes have similar allocation mechanisms,

as described below. Expanded-criteria kidneys have a higher probability of graft failure, and are

distinguished by the following factors:

1. Age. Kidneys from some donors between 50-59 years, and kidneys from every donor older

than 60 are expanded-criteria kidneys.

2. Level of creatinine in the donor’s blood, which is a measure of the adequacy of kidney function.

3. Kidneys from donors who died of cardiovascular disease may be considered expanded-criteria.

4. Kidneys from donors with high hypertension may be considered expanded-criteria.

Patients who are willing to accept expanded-criteria kidneys do not have their eligibility for regular

kidneys affected.
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The panel-reactive antibody (PRA) level is a measure of how hard a patient is to match. It is

defined as the percentage of cells from a panel of donors with which a given patient’s blood serum

reacts. This estimates the probability that the patient will have a negative reaction to a donor; the

higher the PRA level, the harder the patient is to match.

A zero-antigen mismatch between a patient and a cadaveric kidney occurs when the patient and

donor have compatible blood types, and have all six of the same HLA-A, B and DR antigens. There

is mandatory sharing of zero-antigen-mismatched kidneys. When there are multiple zero-antigen-

mismatched kidneys, there is an elaborate tie-breaking procedure that considers factors such as the

recipient’s OPO, whether the patient is younger than 18, and certain ranges of PRA level. One

interesting concept is that of debts among OPOs. Except in a few cases, when a kidney is shared

between two OPOs, the receiving OPO must then share the next standard kidney it harvests in that

particular ABO category. This is called a payback debt. An OPO may not accumulate more than

nine payback debts at any time. Priority for matching zero-antigen-mismatched kidneys is given

to patients from OPOs that are owed payback kidneys. The full description of the tie-breaking

procedure is available from the UNOS webpage [28].

If a kidney has no zero-antigen mismatches, kidneys with blood type O or B must be trans-

planted into patients with the same blood type. In general, kidneys are first offered within the

harvesting OPO, then the harvesting region, and finally nationally. Within each of these three

categories, patients who have an ABO match with the kidney are assigned points, and each kidney

is offered to patients in decreasing order of points. A patient has the opportunity to refuse a kidney

for any reason without affecting her subsequent access to kidneys.

Once minimum criteria are met, patients begin to acquire waiting time. One point is given

to the patient who has been on the waiting list the longest amount of time. All other patients

are accorded a fractional point equal to their waiting time divided by that of the longest-waiting
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patient. A patient receives 4 points if she has PRA level 80% or greater. Patients younger than

eleven years old are given 4 points, and patients between eleven and eighteen years of age are given

3 points. A patient is given 4 points if she has donated a vital organ or segment of a vital organ

for transplantation within the United States. For the purposes of determining the priority within

the harvesting OPO, a patient’s physician may allocate “medical priority points.” However, such

points are not considered at the regional or national levels.

It is interesting to note that, excluding medical priority points, points based on waiting time

can only be used to break ties among patients with the same number of points from other factors.

In other words, kidneys are allocated lexicographically: the first factors are PRA level, age, and so

on. Only among tied patients in the first factors is waiting time considered.

3 Liver Allocation System

This section describes the current liver allocation system. Basic knowledge of this system is nec-

essary to understand the decision problem faced by the ESLD patients and the development of

the decision models. The UNOS Board of Directors approved for implementation the new liver

allocation procedure as of February 28, 2002 [28].

UNOS has different procedures for adult and for pediatric patients. Because researchers consider

only the adult patients, we describe only the adult liver allocation procedure. UNOS maintains a

patient waiting list that is used to determine the priority among the candidates. Under the current

policy, when a liver becomes available, the following factors are considered for its allocation: Liver

and patient OPO, liver and patient region, medical urgency of the patient, patient points, and

patient waiting time.

The medical urgency of the adult liver patients is represented by UNOS Status 1 and MELD

scores. According to the new UNOS policy, a patient listed as Status 1 “has fulminant liver failure

6



with a life expectancy without a liver transplant of less than 7 days” [28]. Patients who do not

qualify for classification as Status 1 do not receive a status level. Rather, these patients will be

assigned a “probability of pre-transplant death derived from a mortality risk score” calculated by

the Model for End Stage Liver Disease (MELD) scoring system [28]. The MELD score, which

is a continuous function of total bilirubin, creatinine and prothrombin time, indicates the status

of the liver disease and is a risk-prediction model first introduced by Malinchoc et al. to assess

the short-term prognosis of patients with liver cirrhosis [16, 30]. Wiesner et al. [30] develop the

following formula for computing MELD scores:

MELD Score = 10× [0.957× ln(creatinine mg/DL) + 0.378× ln(bilirubin mg/DL)

+1.120× ln(INR) + 0.643× Ic]

where INR, international normalized ratio, is computed by dividing prothrombin time (PT) of the

patient by a normal PT value, and Ic is an indicator variable that shows the cause of cirrhosis, i.e.,

it is equal to 1 if the disease is alcohol or cholestatic related and it is equal to 0 if the disease is

related to other etiologies. As Wiesner et al. [30] note, the etiology (cause) of disease is removed

from the formula by UNOS. In addition to this, UNOS makes several modifications to the formula

such as any lab value less than 1 mg/DL is set to 1 mg/DL, any creatinine level above 4 mg/DL is

set to 4 mg/DL and the resulting MELD score is rounded to the closest integer[28]. By introducing

these changes, UNOS restricts the range of MELD scores to be between 6 and 40, where a value of

6 corresponds to the best possible patient health and 40 to the worst.

