Content-Based Recommendation

Adaptive Web Systems
Peter Brusilovsky
With slides from Dr. Jae-wook Ahn
Content-based?

• Item **descriptions** to identify items that are of particular interest to the user.
American boxers will go home from an Olympics without a gold medal for the first time since 1948. Ricardo Williams Jr. of Cincinnati, who had outpointed Diogenes Luna of Cuba 42-41 in a semifinal bout, settled for a silver medal when he lost 27-20 to Abdullaev Mahamadkadyz of Uzbekistan in the 139-pound final. World champion Rocky Juarez of Houston could not get inside enough against a clutching, grabbing Bekzal Sattar Khanov of Kazakhstan, and lost 22-14 at 125 pounds. The defeat snapped the 20-year-old Juarez’ two-year winning streak at 68 bouts. “I did all I could do, but it wasn’t good enough,” Juarez said. “I didn’t come here to get the silver medal. I’m disappointed.” Juarez complained about Sattar Khanov’s holding tactics throughout the bout. “I think he should have been disqualified,” Juarez said.

U.S. team manager Gary Toney said he would file a protest, charging that Russian referee Stanislav Kirsanov cautioned Sattar Khanov nine times but never issued a warning that could have cost the fighter points or led to a disqualification. “I have no idea why the referee was allowing it,” said Toney, who acknowledged the appeal would likely fall through. Two Americans earned bronze medals — Clarence Vinson of Washington, D.C., at 119 pounds and Jermain Taylor of Little Rock, Ark., at 156 pounds. The four medals are two less than Americans won in 1996 at Atlanta (one gold and five bronze) and one more than they collected in 1992 at Barcelona (one gold, one silver, one bronze).

Cuba, which had no boxers in Sunday’s six finals, matched its Atlanta total of four golds on Saturday. One of them was the third for heavyweight Felix Savon. Two Cubans also got two bronze medals. The 5-foot-3 Juarez, four inches shorter than his opponent, got hit repeatedly by left hands and trailed 15-4 after two rounds. Then trailing 17-8 in the second round, Juarez landed five of the next six scoring blows, but Sattar Khanov got home two scoring punches in the closing seconds for a 20-13 lead. Juarez kept charging forward and Sattar Khanov kept wrapping him up in the final round.
Comparing with Non-content based

- User-based CF
 Searches for similar users in user-item “rating” matrix
- No rating
- Item-feature matrix
Item Representation

- Structured
- Unstructured
- Semi-structured
Structured

• Attribute – value

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Cuisine</th>
<th>Service</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>Mike’s Pizza</td>
<td>Italian</td>
<td>Counter</td>
<td>Low</td>
</tr>
<tr>
<td>0002</td>
<td>Chris’s Cafe</td>
<td>French</td>
<td>Table</td>
<td>Medium</td>
</tr>
<tr>
<td>0003</td>
<td>Jacques Bistro</td>
<td>French</td>
<td>Table</td>
<td>High</td>
</tr>
</tbody>
</table>

• Also historically called metadata-based representation

• We will learn more about this type of recommender systems in the Case-Based Recommendation lecture
• Full-text
• No attributes formally defined
• Other complicated problems - such as synonymy, polysymy

A Do-Over on Twitter

Thursday, March 12, 2009

By David Pogue

Unwittingly sending a message to 21,000 followers, and then trying to call it back.
Semi-structured

- Structured + unstructured
- Well defined attributes/values + free text
- Semi-structured data needs combined approaches!
Conversion of Unstructured Data

- Need to convert to structured form
- IR techniques
- VSM, TF-IDF, stemming, etc.
User Profile/Model

- IR Approach: A model of user’s preferences
- ML Approach: A history of the user’s interactions
 - Recently viewed items
 - Already viewed items
- Training data — machine learning
User Profile/Model

- Tear Rate
 - Reduced
 - Normal
 - No

- Age
 - Young
 - Pre-presbyopic

- Prescription
 - Presbyopic
 - Myope
 - Astigmatic
 - Yes
 - No

- Hypermetrope
 - Yes
 - No
YourNews: IR Approach to CBR
Rocchio Algorithm (RF)

$Q' = Q + \frac{1}{n_i} \alpha \sum_{i=1}^{n_1} R_i - \frac{1}{n_2} \beta \sum_{i=1}^{n_2} S_i$

where

Q is the vector of the initial query

R_i is the vector for relevant document

S_i is the vector for the irrelevant documents

α, β are Rocchio’s weights
More Relevance Feedback

- D_r - set of relevant documents $\{d_r\}$
- D_n - set of non-relevant documents $\{d_n\}$

- Rocchio’s Formula:

$$q_m = \alpha q + \left(\frac{\beta}{|D_r|} \right) \sum d_r - \left(\frac{\gamma}{|D_n|} \right) \sum d_n$$

