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Scheduling elective procedures in an operating suite is a formidable task because of competing performance
metrics and uncertain surgery durations. In this paper, we present an optimization framework for batch

scheduling within a block booking system that maximizes the expected utilization of operating room resources
subject to a set of probabilistic capacity constraints. The algorithm iteratively solves a series of mixed-integer
programs that are based on a normal approximation of cumulative surgery durations. This approximation
is suitable for high-volume medical specialities but might not be acceptable for the specialties that perform
few procedures per block. We test our approach using the data from the ophthalmology department of the
Veterans Affairs Pittsburgh Healthcare System. The performance of the schedules obtained by our approach is
significantly better than schedules produced by simple heuristic scheduling rules.
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1. Introduction
Surgical suites account for the largest part of hos-
pitals’ budgets (Healthcare Financial Management
Association 2003). Rising demand and increasing
healthcare costs necessitate the efficient management
of operating rooms (ORs). In this paper, we focus on
scheduling of elective surgeries, which permit some
flexibility regarding an actual surgery date, thereby
improving the utilization of ORs’ resources.

Currently, the scheduling of surgical suites follows
either an open booking or block booking framework
(Erdogan and Denton 2011). Under open booking, sur-
geons ask for OR time by submitting their cases to the
scheduling team, who accommodates their request
subject to the operating room capacity. Exact surgery
dates and OR assignments are usually determined on
a first-come-first-served basis. Under block booking,
medical departments (or surgeons) that provide cer-
tain types of services (e.g., ophthalmology, orthope-
dics, cardiology) are assigned fixed blocks of time that
are used to divide access to ORs among different spe-
cialties. Such assignments, or block schedules, are usu-
ally designed based on the current demand trends
and historical utilization records. Despite potential
inefficiencies because of unbalanced block schedules,
this framework is widely accepted because of its con-
venience for both surgeons and managers (Erdogan
and Denton 2011).

In our study we consider a single surgical suite
that belongs to the Veterans Affairs Pittsburgh

Healthcare System (VAPHS), a large Veterans Admin-
istration Hospital. This operating theater consists of
10 operating rooms shared among different medi-
cal departments. Scheduling is organized using the
block booking system with annual updates of block
schedules.

Within a block booking scheduling system, because
the surgeries booked by different surgeons or med-
ical departments are associated with different sets
of blocks, the whole problem can be decomposed
into a set of nonoverlapping scheduling subproblems.
Each subproblem addresses the scheduling of surg-
eries for a specific medical department with a patient
inflow that is independent from other specialties. This
decomposition is valid when the availability of vari-
ous resources, e.g., cleaning crews or recovery beds, is
not a pressing issue, which is the case at the VAPHS.

Intuitively, the scheduling problem under the block
booking paradigm consists of allocating surgery cases
to the available time blocks in order to find a rea-
sonable balance between overtime and utilization
for each scheduling block. The processing sequence
of surgical cases is usually defined by the surgeon
based on his or her availability, other personal pref-
erences, patients’ status, and case complexity. The
exact sequence has no (or limited) impact on the
performance measures unless the cases depend on
each other (e.g., two surgeries in different ORs
are performed by the same surgeon or require the
same unique piece of equipment), as discussed, for
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example, by Batun et al. (2011). In our model we
assume that such issues can be addressed when mak-
ing the sequencing decisions within each block.

Surgery scheduling under block booking systems
represents an extension of a stochastic knapsack prob-
lem (Kleywegt et al. 2002, Goyal and Ravi 2010). Man-
aging and planning of operating suites activities is an
active research area (Blake and Carter 1997, Cardoen
et al. 2010). The uncertainty of surgery durations, con-
flicting priorities, and limited capacity of the surgical
suite all contribute to the difficulty of this problem.
High utilization leads to larger surgery volumes, thus
reducing the patients’ waiting times, and minimiz-
ing the overtime prevents additional costs associated
with extra work hours. We will briefly review some of
the closely related recent research papers that address
the assignment of surgeries to ORs without sequenc-
ing within each room. An extensive list of publica-
tions on operating room scheduling is maintained by
Dexter (2011).

Denton et al. (2010) apply two-stage stochastic pro-
gramming and robust optimization to minimize a
weighted sum of the total cost of opening ORs and
the total overtime. The sets of surgical blocks are
used to group together the surgeries that should be
performed sequentially in the same OR on a given
day. The model incorporates two types of decisions:
the number of ORs to open on a given day, and the
assignment of surgery blocks to specific ORs.

Min and Yih (2010) apply sample average approx-
imation (Kleywegt et al. 2002, Luedtke and Ahmed
2008) to minimize average overtime and patient cost,
where patient cost is a predefined price associated
with assignments of patients to blocks. Patient cost is
strictly increasing in waiting time and is used to prior-
itize the patients. A surgical intensive care unit capac-
ity constraint is imposed to avoid blocking, which
occurs when a patient cannot leave the OR because of
capacity limitations. All the surgery durations within
the same surgical specialty are assumed to be identi-
cally and lognormally distributed.

Dexter et al. (1999) provide a simulation study
of deterministic online bin-packing scheduling rules
and the relationship between utilization and patients’
waiting times. The authors emphasize the importance
of moving the control of the surgical date from the
surgeon and the patient to the OR suite in order to
achieve the maximum utilization of OR resources.

Hans et al. (2008) develop constructive and local
search heuristics for maximization of utilization and
minimization of the overtime risk. In their model,
all surgeries are assigned to operating rooms based
on their expected durations. To cope with random-
ness of surgery processing times, a planned time
slack (buffer) is reserved in each scheduling block,
which is a function of total mean and variance of
surgeries assigned to the corresponding scheduling

block. When determining an appropriate size of the
planned slacks, the authors assume that the sum of
surgery durations follows a normal distribution.