Kamath et al. [15] developed the MELD system to more accurately measure the liver disease

severity and to better predict which patients are at risk of dying. However, there are concerns

about the accuracy of the MELD system. First, there were some biases in the data used to develop

the model. For instance, the data available to the researchers were mostly based on patients with
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advanced liver disease [16]. Furthermore, the MELD system was validated on the patients suffering

from cirrhosis [30], therefore it is possible that the MELD system does not accurately measure the

disease progression for other diseases, such as acute liver diseases. Moreover, as stated, although

they presented data to indicate that the consideration of patient age, sex, and body mass is unlikely

to be clinically significant, it is possible that other factors, such as a more direct measurement of

renal function (iothalamate clearance), may improve the accuracy of the model [15]. Furthermore,

the MELD system was validated on only three laboratory values: Creatinine and bilirubin levels,

and prothrombin time. Thus, it is possible that the MELD system does not accurately consider

patients with liver cancer because they would score as if they were healthy [10]. Consequently,

relying mainly on laboratory results may not be the best solution for all patients [9].

Patients are stratified within Status 1 and each MELD score using patient “points” and waiting

time. Patient points are assigned based on the compatibility of their blood type with the donor’s

blood type. For Status 1 patients, candidates with an exact blood type match receive 10 points;

candidates with a compatible, though not identical, blood type receive 5 points; and a candidate

whose blood type is incompatible receives 0 points. As an exception, though type O and type A2

(a less common variant of blood type A) are incompatible, patients of type O receive 5 points for

being willing to accept a type A2 liver. For non-Status 1 patients with the same MELD score, a

liver is offered to patients with an exact blood type match first, compatible patients second, and

incompatible patients last. If there are several patients having the same blood type compatibility

and MELD scores, the ties are broken with patient waiting time. The waiting time for a Status 1

patient is calculated only from the date when that patient was listed as Status 1. Points are assigned

to each patient based on the following strategy: “Ten points will be accrued by the patient waiting

for the longest period for a liver transplant and proportionately fewer points will be accrued by

those patients with shorter tenure” [28]. For MELD patients, waiting time is calculated as the time
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Non-status 1 patients in the region

Donated Liver

Status 1 patients in the OPO

Status 1 patients in the region

Non-status 1 patients in the OPO

Non-status 1 patients in the US

Status 1 patients in the US

Figure 1: Current Liver Allocation System

accrued by the patient at or above her current score level from the date that she was listed as a

candidate for liver transplantation.

Figure 1 shows a schematic representation of the liver allocation system. In summary, the

current liver allocation system works as follows: Every liver available for transplant is first offered

to those Status 1 patients located within the harvesting OPO. When more than one Status 1 patient

exists, the liver is offered to those patients in descending point order where the patient with the

highest number of points receives the highest priority. If there are no suitable Status 1 matches

within the harvesting OPO, the liver is then offered to Status 1 patients within the harvesting

region. If a match still has not been found, the liver is offered to all non-Status 1 patients in

the harvesting OPO in descending order of MELD score. The search is again broadened to the

harvesting region if no suitable match has been found. If no suitable match exists in the harvesting

region, then the liver is offered nationally to Status 1 patients followed by all other patients in

descending order of MELD scores.
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UNOS maintains that the final decision to accept or decline a liver “will remain the prerogative

of the transplant surgeon and/or physician responsible for the care of that patient” [14]. The

surgeon and/or the physician have very limited time, namely one hour, to make their decision [28],

because the acceptable range for cold ischemia time is very limited. Furthermore, as the Institute of

Medicine points out, there is evidence that the quality of the organ decreases as cold ischemia time

increases [14]. In the event that a liver is declined, it is then offered to another patient in accordance

with the above-described policy. The patient who declines the organ will not be penalized and will

have access to future livers. Organs are frequently declined due to low quality of the liver. For

example, the donor may have had health problems that could have damaged the organ or may be

much older than the potential recipient, making the organ undesirable [13].

4 Optimization from the Patient’s Perspective

This section describes the studies on the optimal use of cadaveric organs for transplantation that

maximizes the patient’s welfare.

David and Yechiali [6] consider when a patient should accept or reject an organ for trans-

plantation. They formulate this problem as an optimal stopping problem in which the decision

maker accepts or reject offers {Xj}∞0 that are available at random times {tj}∞0 , where {Xj}∞0

is a sequence of independent and identically distributed, positive bounded random variables with

distribution function F (x) = P (X ≤ x). If the patient accepts the offer at time tj , the patient

quits the process and receives a reward β(tj)Xj , where β(t) is a continuous nonincreasing discount

function with β(0) = 1. If the patient does not accept the offer, then the process continues until

the next offer, or patient death. The probability that the decision maker dies before the new offer

arrives at time tj+1 is given by the variable 1 − αj+1 = P (T ≤ tj+1|T > tj) defined by T , the

lifetime of the underlying process. Their objective is to find a stopping rule that maximizes the
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total expected discounted reward from any time t onward.

They first consider the case in which the offers arrive at fixed time points and there are a finite

number of offers (n) available. In this case, they observe that the optimal strategy is a control-

limit policy with a set of controls
{
λj

n

}n
j=0 , and an offer Xj at time tj is accepted if and only if

βjXj > λj
n, where λj

n is the maximum expected discounted reward if an offer at time tj is rejected.

Because for each j ≤ n,
{
λj

n

}∞
n=0 is a nondecresing bounded sequence of n, it has a limit lj .

They extend their model to the infinite-horizon problem in which the offers arrive randomly.

