INFSCI 2480
Adaptive Information Systems

Personalized Web Search

Peter Brusilovsky
http://www.sis.pitt.edu/~peterb/
Why Search Personalization?

- R. Larsen: With the growth of DL even a good query can return not just tens, but thousands of "relevant" documents.

- Personalization is an attempt to find most relevant documents using information about user's goals, knowledge, preferences, navigation history, etc.

User Profile

- Common term for user models in IR/IF
- A user’s profile is a collection of information about the user of the system.
- This information is used to get the user to more relevant information
- Views on user profiles in IR community
 - Classic (Korfhage) - a reference point
 - Modern - simple form of a user model
Core vs. Extended User Profile

- **Core profile**
 - contains information related to the user search goals and interests

- **Extended profile**
 - contains information related to the user as a person in order to understand or model the use that a person will make with the information retrieved
Simple (vector) Core Profiles

- Primitive profile (any model)
 - A set of search terms (0-1 vector)
- For Boolean model of IR
 - A Boolean query
- For vector model of IR (dominated)
 - A set of terms with their weights (vector)
 - An overlay (set of weights) over a simple domain model that is just a list of terms that could be of interest to the users
Advanced Core Profiles

- Domain model is a network of terms
 - A subset of the model (simple overlay)
 - A weighted overlay over DM

- Domain model is a hierarchy of topics
 - *typically, each topic is a vector of terms*
 - A subset of the model (simple overlay)
 - A weighted overlay over DM
Group Profiles

- A system can maintain a group profile in parallel or instead of user profile
- Could resolve the privacy issue (navigation with group profile)
- Could be used for new group members at the beginning
- Could be used in addition to the user profile to add group “wisdom”
Extended Profile

- Knowledge: about the system and the subject
- Goals: local and global
- Interests
- Background: profession, language, prospect, capabilities
- Preferences (types of docs, authors, sources...)

Who Maintains the Profile?

- Profile is provided and maintained by the user/administrator
 - Sometimes the only choice
- The system constructs and updates the profile (automatic personalization)
- Collaborative - user and system
 - User creates, system maintains
 - User can influence and edit
 - Does it help or not?
Adaptive Search

- **Goals:**
 - Present documents (pages) that are most suitable for the individual user

- **Methods:**
 - Employ user profiles representing short-term and/or long-term interests (Korfhage)
 - Rank and present search results taking both user query and user profile into account
Personalized Search: Benefits

- Resolving ambiguity
 - The profile provides a context to the query in order to reduce ambiguity.
 - Example: The profile of interests will allow to distinguish what the user asked about “Berkeley” (“Pirates”, “Jaguar”) really wants

- Revealing hidden treasures
 - The profile allows to bring to surface most relevant documents, which could be hidden beyond top results page
 - Example: Owner of *iPhone* searches for *Google Android*. Pages referring to both would be most interesting
The Components of Web Search

Formulates

Processes

Analyzes

Query → Search / Matching → Ordered results
Where to Apply Profiles?

- The user profile can be applied in several ways:
 - To modify the query itself (pre-processing)
 - To change the usual way of retrieval
 - To process results of a query (post-processing)
 - To present document snippets
 - Special case: adaptation for meta-search
Where to Apply Profiles?
Examples of Systems

- Pre-process with QE - Koutrika, Mobasher, Chirita
- Pre-process with RF : SmartGuide
- Post-process with annotations: Syskill & Webert
- Post-process with re-ranking: Syskill & Webert, WIFS, YourNews, TaskSieve
- Adaptive Snippets: TaskSieve
Pre-Process: Query Expansion

- User profile is applied to add terms to the query
 - Popular terms could be added to introduce context
 - Similar terms could be added to resolve indexer-user mismatch
 - Related terms could be added to resolve ambiguity
 - Works with any IR model or search engine
Simple Context-based Query Expansion: Chirita et al. 2006

User related documents (desktop documents) containing the query

Score and extract keywords

Top query-dependent, user-biased keywords

Extract query expansion or re-ranking terms

[Chirita, Firan, Nejdl. Summarizing local context to personalize global web search. CIKM 2006]
Advanced Example: Koutrika & Ioannidis’ 05

- Advanced relevance network for query expansion
- \(\text{java} \rightarrow \text{java and programming} \rightarrow \text{java and (programming or development)} \)

Pre-Process: Relevance Feedback

- In this case the profile is used to “move” the query vector (vector model only)
- Imagine that:
 - the documents,
 - the query
 - the user profile
are represented by the same set of weighted index terms
Pre-filter: Linear Transformation

- The query \(q = q_1, q_2, \ldots q_n \)
- The profile \(p = p_1, p_2, \ldots p_n \)
- The query modified by the user profile will be something like that:

\[
modified \ q_i = Kp_i + (1-K)q_i \quad i=1,2,\ldots n
\]
Pre-process: Linear Transformation

\[modified \ q_i = Kp_i + (1-K)q_i \]

- In this case we add the terms of the profile to the query ones, weighted by \(K \)

for \(K=0 \) modified \(q_i = q_i \) the query is unmodified

for \(K=1 \) modified \(q_i = p_i \) the query is substituted by the profile
Piecewise Linear Transformation

- if the term appears in the query and in the profile then the linear transformation is applied
- if the term appears in the query but not in the profile is left unmodified or diminished slightly
- if the term appears in the profile but not in the query it is not introduced, or introduced with a weight lower than in the profile.
Example: SmartGuide

- Access to the CIS-like information
- User has a long-term interests profile and current queries
- Information is searched using a combination of both
- Profile is initiated from a stereotype and kept updated
- Increased user satisfaction, decreased navigation overhead

Post-Processing

- The user profile is used to organize the results of the retrieval process
 - present to the user the most interesting documents
 - Filter out irrelevant documents
- Extended profile can be used effectively
- In this case the use of the profile adds an extra step to processing
- Similar to classic information filtering problem
- Typical way for adaptive Web IR
Post-Filter: Annotations

- The result could be relevant to the user in several aspects. Fusing this relevance with query relevance is error prone and leads to a loss of data.