Most of the existing approaches that model the
stochastic surgery durations rely on scenario-based
approximations (Denton et al. 2010, Min and Yih 2010,
Batun et al. 2011). In this paper, we investigate a dif-
ferent approach based on normal approximation for
the sum of surgery durations. This approximation can
be justified when scheduling the high-volume spe-
cialties (e.g., four–seven surgeries in each scheduling
block). The use of normal approximation is, for exam-
ple, the current scheduling practice at the Erasmus
Medical Center (Hans et al. 2008).

The contributions presented in this paper are as
follows.

• We provide theoretical properties of overtime
and undertime functions under the assumption that
the sum of surgery durations is normally distributed.
This assumption is common in the literature and in
practice, and it fits high-volume medical specialties,
such as the ophthalmology department at the VAPHS.
The theoretical justification for the normal approxi-
mation is given by the central limit theorem.

• We are the first to use a chance-constrained
model of overtime for the OR scheduling.

• Using the properties of overtime and undertime
functions, we formulate a mixed-integer program of
OR scheduling that provides lower and upper bounds
for the optimal solution of the original stochastic
scheduling problem and allows us to obtain near-
optimal solutions for realistic instances.

• We empirically explore the quality of the nor-
mal assumption using the historical data of the oph-
thalmology department provided by the VAPHS (see
the data description in §4) and compare it with the
scenario-based approaches.

• We compare the performance of the proposed
algorithm to the first-fit scheduling heuristic that is
commonly used in OR scheduling practice.

The remainder of this paper is organized as fol-
lows. We give a general optimization model of batch
scheduling in §2. Based on this model, we provide an
approximate solution approach in §3. We describe the
simulation model that is used to verify the validity
and potential of the proposed approach in §4. Sec-
tion 5 provides a conclusion.

2. General Optimization Model
Let S = 8s11 0 0 0 1 sn9 be a set of surgeries to be allocated
into an ordered set of time blocks B = 8b11 0 0 0 1 bm9,
where bm is the block corresponding to the latest date.
Each block b ∈ B has a fixed duration denoted by l4b5.
The duration ds of each surgery s ∈ S is a random vari-
able. Here, we assume that the time required to clean
an operating room after performing the surgery s is
factored into the case duration ds .
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Let xs1 b be a binary variable that equals one iff
surgery s is allocated to block b. The random variables
max801

∑

s∈S dsxs1 b − l4b59 and max801
∑

s∈S l4b5−dsxs1 b9
are referred to as the overtime and undertime of the
block b, respectively.

Currently, the scheduler at the VAPHS uses a point
estimate of the expected duration of each case based
on historical data and the estimate provided by the
surgeon to determine the feasibility of the sched-
ules. The block assignments are considered feasible
if the sum of the point estimates of surgery dura-
tions assigned to the same scheduling block and the
intervening cleaning times do not exceed the block
length. The goal of this policy is to make sure that
all of the scheduled cases can be finished within the
allocated block length, thereby avoiding overtime. Let
ests denote a point estimate of the expected duration
of surgery s ∈ S. Then the current feasibility condi-
tions can be modeled by the following set of con-
straints:

∑

s∈S

ests ·xs1 b ≤ l4b51 for all b ∈ B0 (1)

Unfortunately, the deterministic constraints (1)
ignore the variability of surgery times and cannot
provide any guarantee on the expected overtime lev-
els. Such a guarantee can be rendered by imposing
the probabilistic constraints to capture the stochas-
tic nature of the underlying processes (Charnes et al.
1958, Prékopa 1995).

The probabilistic counterpart for the deterministic
constraint (1) can be introduced by requiring that the
probability of an overtime exceeding a threshold L be
no more than a scalar 0 ≤ �≤ 1,

Pr
{

∑

s∈S

dsxs1 b − l4b5 > L

}

≤ �1 for all b ∈ B0 (2)

The chance-constrained scheduling problem can
be formulated as the following nonlinear integer
program:

min
xs1 b

{

∑

b∈B\bm

Ɛ

[(

l4b5−
∑

s∈S

dsxs1 b

)+]}

(3a)

Pr
{

∑

s∈S

dsxs1 b − l4b5 > L

}

≤ �1 for all b ∈ B1 (3b)

∑

b∈B

xs1 b = 11 for all s ∈ S1 (3c)

xs1 b ∈ 801190 (3d)

The surgeries from S are assigned to the blocks
from B so as to minimize the average undertime
for the blocks in the set B\8bm9 = 8b11 0 0 0 1 bm−19. The
last available block bm ∈ B does not have to be fully
utilized, because it can be filled later with newly

arrived surgeries. The chance constraints guarantee
the acceptable levels of the overtime, whereas min-
imizing the undertime is equivalent to maximizing
room utilization.

The choice of L and � can be used to manage
the performance metrics. To reduce the variance and
provide stability with respect to the average waiting
times, one can apply a scheduling policy that dynami-
cally adjusts its scheduling settings based on the pref-
erences of the OR suite management (Shylo et al.
2011). The management of the OR suite can use a con-
trol chart to track the current average waiting time
for all patients on the waiting list. The upper (lower)
control limits of the control chart can be used to indi-
cate a need for a more (less) aggressive scheduling
policy that can be realized by a proper change of the
parameters L and �.