They prove that if the lifetime distribution of the decision maker is IFR [4], then the optimal policy

takes the form of a continuous nonincreasing real function λ(t) on [0,∞), such that an offer x at

time t is accepted if and only if β(t)x ≥ λ(t). λ(t) is equal to the future expected discounted reward

if the offer is rejected at time t and an optimal policy is applied thereafter. They show that the

IFR assumption is a necessary assumption in this setting.

They also consider the case where the arrivals follow a nonhomogeneous Poisson process. They

consider several special cases of this model such as the organ arrival is nonhomogeneous Poisson

with nonicreasing intensity and the lifetime distribution is IFR. In this case, they prove that the

control limit function λ(t) is nonincreasing, so that a patient becomes more willing to accept lower

quality organs as time progresses. They obtain a bound for the λ(t) for this special case.

They provide an explicit closed form solution of the problem when the lifetime distribution is

Gamma with homogenous Poisson arrivals. They present a numerical example for this special case

using data related to the kidney transplant problem.

Ahn and Hornberger [1] and Hornberger and Ahn [11] develop a discrete-time infinite horizon

discounted MDP model for deciding which kidneys would maximize a patient’s total expected

(quality-adjusted) life. In their model, the patient is involved in the process of determining a

threshold kidney quality value for transplantation. They use expected 1-year graft survival rate as
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the criterion for determining the acceptability of a kidney. The state space consists of patient state

which includes five states: Alive on dialysis and waiting for transplantation (S1); not eligible for

transplantation (S2); received a functioning renal transplant (S3); failed transplant (S4); and death

(S5). They assume that the patient assigns a quality-of-life score to each state. They use months

as their decision epochs because of the sparsity of their data. The patient makes the decision only

when she is in state (S1). The quality-adjusted life expectancy (QALE) of the patient in state (S1)

is a function of (1) QALE if a donor kidney satisfying eligibility requirements became available and

the patient has the transplantation, (2) QALE if an ineligible donor kidney became available and

the patient is not transplanted, and (3)the quality of life with dialysis in that month. Due to the

small number of states, they provide an exact analytical solution for threshold kidney quality.

They use real data to estimate the parameters and solve the model for four representative pa-

tients. The minimum 1-year graft survival rate, d∗, differs significantly among the four patients.

They compare their results with what might be expected by using the UNOS point system for

four representative donor kidneys. They also perform a one-way sensitivity analysis to measure

the effects of the changes in the parameters. Their results show that the important variables that

affect the minimum eligibility criterion are: Quality of life assessment after transplant, immuno-

suppressive side effect, probability of death while undergoing dialysis, probability of death after

failed transplant, time preference, and the probability of being eligible for retransplantation.

Howard [12] presents a decision model in which a surgeon decides to accept or reject a cadaveric

organ based on the patient’s health. He frames the organ acceptance decision as an optimal stopping

problem. According to his model, a surgeon decides whether or not to accept an organ of quality

q ∈ (0, q] for a patient in health state h ∈ (0, h], where the state q = 0 describes a period in which

there is no organ offer and the state h = 0 corresponds to death. The organ offers arrive with

distribution function f(q). If the surgeon rejects the organ, the patient’s health evolves according
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to a Markov process described by f(h′|h), where f(h′|h) is IFR. If the surgeon accepts an organ

offer, then the probability that the operation is successful in period t + 1 is a function of current

patient health h and organ offer q and is denoted by p(h, q). If the patient’s single period utility

when alive is u and the immediate reward of a successful operation is B, the total expected reward

from accepting an organ at time t, EV TX(h, q), and from rejecting an organ at time t, EV W (h)

are as follows :

EV TX(h, q) = p(h, q)B, and

EV W (h) =
∫

q

∫

h
V W (h′, q′)f(h′|h)f(q′)dh′dq′,

where V W (h, q) is defined by the following set of equations:

V W (h, q) = u + δ max
{
EV TX(h, q), EV W (h)

}
.

He estimates the parameters in his decision model using liver transplantation data in the U.S.

However, he does not provide any structural insights or numerical solutions to this decision model.

Instead, he provides statistical evidence that explains why a transplant surgeon may reject a ca-

daveric liver offer. His statistical studies show that as the waiting list has grown over time, the

surgeons have faced stronger incentives to use lower quality organs. Similarly, the number of or-

gan transplantations has increased dramatically in years when the number of traumatic deaths

decreased.

He also discusses the trends in organ procurement in light of his findings and describes some

options to the policy makers who believe that too many organs are discarded. One option is to use

the results of a decision that calculates the optimal quality cut-off and enforce it via regulations.

Another option is to penalize hospitals that reject organs that are subsequently transplanted suc-

cessfully by other transplant centers. It is also possible to implement a dual list system in which

the region maintains two waiting lists, one for patients whose surgeons are willing to accept low
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quality organs and one for patients whose surgeons will accept only high quality organs.

Alagoz et al. [3] consider the problem of optimally timing a living-donor liver transplant in

order to maximize a patient’s total reward such as life expectancy. Living donors are a significant

and increasing source of livers for transplantation, mainly due to the insufficient supply of cadaveric

organs. Living-donor liver transplantation is accomplished by removing an entire lobe of the donor’s

liver and implanting it into the recipient. The non-diseased liver has a unique regenerative ability,

so that a donor’s liver regains it’s previous size within two weeks. They assume that the patient

does not receive cadaveric organ offers.

