Syllabus: ME 2074 Advanced Fluid Mechanics

- Review of Kinematics Lagrangian, Eulerian Representation, Voriticy, Special Motions
- Review of Governing Equations Integral Equations for a system Local Equations in Lagrangian Formulation Local Equations in Eulerian Formulation Integral Equations for a Control Volume
- Review of Constitutive Equations Inviscid Compressible, Inviscid Incompressible, Linearly Viscous Compressible, Linearly Viscous Incompressible.
- Viscous Fluids
 - Exact Solutions
 - Jeffrey-Hammel Flow in a Channel and Cone
 - Corner Flows
 - Introduction to Existence, Uniqueness and Stability
 - * Turbulence in a Pipe
 - * Taylor Vortices
- Inviscid Fluids
 - Euler's Equation
 - Bernouilli's Equation, Crocco's Equation
 - Vorticiy/Stream Function Formulation
 - Some Exact Solutions
 - Kelvin's Theorem
 - Helmholtz Theorem
 - D'Alembert's Paradox
 - Fluid Mechanics Film Discussion
- Approximations to Navier-Stokes Equations
 - Non-dimensionalization
 - Stokes Flow
 - * Uniform Flow Past a Sphere Exact Solution,
 - * Uniform Flow Past A Circular Cylinder Stokes Paradox, Extensions of Stoke's theory
 - Thin Films
 - * Lubrication Theory
 - * Squeeze Films
 - * Thin Films with Free Surfaces
 - * Hele-Shaw Flow
 - Boundary Layer Theory
- Stability of Fluid Motions