Chance-constrained problems and their applica-
tions have been extensively studied in the past,
but remain computationally intractable in general
(Prékopa 1995). The complexity of chance-constrained
problems may come from the difficulty of evaluat-
ing the probabilistic feasibility, which usually involves
multivariate integration. Furthermore, even if the
feasibility validation is not difficult, the feasible
region itself is generally nonconvex (Luedtke et al.
2010). If none of these complications are present,
the chance-constrained models can usually be refor-
mulated as deterministic programs. Otherwise, one
can discretize the random distribution and formulate
a deterministic combinatorial optimization problem
that approximates the original one. The sample aver-
age approximation (SAA) method is an example of
this approach (Pagnoncelli et al. 2009), where the orig-
inal problem is approximated by a chance-constrained
problem with a discrete distribution based on a Monte
Carlo sample. Normally, each sample point is mod-
eled by a binary variable, thus even moderate sample
sizes can lead to computationally intractable approxi-
mations (Luedtke and Ahmed 2008). Nemirovski and
Shapiro (2006) introduce convex approximations of
chance constraints that yield solutions feasible subject
to original nonconvex chance constraints.

Durations of common surgical cases can be mod-
eled by a lognormal distribution, which has been val-
idated in a variety of hospital settings (Strum et al.
2000, Stepaniak et al. 2010). In the literature, it is also
indicated that the models based on a gamma distri-
bution and the models that assume lognormal dis-
tribution are often interchangeable (Wiens 1999). The
known analytical expression for the convolution of
gamma or lognormal distributions is complicated and
does not lend itself easily to exact optimization mod-
els (Moschopoulos 1985). Because the overtime and
undertime of each block depend on a sum of surgery
durations, the distribution of the overall processing
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time must be approximated. Monte Carlo simulation
or scenario-based approximations are the most pop-
ular approaches to such situations (Hans et al. 2008,
Denton et al. 2010, Min and Yih 2010).

In the next section, we follow a different
approach. Specifically, we provide a scheduling
framework, based on the empirical observation
that a normal approximation to the convolution of
gamma distributions representing surgery durations
of high-volume specialties (approximately four–seven
surgeries in each scheduling block) leads to accurate
estimates of average overtime/undertime in our prob-
lem setting (see §4 for further details). This allows
us to formulate the problem as a mixed-integer lin-
ear programming problem and develop an algorithm
for batch scheduling that can be used for real-time
scheduling. The proposed approach is appropriate for
the medical specialties that perform more than four
surgeries per scheduling block, e.g., ophthalmology.
On the other hand, the low-volume specialties that
perform one–two surgeries per block, e.g., cardiac
surgery, are not suitable for the proposed scheduling
model. However, the low number of cases that are
usually scheduled by these specialties may imply lim-
ited scope for the optimization.

3. Approximation Model
We assume that ds has a normal distribution for
each s ∈ S with mean �s and variance �2

s . Therefore,
the overtime value of −l4b5 +

∑

s∈Sb
ds is itself a nor-

mally distributed random variable with mean �b =
∑

s∈Sb
�s − l4b5 and variance �2

b =
∑

s∈Sb
�2
s . Then the

resource capacity chance constraint (2) can be rewrit-
ten as follows:

L≥�b +�−141 −�5�b1 for all b ∈ B1 (4)

where �4 · 5 denotes the cumulative distribution func-
tion of the standard normal variate. Furthermore, the
average overtime of block b, denoted by O4�b1�b5, is
a function of �b and �b:

O4�b1�b5=

∫ �

0
t

1
√

2��2
b

exp
(

−
4t −�b5

2

2�2
b

)

dt0 (5)

Similarly, the average undertime of block b is de-
fined as

U4�b1�b5 = O4�b1�b5−�b

=

∫ 0

−�

4−t5
1

√

2��2
b

exp
(

−
4t −�b5

2

2�2
b

)

dt0 (6)

Proposition 1. The overtime, O4�b1�b5, is a mono-
tonically increasing convex function of its arguments.

Proof. The partial derivatives of (5) are
nonnegative:

¡O4�b1�b5

¡�b

=

∫ �

−4�b/�b5

1
√

2�
exp

(

−
t2

2

)

dt≥01 and (7)

¡O4�b1�b5

¡�b

=

∫ �

−4�b/�b5
t

1
√

2�
exp

(

−
t2

2

)

dt≥00 (8)

Furthermore,

¡2O4�b1�b5

¡�2
b

=
1

√
2�

1
�b

exp
(

−
1
2
�2

b

�2
b

)

3

¡2O4�b1�b5

¡�2
b

=
1

√
2�

�2
b

�3
b

exp
(

−
1
2
�2

b

�2
b

)

3

¡2O4�b1�b5

¡�b¡�b

= −
1

√
2�

�b

�2
b

exp
(

−
1
2
�2

b

�2
b

)

0

The necessary result directly follows from the
fact that the Hessian matrix of O4�b1�b5 is positive
semidefinite. �

Remark. If we define O as a function of mean and
variance, then it will remain monotonic, but not nec-
essarily convex.

The following propositions follow trivially from
Proposition 1.

Proposition 2. The undertime, U4�1�5, is a convex
function of its arguments.

Proposition 3. The undertime, U4�1�5, is a mono-
tonously increasing function of � .