In their decision model, the decision maker can take one of two actions at state h ∈ {1, . . . , H},

namely, “Transplant” or “Wait for one more decision epoch,” where 1 is the perfect health state

and H is the sickest health state. If the patient chooses “Transplant” in health state h, she receives

a reward of r(h, T ), quits the process and moves to absorbing state “Transplant” with probability

1. If the patient chooses to “Wait” in health state h, she receives an intermediate reward of r(h, W )

and moves to health state h′ ∈ S = {1, . . . , H +1} with probability P (h′|h), where H +1 represents

death. The optimal solution to this problem can be obtained by solving the following set of recursive

equations:

V (h) = max



r(h, T ), r(h,W ) + λ

∑

h′∈S

P (h′|h)V (h′)



 , h = 1, . . . , H,

where V (h) is the maximum total expected discounted reward that the patient can attain when

her current health is h.

They derive some structural properties of this MDP model including a set of intuitive sufficient

conditions that ensure the existence of a control-limit policy. They prove that the optimal value

function is monotonic when the transition probability matrix is IFR and the functions r(h, T ) and

r(h, W ) are nonincreasing in h. They show that if one disease causes a faster deterioration in

patient health than another, and yet results in identical post-transplant life-expectancy, then the
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control limit for this disease is less than or equal to that for the other. They solve this problem

using clinical data. In all of their computational tests, the optimal policy is of control-limit type.

In some of the examples, when the liver quality is very low, it is optimal for the patient to choose

never to have the transplant.

Alagoz et al. [2] consider the decision problem faced by liver patients on the waiting list: Should

an offered organ of a given quality be accepted or declined? They formulate a discrete-time, infinite-

horizon, discounted MDP model of this problem in which the state of the process is described by

patient state and organ quality. They consider the effects of the waiting list implicitly by defining

the organ arrival probabilities as a function of patient state.

They assume that the probability of receiving a liver of type ` at time t+1 depends only on the

patient state at time t and is independent of the type of liver offered at time t. According to their

MDP model, the decision maker can take one of two actions in state (h, `), where h ∈ {1, . . . , H+1}

represents patient health and ` ∈ SL represents current liver offer. Namely, “Accept” the liver ` or

“Wait for one more decision epoch”. If the patient chooses “Accept” in state (h, `), she receives a

reward of r(h, `, T ), quits the process and moves to absorbing state “Transplant” with probability

1. If the patient chooses to “Wait” in state (h, `), then she receives an intermediate reward of

r(h, W ) and moves to state (h′, `′) ∈ S with probability P(h′, `′|h, `). The optimal solution to this

problem is obtained by solving the following set of recursive equations [18]:

V (h, `) = max



r(h, `, T ), r(h,W ) + λ

∑

(h′,`′)∈S

P(h′, `′|h, `)V (h′, `′)



 ,

h ∈ {1, . . . , H}, ` ∈ SL, (1)

where V (h, `) is the maximum total expected discounted reward that the patient can attain when

her current state is h and the current liver offered is `.

They derive structural properties of the model, including conditions that guarantee the existence

of a liver-based and a patient-based control-limit optimal policy. A liver-based control-limit policy
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is of the following form: For a given patient state h, choose the “Transplant” action and “Accept”

the liver if and only if the offered liver is of type 1, 2, . . . , i(h), for some liver state i(h), called the

liver-based control limit. Similarly, a patient-based control-limit policy is of the simple form: For a

given liver state `, choose the “Transplant” action and “Accept” the liver if and only if the patient

state is one of the states j(`), j(`) + 1, . . . , H, for some patient state j(`), called the patient-based

control limit.

The conditions that ensure the existence of a patient-based control-limit policy are stronger

than those that guarantee the existence of a liver-based control-limit policy. They compare the

optimal control limits for the same patient listed in two different regions. They show that if the

patient is listed in region A where she receives more frequent and higher quality liver offers than

region B, then the optimal liver-based control limits obtained when she is listed in region A are

lower than those obtained when she is listed in region B.

They use clinical data to solve this problem, and in their experiments the optimal policy is

always of liver-based control-limit type. However, some optimal policies are not of patient-based

control-limit type. In some regions, as the patient gets sicker, the probability of receiving a better

liver increases significantly. In such cases, it is optimal to decline a liver offer in some patient states

even if it is optimal to accept that particular liver offer in better patient states. Their computational

tests also show that the location of the patient has a significant effect on liver offer probabilities

and optimal control limits.

5 Optimization from the Societal Perspective

Righter [19] considers a resource allocation problem in which there are n activities each of which

requires a resource, where resources arrive according to a Poisson process with rate λ. Her model

can be applied to the kidney allocation problem, where resources represent the organs and activities
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represent the patients. When a resource arrives its value X, a nonnegative random variable with

distribution F (·), becomes known, and it can either be rejected or assigned to one of the activities.

Once a resource is assigned to an activity, that activity is no longer available for further assignments.

Activities are ordered such that r1 ≥ r2 ≥ . . . ≥ rn ≥ 0, where ri represents the activity value.

Each activity has its own deadline that is exponentially distributed with rate αi and is independent

of other deadlines. When the deadline occurs, the activity terminates. The reward of assigning a

resource to an activity is the product of the resource value and the activity value. The objective

is to assign arriving resources to the activities such that the total expected return is maximized.

If all activity deadlines are the same, i.e. αi = α for all i, then the optimal policy has the

following form: Assign a resource unit of value x to activity i if vi(α) < x ≤ vi−1(α), where

each threshold, vi(α), represents the total expected discounted resource value when it is assigned

to activity i under the optimal policy. She defines v0(α) = ∞ and vn+1(α) = 0. Furthermore,

v0(α) > v1(α) > . . . > vn(α) > vn+1(α), where vi(α) does not depend on n for n ≥ i, and vi(α)

does not depend on rj for any j.