- Results are ranked by the query relevance, but annotated with visual cues reflecting other kinds of relevance:
 - User interests - Syskill and Webert, group interests - KnowledgeSea.
Example: Syskill and Webert

- First example of annotation
- Post-filter to Lycos
- Hot, cold, lukewarm
Post-Filter: Re-Ranking

- Re-ranking is a typical approach for post-filtering
- Each document is rated according to its relevance (similarity) to the user or group profile
- This rating is fused with the relevance rating returned by the search engine
- The results are ranked by fused rating
 - User model: WIFS, group model: I-Spy
Example: WIFS (Micarelli)

- Adaptive post-filter to AltaVista search engine
- Maintains an advanced stereotype-based user model (Humos subsystem)
- User model is updated by watching the user
- The model is used to filter and re-order the links returned by AltaVista
YourNews: Adaptive Search and Filtering with Open User Profile

http://amber.exp.sis.pitt.edu/yournews/
TaskSieve: User-Controled Adaptive Search

http://amber.exp.sis.pitt.edu/yournews-experiment/
TaskSieve: Adaptive Snippets

- The goal of a usual snippet is to show query relevance. TaskSieve applies adaptive snippets to show profile relevance as well.
- Selects top 3 relevant sentences combining query relevance and task relevance to sentences.
- Applies color coding by query/profile.

Example snippet:

```
Salzburg, Austria, Burg introduce the state governo passangers, of which 12 people escape, and the rest lovers who he said that as a driver were killed in fire, ...
Tunnel fire extinguished, Austria rescue personn the train to find the bodies of victims.
```
Knowledge Sea Adaptive Search: Three Reference Points

- Adaptive search in TaskSieve uses linear combinations of two ranks - query-based and profile-based to calculate the final rank.
- Query and profile are two reference points for ranking.
- What if there are three reference points?
- Knowledge Sea Search allows to do user-adaptive ranking with three reference points: Query, task profile, and lecture.
Knowledge Sea Adaptive Search: Three Reference Points

KnowledgeSea Search

Query: Speak the user language

Stemmed query: speak user language

1464 of 1545 documents retrieved | Search time: 0.09 seconds

Removed common words: the

Result pages: 1 2 3 4 5 6 7 8 9 10 «Next 100

<table>
<thead>
<tr>
<th>Rank</th>
<th>Source</th>
<th>Title</th>
<th>Score</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shneiderman</td>
<td>8.6.1 Natural-language interaction</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shneiderman</td>
<td>8.1 Introduction</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dix</td>
<td>10.4.1 Designing for users with disabilities</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Shneiderman</td>
<td>7.8.1 Audio menus</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dix</td>
<td>4.2.8 Language versus action</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lewis</td>
<td>7.1 Manuals</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lewis</td>
<td>7.1 Manuals</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Newman</td>
<td>15.4.1 General principles</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Precece</td>
<td>1.6.1 Heuristics and usability principles</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dix</td>
<td>10.3.1 Sound in the interface</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dix</td>
<td>9.3.2 Heuristic evaluation</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dix</td>
<td>4.2.2 Video display units</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Shneiderman</td>
<td>9.4.1 Discrete-word recognition</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Shneiderman</td>
<td>9.4.2 Continuous-speech recognition</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Precece</td>
<td>10.2.2 Why you need to evaluate</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Lewis</td>
<td>6.4 Windows, the Shared-Code Approach, and Visual Basic</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Lewis</td>
<td>6.4 Windows, the Shared-Code Approach, and Visual Basic</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

Task Model

heuristic evaluation

Delete New

Task Description:
Nielsen heuristics: golden rules of design usability engineering speak the user language

Lecture Model

Lecture 6 – Heuristic Analysis

Weights

Query

Task Weight

Lecture
Some Ideas for Profile-Adapted Retrieval (Korfhage)

- Query and Profile are considered as Separate Reference Points
- In this case documents are retrieved if they are “near” the query or the profile.
- For the following slides, let’s assume that the similarity is measured by distance

\[\|D, Q\| \]

where \(D \) is the document and \(Q \) is the query
Separate Reference Points

- We have different ways to integrate query and profile as separate reference points:
 - Disjunctive model of query-profile integration
 - Conjunctive model of query-profile integration
 - Ellipsoidal model
 - Cassini oval model
Disjunctive Model

- We will take the document if the following condition is satisfied:

\[
\min\left(\|D, Q\|, \|D, P\|\right) < d
\]

- The D document should be “near” the query Q or the profile P
Conjunctive Model

- We will take the document if the following condition is satisfied:

\[
\max \left(\|D, Q\|, \|D, P\| \right) < d
\]

- The D document should be “near” the query Q and the profile P.

- In this case if the profile and the query have little in common very few documents are retrieved.
Ellipsoidal Model

- Condition to satisfy

\[\|D, Q\| + \|D, P\| < d \]

this is the equation of a ellipse.

If the profile and query are “far apart” a lot of documents not relevant are retrieved.
Cassini Model

Condition to satisfy

$$\|D, Q\| \times \|D, P\| < d$$