Proposition 4. For any m ∈ �1 and v ∈ �1
+

, the fol-
lowing holds (because of convexity):

U4�1�5 ≥ U4m1v5−
¡U4m1v5

¡�
· 4m−�5

−
¡U4m1v5

¡�
· 4v−�50 (9)

Because OR scheduling is a continuous process,
the scheduling blocks might be partially filled with
the surgeries that arrived earlier. Therefore, for each
block b ∈ B we introduce two input parameters: ini-
tial mean and variance values denoted by �init

b and
4� init

b 52, respectively.
Based on the previous results, we can formulate the

chance-constrained batch scheduling problem as the
following mixed-integer nonlinear problem:

zopt
= min

∑

b∈B\bm

zb (10a)

zb ≥U4�b1�b51 ∀ b ∈ B\bm1 (10b)
∑

b∈B

xs1 b = 11 ∀ s ∈ S1 (10c)
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�b =�init
b +

∑

s∈S

�sxs1 b − l4b51 ∀ b ∈ B1 (10d)

�2
b = 4� init

b 52
+
∑

s∈S

�2
s xs1 b1 ∀ b ∈ B1 (10e)

L≥�b +�−141 −�5�b1 ∀ b ∈ B1 (10f)

xs1 b ∈ 801191 ∀ s ∈ S1 ∀ b ∈ B1 (10g)

zb ≥ 01 ∀ b ∈ B\bm0 (10h)

Constraints (10b) assure that in the optimal solution
cost zb is equal to the undertime of the block b ∈ B.
Each surgery must be assigned to a single block,
enforced by (10c). The total mean and variance for
each block are modeled by constraints (10d) and (10e),
respectively. The overtime of each block is constrained
by (10f).

If there is a feasible solution such that none of the
surgeries are assigned to the last block bm, then there
is no need to use block bm in the problem formula-
tion and the set of blocks can be reduced to B\8bm9.
Here, we assume that for every feasible solution there
is at least one surgery assigned to block bm. To achieve
this, for example, one can solve a sequence of feasi-
bility problems (10c)–(10h) to identify the minimum
number of blocks that provide at least one feasible
solution, or remove the last block bm from the set of
available blocks B, whenever a feasible solution that
does not assign any surgery to bm is found.

Let W be a set of k points 84m11v151 4m21v251 0 0 0 1
4mk1vk59, k ≥ 2. We use the set W and valid in-
equality (9) to approximate the undertime function
U4�1�5. Additionally, we use a piecewise linear
approximation to obtain a lower bound on the value
� using �2. The points v11v21 0 0 0 1 vk define a grid for
such approximation. We omit the modeling details
here because piecewise linear (PWL) approximations
are well known in the literature (see the detailed dis-
cussion by Vielma and Nemhauser 2011), and denote
a set of constraints and variables that model the
piecewise linear approximation using the following
notation:

�̃ = PWL4�21W50

The piecewise linear approximation should satisfy the
following relationship: �̃b ≤

√
�2
b , which can be easily

achieved because of concavity of the square root func-
tion. Using the set points W , the problem (10) can be
approximated using the following mixed-integer lin-
ear program, which is further referred to as P4W5:

zopt4W5= min
∑

b∈B\bm

zb (11a)

zb ≥U4m1v5−
¡U4m1v5

¡�
· 4m−�b5−

¡U4m1v5

¡�

· 4v− �̃b51 ∀ b ∈ B\bm1 ∀ 4m1v5 ∈W1 (11b)

∑

b∈B

xs1 b = 11 ∀ s ∈ S1 (11c)

�b =�init
b +

∑

s∈S

�sxs1 b − l4b51 ∀ b ∈ B1 (11d)

�2
b = 4� init

b 52
+
∑

s∈S

�2
s xs1 b1 ∀ b ∈ B1 (11e)

�̃b = PWL4�2
b 1W51 ∀ b ∈ B1 (11f)

L≥�b +�−141 −�5�̃b1 ∀ b ∈ B1 (11g)

xs1 b ∈ 801191 ∀ s ∈ S1 ∀ b ∈ B1 (11h)

zb ≥ 01 ∀ b ∈ B\bm0 (11i)

Note that the partial derivatives 4¡U4m1v55/¡� and
4¡U4m1v55/¡� as well as the function value U4m1v5
at point 4m1v5 in (11b) can be calculated using simple
numerical integration applied to (5), (7), and (8).

The following proposition formally describes the
relation between zopt and zopt4W5.

Proposition 5. zopt4W5≤ zopt.

Proof. The necessary result directly follows
from Propositions 3 and 4 using the relationship
�̃b ≤

√
�2
b . �

Note that a feasible solution to problem (11) might
be infeasible for the initial problem (10) because of
violation of block capacity constraints (10f). Because
the quality of the bound provided by zopt4W5 can be
improved by refinement of the approximation points
in W , we next present an iterative algorithm that pro-
vides a converging sequence of lower bounds for zopt.

The pseudocode of our approach is presented in
Figure 1. The algorithm repeatedly solves the prob-
lem (11) and updates set W in order to improve

1. Initialize a set of approximation points:
W = 84−maxb∈B l4b51051 4

∑

s∈S �s − minb∈B l4b51
∑

s∈S �s59
2. LBbest

= 03UBbest
= �

3. while 4UBbest
− LBbest5/UBbest

≥ � do
4. Solve the approximation problem P4W5. Let x∗

s1 b ,
b ∈ B1 s ∈ S, be a set of optimal values for the
surgery assignments (11c), and z∗

b , b ∈ B, be a set
of optimal values for the cost function
approximations (11a).

5. �∗

b =
∑

s∈S �sx
∗

s1 b , ∀ b ∈ B

6. �∗

b =

√

∑

s∈S �
2
s x

∗

s1 b , ∀ b ∈ B
7. � ∈ arg maxb∈B6U 4�∗

b1�
∗

b 5− z∗

b 7, (find the block with
the worst approximation quality).

8. V = 84�∗

b1�
∗

b 52 L≤�∗

b +�−141 −�5�∗

b 9, (find all
violations of capacity constraint).