She analyzes the effects of allowing the parameters to change according to a continuous time

Markov chain on the structural properties of the optimal value function. She first assumes that

the arrival rate of resources change according to a continuous Markov chain while all other model

parameters are fixed, and proves that the optimal policy still has the same structure, where the

thresholds do not depend on the rj but depend on the current system state (environmental state).

She then considers the case in which the activity values and deadline rates change according to a

random environment and proves that the thresholds and the total returns are monotonic in the

parameters of the model. In this case, the thresholds depend on the rj ’s as well as the environmental

state. She also provides conditions under which model parameters change as functions of the

environmental state that ensure the monotonicity of the total returns.
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David and Yechiali [7] consider allocating multiple organs to multiple patients, where organs

and patients arrive simultaneously. That is, an infinite random sequence of pairs (patient and

organ) arrive sequentially, where each organ and patient is either of Type I with probability p or

of Type II with probability q = 1 − p. When an organ is assigned to the candidate, it yields a

reward R > 0 if they match in type, or a smaller reward 0 < r ≤ R if there is a mismatch. If an

organ is not assigned it is unavailable for future assignments, however, an unassigned patient stays

in the system until he/she is assigned an organ. The objective is to find assignment policies that

maximize various optimality criteria.

They first consider the average reward criterion. A policy π is average-reward optimal if it

maximizes the following equation:

φπ(s) = lim inf
t→∞

E
[∑t−1

n=0 rπ(n)|initial state = s
]

t
,

where rπ(n) is the average reward earned in day n and states are represented by pairs (i, j) denoting

i Type I and j Type II candidates waiting in the system (0 ≤ i, j < ∞). They prove that when

there are infinitely many organs and patients, the optimal policy is to assign only perfect matches

for any 0 ≤ p ≤ 1 and 0 ≤ r ≤ R, and the optimal gain is the perfect-match reward, R. If

there exist at most k patients, then the reasonable policy of order k is the optimal policy, where

a reasonable policy of order k is defined as follows. A policy is a reasonable policy of order k if it

satisfies the following conditions with k being the smallest number n1 specified in (ii): (i) Assign a

match whenever possible and (ii) Assign a mismatch when n1 candidates are present prior to the

arrival.

They then consider the finite- and infinite-horizon discounted models. They show that for

a finite-horizon model, the optimal policy has the following form: Assign a perfect match when

available. Assign a mismatch if an only if r > r∗n,N , where r∗n,N is a control limit that changes

with the optimal reward-to-go function when there are n Type I candidates and N periods to
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go. Unfortunately, they could not find a closed-form solution for r∗n,N . They also show that the

infinite-horizon discounted-reward optimal policy is of the following form: Assign a perfect match

when available. Assign a mismatch according to a set of controls

r∗1 ≥ r∗2 ≥ . . . ≥ r∗k−1 ≥ r∗k ≥ . . .

on r and according to k, where k represents the number of mismatching candidates in the system

and rk are a set of control limits on r.

David and Yechiali [8] consider allocating multiple (M) organs to multiple (N) patients. As-

signments are made one at a time and once an organ is assigned (or rejected) it is unavailable

for future assignments. Each organ and patient is characterized by a fixed-length attribute vector

X = (X1, X2, . . . , Xp), where each patient’s attributes are known in advance and each organ’s at-

tributes are revealed only upon arrival. When an offer is assigned to a patient, the two vectors are

matched and the reward is determined by the total number of matching attributes. There are at

most p + 1 possible match levels. The objective is to find an assignment policy that maximizes the

total expected return for both discounted and undiscounted cases. They assume that p equals 1,

so that each assignment of an offer to a candidate yields a reward of R if there is a match and a

smaller reward r ≤ R if there is a mismatch.

They first consider the special case in which M ≥ N , each patient must be assigned an organ

and a fixed discount rate (α) exists. They assume that f1 ≤ f2 ≤ . . . ≤ fN , where f1, . . . , fN are

the respective frequencies P{X = a1}, . . . , P{X = aN}, the N realizations of the attribute vector.

Using the notation (f) for (f1, . . . , fN+1) and (f−1) for (f1, . . . , fi−1, fi+1, . . . , fN+1), the optimality

equations are:

VN+1,M+1(f)|X1 = max





R + αVN,M (f−1)|{X1 = ai} (match);

r + α maxk VN,M (f−k) (a mismatch);

αVN+1,M (f) (rejection),
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where VN,M (f) is the maximal expected discounted total reward when there are N waiting patients

with N attribute realizations (a1, . . . , aN ) and M offers available. They prove that if N < M and

a1, . . . , aN are distinct, the optimal policy is to assign a match whenever possible and to reject a

mismatch or assign it to a1 depending on whether αξ1 ≥ r or αξ1 < r, where ξ1 = f1R + (1− f1)r.

They then consider the case where M = N and no rejections are possible. In this case, the

optimal policy is as follows: If an offer matches one or more of the candidates, it is assigned to one

of them. Otherwise it is assigned to a candidate with the rarest attribute. Finally, they relax the

assumption that all candidates must be assigned and M ≥ N . In this case, they prove that the

optimal policy is to assign the organs to one of the candidates if a match exists and to assign to a1

when f1 < ϕ, where ϕ is a function of fis and can be computed explicitly for some special cases.