- Ide’s Dec Hi Formula

$$q_m = \alpha q + \beta \sum d_r - \gamma \max_{\text{non-rel}} (d_j)$$
Learn which annotation to assign to each page

User Model Learning

• Classification problem

• Classifying to “Like” or “Dislike”

• Training data — feedbacks

• Probability of classification

• Unstructured data conversion

• Feature selection — high/low dimensions
User Model Learning

Training Data
- Items (Like)
- Items (Dislike)

Target Data
- Items
- Items (Like)
- Items (Dislike)

Train/Learn
Classify/Recommend

User Model
Explicit Feedback

- Explicit
- Directly from users
- No noise, hard to obtain
Implicit Feedback

- Implicit feedback
- Indirect interaction
- Opened document, Reading time, etc.
- Large data but high uncertainty, weaker evidence of interest
User Model Learning

Feature Selection

- Problem of high dimensional input vectors
- Overfit (especially when a dataset is small)
- Document frequency thresholding, Information gain, Mutual information, Chi square statistic, Term strength
Overfitting

Overfit

Underfit
User Model Learning

Feature Selection

- Mutual Information
 - $A = \text{number of times } t \text{ and } c \text{ co-occur}$
 - $B = \text{number of times } t \text{ occurs without } c$
 - $C = \text{number of times } c \text{ occurs without } t$
 - $N = \text{number of total documents}$

$$I(t, c) = \log \frac{A \times N}{(A + C) \times (A + B)}$$
User I Model Learning
Feature Selection

- “Austrian train fire accident”
- After learning 5 documents

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Fire</th>
<th>Alps</th>
<th>Austria</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>5873</td>
<td>8092</td>
<td>93</td>
<td>974</td>
<td>34501</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>96260</td>
<td>96260</td>
<td>96260</td>
<td>96260</td>
<td>96260</td>
</tr>
</tbody>
</table>
Decision Tree

- Partitioning dataset into trees
- Ideal for **structured, small** data
- Performance, simplicity, understandability
- ID3 (Iterative Dichotomiser 3)
Decision Tree
Example

• Using WEKA
 • Machine learning algorithm package
• JAVA API, interactive UI
Decision Tree

Example - dataset

Training

```plaintext
@relation lensesTrain

@attribute Age {young, pre-presbyopic, presbyopic}
@attribute Prescription {myope, hypermetrope}
@attribute Astigmatic {no, yes}
@attribute Tear_rate {normal, reduced}
@attribute Lenses {YES, NO}
```

```
@data
young, myope, no, normal, YES
young, myope, no, reduced, NO
young, hypermetrope, no, reduced, NO
young, myope, yes, normal, YES
young, myope, yes, reduced, NO
young, hypermetrope, yes, normal, YES
young, hypermetrope, yes, reduced, NO
pre-presbyopic, myope, no, normal, YES
pre-presbyopic, myope, no, reduced, NO
pre-presbyopic, hypermetrope, no, normal, YES
pre-presbyopic, hypermetrope, no, reduced, NO
pre-presbyopic, myope, yes, normal, YES
pre-presbyopic, myope, yes, reduced, NO
pre-presbyopic, hypermetrope, yes, normal, YES
pre-presbyopic, hypermetrope, yes, reduced, NO
```

Testing

```plaintext
@relation lensesTest

@attribute Age {young, pre-presbyopic, presbyopic}
@attribute Prescription {myope, hypermetrope}
@attribute Astigmatic {no, yes}
@attribute Tear_rate {normal, reduced}
@attribute Lenses {YES, NO}
```

```
@data
young, hypermetrope, no, normal, YES
pre-presbyopic, myope, no, normal, YES
pre-presbyopic, myope, yes, normal, YES
pre-presbyopic, hypermetrope, no, normal, YES
pre-presbyopic, hypermetrope, yes, normal, YES
```

attribute as inputs

attribute to be estimated
Decision Tree

Example - tree

Classifier
- Choose: Id3

Test options
- Use training set
- Supplied test set
- Cross-validation
- Percentage split

Classifier output

=== Classifier model (full training set) ===

Id3

Tear_rate = normal
 Age = young: YES
 Age = pre-presbyopic: YES
 Age = presbyopic
 Prescription = myope
 Astigmatic = no: NO
 Astigmatic = yes: YES
 Prescription = hypermetrope: YES
 Tear_rate = reduced: NO

Time taken to build model: 0 seconds

=== Predictions on test set ===

<table>
<thead>
<tr>
<th>Inst#, actual, predicted, error, probability distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
Decision Tree