9. W =W ∪V ∪ 84��1��59
10. if V = � then
11. Update the upper bound:

UBbest
= min8UBbest1

∑

b∈B1b 6=bm
U4�∗

b1�
∗

b 59

12. Update the lower bound:
LBbest

= max8LBbest1
∑

b∈B1b 6=bm
z∗

b9
13. return approximate solution to P4W5

Figure 1 Pseudocode of the Stochastic Batch Scheduling Algorithm
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the lower bound of the optimal solution (lines 3–12).
Initially, the set W is initialized with two points
(line 1) that represent extreme cases: (i) there are no
surgeries assigned to the block (zero mean, zero vari-
ance); (ii) all surgeries are assigned to the block with
the smallest length.

Given an optimal assignment of surgeries for prob-
lem P4W5, we evaluate the corresponding exact value
for the mean �∗

b , the standard deviation �∗

b , and the
exact value of the function U4�∗

b1�
∗

b 5 for each block.
The difference U4�∗

b1�
∗

b 5 − z∗

b represents the quality
of approximation for block b. At each iteration, the
means and variances of the blocks that violate capac-
ity constraints or represent the worst approximation
quality are inserted into W . The algorithm termi-
nates whenever the gap between the upper and lower
bounds is sufficiently small.

4. Computational Experiments
To take into account the intrinsic uncertainty asso-
ciated with surgery durations, we develop a predic-
tion system based on generalized linear models (Firth
1991) that represents the durations as gamma vari-
ates. Dexter et al. (2010), Eijkemans et al. (2010), Strum
et al. (2000), and Stepaniak et al. (2010) provide a thor-
ough discussion of the prediction models of surgery
durations and analysis of relevant predicting factors.
To predict the mean and variance of the new surgical
cases, our model uses the specific procedure type as
identified by a common procedure terminology (CPT)
code (Strum et al. 2000), the surgeon’s experience
given by the total number of surgeries performed
within the OR suite, and an estimated duration pro-
vided by a surgeon.

In our study, we use data provided by the VAPHS.
The data set includes historical surgery durations
and turnover times for all surgical cases performed
by the ophthalmology department of the VAPHS
between 2006 and 2009. Information about the CPT
code, scheduled duration, and surgeon’s identifica-
tion number is available for each surgical case. The
CPT codes that are used in our study correspond to
the historical records, i.e., these codes are entered after
completion of each surgery. Therefore, they might dif-
fer from the scheduled CPT codes, which are not
available in our data set (Dexter et al. 2010). However,
the data set does include approximately 60 different
CPT codes. Around 80% of all surgeries in our data
set are cataract surgeries, and the remaining 20% are
relatively rare procedures (20 or fewer occurrences for
each code). The prediction model for ophthalmology
is fitted using data from 2006–2008 (1,673 cases) and
tested on historical data from 2009 (619 cases). The
model demonstrates a reasonable predictive poten-
tial: out of 619 cases in the validation set, 53% fall

under the predicted 50th percentile, 79% fall under
the predicted 80th percentile, and 88% fall under the
predicted 90th percentile (the percentiles differ across
different cases).

To test the proposed approach, we implemented a
discrete event simulation model of scheduling using
the OMNeT++ package (http://www.omnetpp.org),
which is a C++ library for building simulation mod-
els. It is used to simulate scheduling decisions for the
ophthalmology department at the VAPHS. The length
of each simulation run is set to one year. Patients
seeking surgery are assumed to arrive according to a
Poisson distribution with a mean of 14 per week. This
value is based on the average historical rate for the
ophthalmology department during 2009. Each set of
simulation parameters is used to generate 100 replica-
tions (each replicate simulates schedules for one year).
The warm-up period is set to 20 days, providing an
initial backlog of 20 days. The block schedule used in
the simulation is identical to the one that was used by
the ophthalmology department at the VAPHS in 2009,

(i) one block from 8 a.m. until 5 p.m. every Tuesday;
(ii) one block from 8 a.m. until 3 p.m. every Thurs-

day; and
(iii) one block from 8 a.m. until 12 noon every other

Friday.
The simulation algorithm of the scheduling process

that we implemented can be described as follows.

Step 1. Initialize the current simulation date and the
set B of blocks available for scheduling on the current date.

The current date is incremented during the simu-
lation and allows us to extract the day of the week
and week numbers, used to identify clinic days and
the blocks available for scheduling. Each block has a
certain realization date and duration determined by
the block schedule.

Step 2. If the current date is a clinic date, generate a set
of new surgeries S, otherwise proceed to Step 4.

The number of arriving surgeries n is generated
according to a Poisson distribution with a fixed
arrival rate. A random sample of n surgery records
is selected from the historical data. The CPT code of
each surgery, the surgeon’s experience given by the
total number of surgeries performed within the OR
suite, and the scheduled duration are used as inputs
for the predictive model of surgery durations. This
model provides the estimates of distribution parame-
ters for each surgery in S.

Step 3. Sequentially assign each surgery in S to a block
from B using a scheduling rule ç. If there is no feasible
assignment for some surgery, add a new block to B accord-
ing to the block schedule and assign the surgery to the
new block.

Two scheduling rules were implemented for the
purposes of the current study.
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(i) çFFD ( first-fit deterministic). First-fit scheduling
rule using the mean values of surgery durations. As mod-
eled by the set of constraints (1), the surgery is
assigned to the first available block for which the sum
of mean durations is less than its length after the
assignment.

(ii) çFFP ( first-fit probabilistic). First-fit scheduling
rule under the probabilistic constraints.