Zenios et al. [31] consider the problem of finding the best kidney allocation policy with the

three-criteria objective of maximizing total quality-adjusted life years (QALYs), and minimizing

two measures of inequity. The first measures equity across various groups in terms of access to

kidneys and the second measures equity in waiting times. They formulate this problem using

a continuous-time, continuous-space deterministic fluid model, but do not provide a closed-form

solution.

In their model, there are K patient and J donor classes. They assume that patients of class

k = 1, . . . , KW are registered on the waiting list and patients of class k = KW + 1, . . . , K have

a functioning graft. The state of the system at time t is described by the K-dimensional column

vector x(t) = (x1(t), . . . , xK(t))T , which represents the number of patients in each class. Transplant

candidates of class k ∈ {1, . . . , KW } join the waiting list at rate λ+
k and leave the waiting list with

rate µk due to death or due to organ transplantation. Organs of class j ∈ {1, . . . , J} arrive at

rate λ−j , from which a fraction vjk(t) is allocated to transplant candidates k. Note that vjk(t) is

a control variable and ujk(t) = λ−j vjk(t) is the transplantation rate of class j kidneys into class
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k candidates. When a class j kidney is transplanted into a class k, k ∈ {1, . . . ,KW } patient, the

class k patient leaves the waiting list and becomes a patient of class c(k, j) ∈ {KW + 1, . . . , K}.

Furthermore, c(k, j) patients depart this class at rate µc(k,j) per unit time; a fraction qc(k,j) ∈ [0, 1]

of these patients are relisted as patients of class k as a result of graft failure, whereas 1− qc(k,j) of

them exit the system due to death.

The system state equations are given by the following linear differential equations:

d

dt
xk(t) = λ+

k − µkxk(t)−
J∑

j=1

ujk(t) +
J∑

j=1

qc(k,j)µc(k,j)xc(k,j)(t); k = 1, . . . , KW , (2)

d

dt
xk(t) =

J∑

j=1

KW∑

i=1

uji(t)1{c(i,j)=k} − µkxk(t); k = KW + 1, . . . , K, (3)

and are subject to the state constraints

xk(t) ≥ 0; k = 1, . . . ,K. (4)

The organ allocation rates u(t) must satisfy the following constraints:

KW∑

k=1

ujk(t) ≤ λ−j ; j = 1, . . . , J, (5)

ujk(t) ≥ 0; k = 1, . . . ,KW and j = 1, . . . , J. (6)

The authors note that this model ignores the three important aspects of the kidney allocation

problem: Crossmatching between donor and recipient, unavailability of recipients, and organ shar-

ing between OPOs. The model assumes that the system evolution is deterministic. They use the

quality-adjusted life years (QALY) to measure the efficiency of the model. Namely, they assume

that UNOS assigns a quality of life (QOL) score hk to each patient class k = 1, . . . , K, and the

total QALY over a finite time horizon T is found using

∫ T

0

K∑

k=1

hkxk(t)dt.
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For a given allocation policy u(t) = (u1.(t)T , . . . , uJ.(t)T , where uj.(t) = (uj1(t), . . . , ujKW
(t))T ,

their first measure of equity, waiting time inequity is calculated by

1
2

∫ T

0

KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t)) ·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

dt,

where λ(t, u(t)) = (λ1(t, u(t)), . . . , λKW
(t, u(t))) represents the instantaneous arrival rate into class

k under allocation policy u(t).

The second measure of equity considers the likelihood of transplantation. They observe that

lim
T→∞

∫ T
0

∑J
j=1 ujk(t)dt

λ+
k T

gives the percentage of class k patients who receive transplantation. Then the vector of likelihoods

of transplantation is given by
∫ T
0 D̃u(t)dt

λ+T
,

where D̃ ∈ RKW×KW ,J is a matrix with components

D̃ki =





1 if i mod KW = k;

0 otherwise.

Because this form is not analytically tractable, they insert the Lagrange multipliers γ = (γ1, . . . , γKW
)T

into the objective function using the following expression in the objective function:

∫ T

0
γT D̃u(t)dt.

They combine the three objectives and the fluid model to obtain the following control problem:

Choose the allocation rates u(t) to maximize the tri-criteria objective of

∫ T

0


β

K∑

k=1

hkxk(t)− (1− β)
KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t)) ·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

+ γT D̃u(t)


 dt,

subject to (2)-(6), where β ∈ [0, 1].
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Because there does not appear to be a closed-form solution to this problem, they employ three

approximations to this model and provide a heuristic dynamic index policy. At time t, the dynamic

index policy allocates all organs of class j to the transplant candidate class k with the highest index

Gjk(t), which is defined by

Gjk = πc(k,j)(x(t))− πk(x(t)) + γk,

where πc(k,j)(x(t)) represents the increase in

β
K∑

k=1

hkxk(t)− (1− β)
KW∑

k=1

KW∑

i=1

λk(t, u(t))λi(t, u(t)) ·
(

xk(t)
λk(t, u(t))

− xi(t)
λi(t, u(t))

)2

if an organ of class j is transplanted into a candidate of class k at time t.

They construct a simulation model to compare the dynamic index policy to the UNOS policy

and an FCFT (first-come first-transplanted) policy. They evaluate the effects of dynamic index

policy on the organ allocation system for several values of β and γ. They consider two types of

OPOs: A typical OPO and a congested OPO, where the demand-to-supply ratio is much higher

than a typical OPO. Their results show that the the dynamic index policy outperforms both the

FCFT and UNOS policy.

Su and Zenios [25] consider the problem of allocating kidneys to the transplant candidates

who have the right to refuse the organs. They use a sequential stochastic assignment model to

solve variants of this problem. They assume that the patients do not leave the system due to

pre-transplant death.