Example - tree

Tear Rate
- Reduced
- Normal

Age
- Young
- Pre-presbyoptic

Prescription
- Hypermetrope
- Myope

Astigmatic
- Yes
- No
Evaluation on test set

Summary

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly Classified Instances</td>
<td>5</td>
<td>71.4286 %</td>
</tr>
<tr>
<td>Correctly Classified Instances</td>
<td>2</td>
<td>28.5714 %</td>
</tr>
<tr>
<td>Pa statistic</td>
<td>0.4615</td>
<td></td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>0.2857</td>
<td></td>
</tr>
<tr>
<td>Mean squared error</td>
<td>0.5345</td>
<td></td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>59.375 %</td>
<td></td>
</tr>
<tr>
<td>Relative squared error</td>
<td>107.2232 %</td>
<td></td>
</tr>
<tr>
<td>Total Number of Instances</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>ROC Area</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.6</td>
<td>1</td>
<td>0.75</td>
<td>0.75</td>
<td>YES</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0.667</td>
<td>0.75</td>
<td>NO</td>
</tr>
<tr>
<td>Weighted Avg.</td>
<td>0.714</td>
<td>0.214</td>
<td>0.829</td>
<td>0.714</td>
<td>0.702</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Confusion Matrix

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>a = YES</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>b = NO</td>
</tr>
</tbody>
</table>

k Nearest Neighbor

• Prepare training data (classification labels)
• Extract k most similar items
• Decide the label of the test data by looking at kNN’s
k Nearest Neighbor

Example

- \(k = 3 \) Classified as **red**
- \(k = 5 \) Classified as **blue**
Linear Classifier

- Tries to find out a hyperplane that best separates classes
- Gradient Descent - incremental vector movement
Gradient Descent

- Widrow-Hoff rule, delta rule or gradient descent rule

\[w_{i+1,j} = w_{i,j} - 2\eta (w_i \cdot x_i - y_i)x_{i,j} \]

- The weight vector can be derived incrementally.

- Learning rate controls the degree to which additional instance affects the previous weight vector.

- An alternative ‘exponential gradient’ (EG) algorithm.

\[w_{i+1,j} = \frac{w_{i,j} \exp(-2\eta (w_i \cdot x_i - y_i)x_{i,j})}{\sum_d w_{i,j} \exp(-2\eta (w_i \cdot x_i - y_i)x_{i,j})} \]
Support Vector Machine

- Maximizes the distance between decision boundary & support vector (closest training instance)
- Avoids overfitting
Linear Classifier

SVM

Number of Support Vectors: 3 (-ve: 2, +ve: 1) Total number of points: 64

- Points (+ve, -ve)
- Support Vectors (+ve, -ve)
- Hyperplane (boundary)
Naive Bayes

- VSM — lack of theoretical justification
- Probabilistic text classification method
- Naive = term independence
- Probability document d is classified to category c
Naive Bayes

- Multivariate Bernoulli
- Document probability $= \prod$ of term probability
 - term independence assumption
 - “naive”

$$P(d_i | c_j; \theta) = \prod_{t=1}^{V} (B_{it} P(w_t | c_j; \theta) + (1 - B_{it})(1 - P(w_t | c_j; \theta)))$$
Naive Bayes

- Multinomial
- Non-binary

\[
P(d_i \mid c_j; \theta) = P(|d_i|) \prod_{t=1}^{d_i} P(w_t \mid c_j; \theta)^{N_{it}}
\]

\[
P(w_t \mid c_j; \theta) = \frac{1 + \sum_{i=1}^{D} N_{it} P(c_j \mid d_i)}{|V| + \sum_{i=1}^{D} \sum_{s=1}^{V} N_{is} P(c_j \mid d_i)}
\]
Naive Bayes Example

Classifier output

--- Predictions on test set ---

<table>
<thead>
<tr>
<th>inst#,</th>
<th>actual, predicted, error, probability distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:YES 1:YES *0.833 0.167</td>
</tr>
<tr>
<td>2</td>
<td>1:YES 1:YES *0.722 0.278</td>
</tr>
<tr>
<td>3</td>
<td>2:NO 2:NO 0.097 *0.903</td>
</tr>
<tr>
<td>4</td>
<td>1:YES 1:YES *0.752 0.248</td>
</tr>
<tr>
<td>5</td>
<td>2:NO 1:YES + *0.829 0.171</td>
</tr>
<tr>
<td>6</td>
<td>2:NO 2:NO 0.112 *0.888</td>
</tr>
<tr>
<td>7</td>
<td>2:NO 1:YES + *0.784 0.216</td>
</tr>
</tbody>
</table>

--- Evaluation on test set ---

--- Summary ---

Correctly Classified Instances	5	71.4286
Incorrectly Classified Instances	2	28.5714
Kappa statistic	0.4615	
Mean absolute error	0.3594	
Root mean squared error	0.4615	
Relative absolute error	74.6863 %	
Root relative squared error	92.5782 %	
Total Number of Instances	7	

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.6</td>
<td>1</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Conclusions

• User model learns from content (description, fulltext, etc) itself

• Implicit, explicit method

• Classifying — like, dislike

• Algorithm choice of depends upon content representation

• Limitations — poor work if there is not enough content