This scheduling rule has two parameters: the
threshold value L and the probability of overtime �.
As modeled by the set of constraints (2), the surgery
is assigned to the first available block for which the
probabilistic capacity constraint is satisfied after the
assignment.

Step 4. Increment the current date (next day).

Step 5. Process all the blocks from B that are scheduled
for the current date and remove them from B.

Different performance metrics (overtime, utiliza-
tion, waiting time) are calculated for each removed
block.

Step 6. Stop the simulation if the current date exceeds
the end date of the simulation, otherwise proceed to Step 2.

Surgery cancellations, changes in surgery dates,
and the addition of emergency, add-on, urgent, and
emergent cases lead to alterations of the actual sched-
ule on a daily basis. The decisions about such changes
are almost impossible to predict, because they are
made in real time based on expert opinion (both the
surgeon and the scheduling team are involved), the
current state of the schedule, the availability of add-
on procedures, and the willingness of the surgeon to
accept such changes. In our model these situations
are omitted from consideration, because they can be
managed to a large extent by adjusting the schedul-
ing parameters based on the actual cancellation rates
and the arrival rates for add-on, emergent, and urgent
cases (e.g., overbooking for cancellations or under-
booking for add-on cases). These rates differ substan-
tially across the set of medical specialties, some of
which (particularly ophthalmology) have negligible
cancellation rates at the VAPHS.

Table 1 Number of False Scheduling Recommendations for Normal Approximation and the Monte Carlo Simulation Based on Different Number
of Scenarios

Approximation Throughput Overtime Utilization (%) False positives (%) False negatives (%)

MC 50 scenarios 652017 11063002 72082 101 205
MC 100 scenarios 648035 952025 72057 007 106
MC 300 scenarios 641071 822011 72019 003 102
MC 500 scenarios 640077 794010 72002 002 100
Normal 638067 748074 71086 000 004
MC 10,000 scenarios 636025 753085 71088 0.0 0.0

Note. Monte Carlo simulation with 10,000 sample points was used to calculate the “true” recommendations.

4.1. Quality of Normal Approximation
In the first set of experiments, we compare the
scheduling decisions by the probabilistic rule çFFP
that uses Monte Carlo estimates of the probabilistic
feasibility modeled by (2), and the decisions based on
a normal approximation that uses a simplified chance
constraint given by (4). As before, 100 one-year repli-
cations are simulated for the ophthalmology depart-
ment. Decisions about whether to include a new
arrival to a certain block based on a sample of 10,000
realizations of random gamma distributed durations
are considered to be “true” decisions in our tests.
These decisions are cross-checked with recommenda-
tions provided by the normal approximation scheme
and the Monte Carlo method with varying sample
sizes. The percentages of false positives and false
negatives as compared to the true recommendations
are presented in Table 1. In addition, we report the
average number of performed surgeries (throughput),
average overtime values, and average utilization per-
centages. These metrics are estimated using an addi-
tional 100,000 replications after the actual scheduling
decisions are made.

The results of these experiments indicate that the
normal approximation provides extremely accurate
decisions for the mix of surgeries and duration distri-
butions that are typical for the ophthalmology med-
ical department at the VAPHS. The implications of
the observed accuracy of the normal approximation
are twofold. First, expensive Monte Carlo calculations
within a simulation model can be substituted with
a much simpler evaluation of the formula (4) with-
out any significant loss of accuracy. Second, unlike
other approaches, the use of the normal approxima-
tion allows us to provide an optimization model that
does not rely on a generation of possible scenar-
ios. To obtain performance comparable to the normal
approximation one needs a large number of samples
(see Table 1). The average performance metrics for the
scheduling decisions that are made under normality
assumption, such as average overtime and utilization,
are close to those calculated using the Monte Carlo
method with 10,000 samples. On the other hand, there
is an evident difference between these metrics when
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the feasibility of the chance constraint (2) is estimated
using a small number of samples, which is due to
chance constraint violations.

Therefore, the optimization models based on the
normal approximation scheme have the potential
to provide better solutions when compared to
scenario-based models, in particular, for scheduling
surgical specialties with the mix of surgeries and
duration distributions similar to the ones observed in
our data set.

In the second set of experiments, we investigate
the quality of the normal approximation for the
estimation of an average overtime. We randomly
select a random subset of surgeries from histori-
cal data together with the distribution parameters
of their durations provided by the predictive model
and assume that all of them are assigned to the
same scheduling block. Then, the average overtime
Ɛ64
∑

s∈S ds − l4b55+7 is estimated using the Monte
Carlo method, where ds is a gamma random vari-
able with shape parameter ks and scale parame-
ter �s , S is a sample set of surgeries assigned to
block b of length l4b5. Three sets of possible block
lengths are tested: l4b5 ∈ 8270145015409 minutes cor-
responding to block lengths used by the ophthalmol-
ogy department at the VAPHS. The normal approx-
imation for the average overtime is calculated as
∫ �

0 4x− l4b55f 4x5dx, where f 4x5 is a probability den-
sity function of the normally distributed random
variable with mean

∑

s∈S ks�s and variance
∑

s∈S ks�
2
s ,

which is an approximation for the convolution of
gamma variables from S. For each sample size (two to
10 surgeries in the same block), we test 1,000 random
combinations of surgery sets and use 100,000 sam-
ples in Monte Carlo estimation. The maximum and
average values of the absolute difference between the
Monte Carlo and normal approximation (in minutes)
for the average overtime and corresponding 95% con-
fidence intervals for each sample size are presented
in Table 2. The worst approximation is achieved for
five or six surgeries in the block, which roughly cor-
responds to the tight packing. Again, the normal