Their first model considers the case when the patient does not have the right to reject an organ.

This model also assumes that there are n transplant candidates with various types to be assigned

to n kidneys, which arrive sequentially-one kidney in each period. The type of kidney arriving at

time t is a random variable {Xt}n
t=1, where {Xt}n

t=1 are independent and identically distributed

with probability measure P over the space of possible types X . There are m patient types where

23



the proportion of type i candidates is denoted by pi. When a type x kidney is transplanted into

a type i patient, a reward of Ri(x) is obtained. The objective is to find an assignment policy

I = (i(t))t=1,...,n that maximizes total expected reward, E
[∑n

t=1 Ri(t)(Xt)
]
, where i(t) denotes the

candidate type that is assigned to the kidney arriving at time t. The optimization problem is to

find a partition {A∗i }m
1=1 to

max
{A1,...,Am}

∑m
i=1 E[Ri(X)1{X∈Ai}]

such that P (Ai) = pi ∀i,

where {Ai}m
1=1 is a partition of the kidney space X .

They analyze the asymptotic behavior of this optimization problem and prove that the optimal

partitioning policy is asymptotically optimal as n →∞. This result reduces the sequential assign-

ment problem into a set partitioning problem. If the space X consists of k discrete kidney types

with probability distribution (q1, . . . , qk), then the partition policy can be represented by the set of

numbers {aij}1≤i≤m,1≤j≤k such that when a kidney of type j arrives, it is assigned to a candidate of

type i with probability aij/
∑m

i=1 aij, where aij is the joint probability of a type i candidate being

assigned a type j kidney. Then the optimal partition policy is given by the solution {a∗ij} to the

following assignment problem:

max
{aij}

∑m
i=1

∑k
j=1 aijrij

such that
∑m

i=1 aij = qj ∀j
∑k

j=1 aij = pi ∀i.

They derive the structural properties of the optimal policy under different reward functions

such as multiplicative reward structure and a match-reward structure, in which if the patient and

kidney types match the transplantation results in a reward of R and if there is a mismatch then

the transplantation results in a reward of r < R. They show that if the reward functions satisfy

24



increasing differences assumption, i.e. Ri(x)−Rj(x) is increasing in x, then the optimal partition

is given by A∗i = [ai−1, ai), where ao = −∞, am = ∞, and

Pr(X ≤ ai) = p1 + . . . + pi.

They then consider the problem of allocating kidneys to the patients when the patients have

the right to refuse an organ offer and measure the effects of patient autonomy on the overall organ

acceptance and rejection rates. In this model they assume that an organ rejected by the first patient

will be discarded. They define a partition policy A = {Ai} as incentive-compatible if the following

condition holds for i = 1, . . . , m:

inf
x∈Ai

Ri(x) ≥ δ

pi
· E[Ri(X)]1{X∈Ai},

where δ is the discount rate for future rewards. Intuitively, a partition policy will be incentive-

compatible if each candidate’s reward from accepting a kidney offer is no less than their expected

reward from declining such an offer. They add the incentive- compatibility constraint to the original

optimization problem to model candidate autonomy. They find that the inclusion of candidate

autonomy increases the opportunity cost each candidate incurs from refusing an assignment and

make such refusals unattractive.

They perform a numerical study to evaluate the implications of their analytical results. Their

experiments show that as the heterogeneity in either the proportion of candidates or the reward

functions increases, the optimal partitioning policy performs better. They compared the optimal

partitioning policy to a random allocation policy with and without the consideration of candidate

autonomy. In general, the optimal partition policy performed much better than using a random

allocation policy. Additionally, candidate autonomy can have a significantly impact on the perfor-

mance of the kidney allocation system. However, the optimal partitioning policy with the inclusion

of incentive-compatibility (IC) constraints performs almost as well as the optimal policy when
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candidates are not autonomous. This is because the inclusion of IC constraints eliminates the

variability in the stream of kidneys offered to the same type of candidates.

Roth et al. [20] consider the problem of designing a mechanism for direct and indirect kidney

exchanges. A direct kidney exchange involves two donor-patient pairs such that each donor cannot

give his/her kidney to his/her own patient due to immunological incompatibility, but each patient

can receive a kidney from the other donor. An indirect kidney exchange occurs when a donor-patient

pair makes a donation to someone waiting for a kidney, and the patient receives high priority for a

compatible kidney when one becomes available. The objective is to maximize the number of kidney

transplants and mean quality of match.

Let (ki, ti) be the donor-recipient pair where ki denotes kidney i from live donor and ti denotes

patient ti and K denote the set of living donors at a particular time. Each patient ti has a set of

compatible kidneys, Ki ⊂ K, over which the patient has heterogenous preferences. Let w denote

the option of entering the waiting list with priority reflecting the donation of his donor’s kidney

ki. Let Pi denote the patient’s strict preferences over Ki ∪ {ki, w}, where Pi is the ranking up to

ki or w, whichever ranks higher. A kidney exchanging problem consists of a set of donor-recipient

pairs {(k1, t1), . . . , (kn, tn)}, a set of compatible kidneys Ki ⊂ K = {k1, . . . , kn} for each patient

ti, and a strict preference relations Pi over Ki ∪ {ki, w} for each patient ti. The objective is to

find a matching of kidneys/wait-list option to patients such that each patient ti is either assigned

a kidney in Ki ∪ {ki} or the wait-list option w, while no kidney can be assigned to more than one

patient but the wait-list option w can be assigned to more than one patient. A kidney exchange

mechanism selects a matching for each kidney exchange problem.