Table 2 Quality of Normal Approximation for Average Overtime

Maximum length
Number of Maximum absolute Average absolute of 95% confidence
surgeries difference (minutes) difference (minutes) interval (minutes)

2 0015 0000 0003
3 0095 0002 0019
4 0094 0017 0075
5 1032 0037 0078
6 1008 0044 0096
7 0061 0017 0097
8 0065 0014 1014
9 0057 0015 1013

10 0087 0016 1012

Table 3 Percentile Comparison of the Empirical Distributions
(Sum of Surgery Durations) and the Corresponding
Normal Distributions

Number of �0005 �0015 �0025 �0040 �0050 �0060 �0075 �0085 �0095

surgeries (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 2.9 14.4 26.5 43.4 53.6 63.3 76.7 85.1 93.8
2 3.3 14.5 26.2 42.8 53.1 62.8 76.4 85.1 93.9
3 3.5 14.6 26 42.4 52.7 62.5 76.3 85.1 94.1
4 3.7 14.6 25.9 42.2 52.5 62.2 76.2 85.1 94.1
5 3.8 14.7 25.9 42 52.3 62.1 76.1 85.1 94.2
6 3.9 14.7 25.8 41.9 52.1 61.9 76 85.1 94.2
7 4.0 14.7 25.8 41.8 52.1 61.9 76 85.1 94.2
8 4.0 14.7 25.7 41.7 51.9 61.8 75.9 85.1 94.3
9 4.1 14.8 25.7 41.6 51.8 61.7 75.9 85.0 94.3

10 4.1 14.8 25.7 41.6 51.8 61.6 75.8 85.0 94.3

approximation provides great accuracy in our prob-
lem domain with the maximum absolute error less
than 90 seconds.

Table 3 shows the quality of the normal approx-
imation on the duration of the set of surgeries. We
randomly select random subsets of one to 10 surgeries
from historical data together with the distribution
parameters of their durations provided by the predic-
tive model and assume that all of them are assigned
to the same scheduling block. For each subset, we
calculate the percentiles of the corresponding nor-
mal distribution, where �p stands for 100 · pth per-
centile. For each sample size (one to 10 surgeries in
the same block), we test 1,000 random combinations
of surgery subsets and use 100,000 samples to deter-
mine the average empirical distribution function val-
ues for each of the percentiles. From Table 3, it is
clear that the normal percentiles closely follow the
empirical data.

The results of the previous experiments described
suggest the validity of the algorithms based on
the normal approximation and show that the pro-
posed approach provides a competitive framework
compared to the scenario-based approximation when
applied to high-volume specialties. Even though our
computational study is focused on the ophthalmology
department at the VAPHS, the normal approximation
for OR scheduling has been effectively used by other
large healthcare providers (Hans et al. 2008). Thus,
we can reasonably assume that similar results might
hold for high-volume specialties across other hospi-
tals, requiring further verification.

4.2. Comparing Batch Scheduling to Sequential
Scheduling

The batch scheduling algorithm described in §3
provides a rescheduling tool that can improve the
utilization of the OR compared to the sequential
scheduling using çFFP. Such rescheduling delays an
assignment of surgeries to scheduling blocks. Because
it is always desirable to provide a certain surgery date
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as soon as possible, the adjustment of each surgery
assignment should be done within a certain time
from the original request date for surgery. Multiple
changes in the schedule should also be avoided. Tak-
ing into account the above consideration, we investi-
gate a weekly rescheduling strategy. For example, the
new ophthalmology surgeries arrive on Mondays and
Wednesdays and the rescheduling can be performed
on Thursday morning. After rescheduling, all surgery
dates are fixed and cannot be altered afterward. The
delay of any surgery assignment is no more than three
days. Thus, this minor change to a sequential schedul-
ing currently used by the VAPHS can easily be incor-
porated into the current practice.

The rescheduling step is implemented in conjunc-
tion with the probabilistic scheduling rule (çFFP). The
rescheduling algorithm described in §3 is applied
every Thursday to reschedule the assignment of surg-
eries that arrive on clinic days after the last reschedul-
ing step. The block assignments provided by çFFP are
used to provide an input for the rescheduling prob-
lem: a set of available blocks B, a set of surgeries S.
The initial means and variances, �init

b and 4� init
b 52, for

each block b ∈ B account for the surgeries that cannot
be rescheduled (surgery assignments are fixed after
every rescheduling step). The threshold value L and
overtime probability � used by the rescheduling algo-
rithm are identical to the parameters of çFFP, allowing

Table 4 Total Number of Performed Surgeries (Throughput)

çFFP Batch scheduling
Improvement

Parameters Mean 95% CI Mean 95% CI (%)

L= 0, �= 0005 563092 65620815650047 585006 658400815860047 3075
L= 0, �= 0010 584049 658304215850567 605095 660408516070057 3067
L= 0, �= 0015 599005 659800616000047 620039 661903716210417 3056
L= 30, �= 0005 601089 660007416030047 623069 662205216240867 3062
L= 30, �= 0010 622077 662105616230987 645028 664400516460517 3061
L= 30, �= 0015 638004 663608616390227 660084 665906116620077 3057
L= 60, �= 0005 640099 663907916420197 662037 666007816630967 3034
L= 60, �= 0010 662090 666107916640017 684085 668304216860287 3031
L= 60, �= 0015 676094 667502116780677 696067 669405716980777 2091

Table 5 Final Number of Backlog Days (Maximum Waiting Time)

çFFP Batch scheduling
Improvement

Parameters Mean 95% CI Mean 95% CI (%)

L= 0, �= 0005 106087 610303311100417 90004 6860631930457 15075
L= 0, �= 0010 90071 6870471930957 74096 6710811780117 17036
L= 0, �= 0015 77060 6740451800757 62053 6590551650517 19042
L= 30, �= 0005 75086 6720431790297 61015 6570931640377 19039
L= 30, �= 0010 60066 6570651630677 46021 6430491480937 23082
L= 30, �= 0015 52044 6490651550237 38064 6350941410347 26032
L= 60, �= 0005 48075 6460111510397 36001 6330531380497 26013
L= 60, �= 0010 38052 6350651410397 25094 623028128067 32066
L= 60, �= 0015 28068 626026131017 18016 6160051200277 36068

the use of the block assignments provided by çFFP
for calculating an initial upper bound on the optimal
solution of the rescheduling problem.

The performance of the çFFP scheduling rule and
the batch scheduling algorithm (maximum three-day
delay) are evaluated using the different settings for
the threshold parameter L and overtime probability �.
Table 4 presents the average total number of pro-
cessed patients (throughput) for the çFFP scheduling
rule and the batch scheduling algorithm. The batch
scheduling increases the total annual number of surg-
eries by 2.95%–3.75%. Thus, even a three-day delay in
surgery assignments provides a noticeable improve-
ment in service rates. The average throughput for the
çFFD is 660 patients and the 95% confidence inter-
val (CI) is [659.31, 661.13]. Similar service rates are
achieved by the batch scheduling algorithm with the
following sets of parameters: 8L = 30, � = 00159 and
8L= 60, �= 00059.

Table 5 presents the average final number of back-
log days for the çFFP scheduling rule and the batch
scheduling algorithm. As noted earlier, the warm-up
period (initial backlog) is set to 20 days. It is clear
that for every set of parameters the service rate is
less than the incoming rate (arrival rate 7.0) with the
exception of 8L = 601� = 00159 for the batch schedul-
ing. The batch scheduling decreases the backlog by
15%–36%, which is roughly equivalent to nearly
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Table 6 Total Overtime in Minutes (Gamma Distribution)

çFFP Batch scheduling

Parameters Mean 95% CI Mean 95% CI

L= 0, �= 0005 78077 6770751790797 122065 612105611230737
L= 0, �= 0010 162009 616011640187 250065 62480711252067
L= 0, �= 0015 253033 625002712560397 386017 638300913890257
L= 30, �= 0005 283093 628006912870187 456095 64530614600317
L= 30, �= 0010 514052 650901215190937 812038 680702818170487
L= 30, �= 0015 747086 674001317550587 1155022 61148018111620277
L= 60, �= 0005 833052 682307118430337 1291000 61281077113000237
L= 60, �= 0010 1346017 61333061113580737 2006082 61990091120220727
L= 60, �= 0015 1837020 61821014118530257 2575039 62545066126050127

Table 7 Total Overtime in Minutes (Normal Distribution)

çFFP Batch scheduling

Parameters Mean 95% CI Mean 95% CI

L= 0, �= 0005 44042 643074145017 79062 6780861800387
L= 0, �= 0010 112013 611005411130727 193025 619106511940857
L= 0, �= 0015 194095 619203211970587 323084 63210081326067
L= 30, �= 0005 224019 622102412270157 395021 639109513980477
L= 30, �= 0010 450014 644409314550367 756016 675100617610277
L= 30, �= 0015 688056 668008616960267 1112003 61104086111190217
L= 60, �= 0005 776021 676601617860267 1250028 61240076112590817
L= 60, �= 0010 1307053 61294045113200617 1994045 61978006120100847
L= 60, �= 0015 1818033 6180107118340977 2584031 62553071126140927

16 days of backlog reduction (per year). The aver-
age final number of backlog days for the çFFD is
38.98 days, 95% CI is 6360431410537. Again, similar
results are achieved by the batch scheduling algo-
rithm with the parameters: 8L= 30, �= 00159 and 8L=

60, �= 00059.
Tables 6 and 7 present the average total annual

overtime for schedules provided by the çFFP schedul-
ing rule and the batchscheduling algorithm. The
maximum absolute total error provided by the nor-
mal approximation is around 60 minutes, which is
the sum of approximation errors over approximately
130 blocks. The average total annual overtime for
the çFFD is 1,284.88, 95% CI is [1271.59, 1298.16]
(for the gamma distribution). As seen earlier, the
service rates and backlog statistics of the çFFD are
similar to the batch scheduling with the following
parameters: 8L = 301� = 00159 and 8L = 601� = 00059.
However, the resulting overtime for the batch
scheduling algorithm with the first set of parameters
is improved by 15% (the second set of parameters pro-
duces similar statistics).

The results in Tables 4–7 highlight the effect of com-
peting priorities that are common to OR scheduling
problems; the patient backlog and room utilization
can be improved only at the cost of increased over-
time. The set of scheduling policies provides an
easy way to control the output performance metrics

based on management preferences. This is difficult to
achieve using only point estimates for scheduling.

5. Conclusions
In this paper, we present a chance-constrained opti-
mization model of batch scheduling for high-volume
specialties within the OR suite that uses a block book-
ing system. We develop an algorithm based on a nor-
mal approximation for the sum of surgery durations
to provide near-optimal solutions to the stochastic
scheduling problem. This approximation is particu-
larly suitable for high-volume medical specialities. We
test our approach using the historical data from the
ophthalmology department provided by the Veterans
Affairs Pittsburgh Healthcare System. A set of com-
putational experiments with the discrete simulation
model of the scheduling process reveals the high
accuracy of our method. We compare the sequen-
tial scheduling heuristic (first-fit) to the optimal batch
scheduling and show the superiority of the latter
approach.
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