They introduce the Top Trading Cycles and Chains (TTCC) mechanism to solve this problem

and show that TTCC mechanism always selects a matching among the participants at any given

time such that there is no other matching weakly preferred by all patients and donors and strictly
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preferred by at least one patient-donor pair. They use a Monte-Carlo simulation model to measure

the efficiency of the TTCC mechanism. Their results show that substantial gains in the number

and match quality of transplanted kidneys might result from the adoption of the TTCC mechanism.

Furthermore, a transition to the TTCC mechanism would improve the utilization rate of potential

unrelated living-donor kidneys and Type O patients without living donors.

In another work, Roth et al. [21] consider the problem of designing a mechanism for pairwise

kidney exchange, which makes the following two simplifying assumptions to the model described

in [20]: (1) They consider exchanges involving two patients and their donors and (2) They assume

that each patient is indifferent between all compatible kidneys. These two assumptions change the

mathematical structure of the kidney exchange problem, and the problem becomes a cardinality

matching problem. Under these assumptions, the kidney exchange problem can be modeled with

an undirected graph whose vertices represent a particular patient and her incompatible donor(s),

and whose edges connect those pairs of patients between whom an exchange is possible, i.e. pairs of

patients such that each patient in the pair is compatible with a donor of the other patient. Finding

an efficient matching then reduces to finding a maximum cardinality matching in this undirected

graph. They use results from graph theory to solve optimally this problem and give the structure

of the optimal policy.

Stahl et al. [23] use an integer programming model to formulate and solve the problem of the

optimal sizing and configuration of transplant regions and OPOs, in which the objective is to find a

set of regions that optimizes transplant allocation efficiency and geographic equity. They measure

efficiency by the total number of intra-regional transplants and geographic equity by the minimum

OPO intra-regional transplant rate, which is defined as the number of intra-regional transplants in

an OPO divided by the number of patients on the OPO waiting list.

They model the country as a simple network, in which each node represents an OPO and arcs
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connecting OPOs indicate that they are contiguous. They assume that a region can consist of

at most 9 contiguous OPOs, an OPO supplies its livers only to the region that contains it, and

both transplant allocation efficiency and geographic equity could be represented as factors in a

function linking cold-ischemia time (CIT) and liver transport distance. They also assume that the

probability of declining a liver offer, which is measured by the liver’s viability, is solely dependent

on its CIT. Primary nonfunction occurs when a liver fails to work properly in the recipient at time

of transplant. They use two functional relationships between primary nonfunction and CIT: Linear

and polynomial.

They solve an integer program to find the optimal set of regions such that the total number

of intra-regional transplants are maximized. They define the binary variable xj for every possible

region j such that it is equal to 1 if region j is chosen and is equal to 0 if region j is not chosen.

Then, the integer program is as follows:



Max

∑

j∈J

cjxj :
∑

j∈J

aijxj = 1, i ∈ I; xj ∈ {0, 1}, j ∈ J



 , (7)

where I is the set of all OPOs; J is the set of all regions; aij = 1 if region j contains OPO

i, and 0 otherwise; and cj represents the total number of intra-regional transplants for region j.

They provide a closed-form estimate of cj . If the number of regions is constrained to be equal

to 11, then the constraint
∑

j∈J xj = 1 is added. The integer program defined in (7) does not

consider the geographic equity. Let fij and λmin represent the intra-regional transplant rate in

OPO i, contained in region j and the minimal local transplant rate, respectively. Then, the integer

program considering the geographic equity can be reformulated as follows:



Max

∑

j∈J

cjxj + ρλmin :
∑

j∈J

aijxj = 1, i ∈ I;
∑

j∈J

fijxj − λmin ≥ 0, i ∈ I; xj ∈ {0, 1}, j ∈ J



 , (8)

where ρ is a constant that indicates the importance the decision-makers place on the minimum

transplant rate across OPOs versus intra-regional transplants. Hence, changing ρ will provide a
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means for balancing the two conflicting factors, transplant allocation efficiency and geographic

equity.

They conduct computational experiments using real data to compare the regional configuration

obtained from their model to the current configuration. The optimal sets of regions tend to group

densely populated areas. Their results show that the proposed configuration resulted in more intra-

regional transplants. Furthermore, for all values of ρ, the minimum intra-regional transplant rate

across OPOs is significantly higher than that in the current regional configuration. However, as

ρ increases, the increase over the current configuration diminishes. They also perform sensitivity

analyses, which show that the outcome is not sensitive to the relationship between CIT and primary

nonfunction.

6 Conclusions

Organ allocation is one of the most active areas in medical optimization. Unlike many other opti-

mization applications in medicine, it has multiple perspectives. The individual patient’s perspective

typically considers the patient’s health and how she should behave when offered choices, such as

whether or not to accept a particular cadaveric organ, or when to transplant a living-donor organ.

The societal perspective designs an allocation mechanism to optimize at least one of several possible

objectives. One possible objective is to maximize the total societal health benefit. Another is to

minimize some measure of inequity in allocation.

Given the rapid changes in organ allocation policy, it seems likely that new optimization issues

will arise in organ allocation. A critical issue in future research is modeling disease progression as

it relates to allocation systems. The national allocation systems are increasingly using physiology

and laboratory values in the allocation system (e.g., the MELD system described in Section 3).

Furthermore, new technologies may mean more choices to be optimized for patients in the future.
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For example, artificial organs and organ assist devices are becoming more common. Given the

intense emotion that arises in organ allocation, more explicit modeling of the political considerations

of various parties will yield more interesting and more applicable societal-perspective optimization

models.
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