INFSCI 2140
Information Storage and Retrieval
Lecture 1: Introduction

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/2140-061/

INFSCI 2140 and Your Study

- Foundation course
- One of the key courses in any LS/IS program
- Information retrieval (IR) is one of the oldest and most developed areas of research in information science
- Hot research area with many crossroads
Business Prospects for IR

- In the Web age IR became a part of any advanced computer application and started serving virtually any computer user
- Most of existing systems use simple old technologies. Advanced knowledge from IR field can improve the performance significantly

IR as a Field of Research

- American Society for Information Science (ASIS)
 - JASIS
 - Annual conference
- ACM SIGIR
 - IR conferences
- Information Processing and Management
- Information Retrieval
- Journal of Digital Information
Related fields

- Hypertext and Web
- Digital Libraries
- Multimedia (storage and retrieval)
- Data Mining
- Data Bases
- Knowledge Bases

The content of the Course

- Main prospect
 - Information Access
- Core component
 - Information Storage and Retrieval
- Focus on *methods and technologies*
 - The course is targeted towards Information Professionals, designers of Information Systems
 - Less formal than CS, more technical than LIS
Information Access

- Core problem of modern society
- Information is emerging in most important asset
- Getting the right information at the right time is a matter of success and failure, life and death
- Information Access is one of the most active modern R&D directions

Paradigms of Information Access

- Information filtering / SID
- Classic ad-hoc Information Retrieval
- Hypertext browsing
- Recommendation (browsing + filtering)
- Information Visualization
- Each paradigm has its own merit
- Information access is not just search!
Information Access and IR

Readings

- Follows Korfhage book plus:
 - Information visualization
 - Hypertext / hypermedia and WWW
 - User modeling / personalization

- Other relevant books
 - Modern Information Retrieval
 - Finding out About
Course Plan

- Introduction
- Classic Information Retrieval
- Improving Classic Information Retrieval
- What else in IR beyond Classic IR?
- Newest trends
 - Information Visualization
 - User Modeling for Information Access
 - Web Information Access

Components of the grade

- Attendance (1 pt per lecture)
- Homework assignments (5-10 pts)
- Possible Quizzes (<5 pts)
- Two Paper projects (2*12 pts)
- Midterm Exam (50 pts)
- Final group project (50 pts)
 - Will be announced at the next lecture
Paper project

- Read two papers
 - After 2000 and at least 8 pages long
 - On the Web or from recent conferences

- Provide an abstract while also trying to connect the paper to the course content

- Provide concept indexing:
 - What knowledge is required
 - What knowledge is communicated

- Present in public

Course Tools

- All information will be provided via course home pages (see first slide)

- Blackboard system will be used as a course tool for:
 - Posting course materials, assignments, and quizzes
 - Learning about and communication with each other
 - Asking questions and getting answers
 - Submitting assignments
 - Viewing grades and feedback

- Other tools will be used on later stages
Overview of Lecture 1

- Information systems - a design view
- Documents and queries
- Documents and surrogates
 - What's in surrogates?
 - What's in documents?

What is Information

- Something that
 - is represented by a set of symbols
 - has some structure
 - can be read and to some extent understood by user of information

(Meadow)
What is Information Retrieval

- An information retrieval system is a device interposed between a potential user of information and the information collection itself. For a given information problem, the purpose of the system is to capture wanted items and to filter out unwanted items (Harter)
- Information retrieval deals with the representation, storage, and access to documents or representatives of documents (documents surrogates) (Salton)

Information System: Design View

- **Ectosystem** - factors that an IS designer can’t control
 - People involved
 - Available equipment and technology
 - The form in which information is available
- **Endosystem** - factors that an IS designer can specify, control, and manipulate
People in Ectosystem

- User (community of users)
 - The one who will be using the system (may need both to store or retrieve info)
- Funder
 - The one who bears the cost of operating
 - Has a global need in this system
- Server
 - The one who operates the IS and provides services

Example: S-T Info in Russia

- Content: unpublished project reports and Ph.D. thesis
- Users: Russian academics and researchers
- Funder: Russian Government
- Server: AUSTIC - a dedicated institution
Case Studies

- Pitt Library
- Amazon.com
- Google
- More examples for homework
 - Prepare analysis in a word file
 - Submit via CourseWeb or e-mail
 - Prepare to present in class

What we can control: Endosystem

- Media
 - Many forms from hardcopy to digital
- Representation
 - Storage formats, encoding, compression
- Devices
 - From file drawers to computers
- Algorithms and Data Structures
 - Maximize the usefulness of services
Designer’s prospect

Information system

Ectosystem Design Endosystem

Performance and evaluation

- **User**
 - How effective the system is in helping me to satisfy my information needs

- **Server**
 - How efficient is the system
 - How well the system meets the needs of the user community

- **Funder**
 - Does the benefits justify costs
Life Cycle of an IS

- Design
- Work
- Evaluation
- Redesign
- Death

Information Objects

- The goal of information retrieval is to obtain information that is contained in one or more documents (information objects, information items)

- Examples
 - Good textbook for IS2140
 - Course for the Fall 2004
 - Fragment from Steelers last game
Information Need

- What kind of information you need to find - what you have in mind

- Example - Pension in Zurich
 - Relevant web sites will provide the user with necessary information and forms needed to actually make a reservation in a pension in Zurich.

Abstraction: Data

- Real world and its representation
 - Book -> library card -> database record
 - Course -> course syllabus -> Web page

- IS store information about real world as a collection of data abstracted from real world objects

- The amount and kind of stored information influence the search process
Real World and Abstraction

Paradigms of Information Access

- Low interactive - query-based
 - Information Filtering and SID
 - Information Retrieval

- Highly interactive - behavior-based
 - Hypertext browsing
 - Information visualization
Abstraction: Query

- The user has an information need (IN) in her mind. It can be implicit or explicitly verbalized.
- The IS can’t understand the IN directly. IN has to be abstracted into a form that matches the information system.
- This abstraction is a query.

Real World and Abstraction

Reality → Data

Information Need → Query
Classic paradigm of information retrieval (ad-hoc retrieval)

- Set of documents
 - Kegels
- User comes with a query
 - A ball
- IR returns some documents in response to a query
 - Bowling model

What is document?

- Any object that can be stored
- Granularity
 - Book
 - Chapter
- Types
 - Programs, images, music, comp. programs
What is a query?

- Statement of an information need
- (Formal?) representation of an information need
 - Request to a librarian
 - IN described in NL
 - “Like that”
- Is a query a document?

Documents

- Document is stored and can be retrieved / accessed
- Variety of documents
 - Temporal
 - Ephemeric documents
 - Changing docs
 - Media
 - Real object: books, CDs, vine bottles
 - Digital objects: text, music, pictures, movies...
Formatting aspect

- Formatted and unformatted
- Mixture
- Metadata

Document Surrogates

- Stored description of a document to be used for retrieval and presentation
- Surrogates are incomplete by its nature
 - Can't store all document: space, nature, encoding loss, design choice
- How to produce surrogates
 - By humans - rules, practice
 - By computers - programs
Documents and Surrogates

- Metadata, Content data
 - Digitally stored, used for search, presentation, and selection
- Digital Document
 - Digitally stored, used for presentation and selection, not used for search
- Externally stored document / object
 - Externally stored, not used for search

Documents and surrogates (2)

- Documents
- Surrogates
- Information Need
- Query
Examples of surrogates

- Document ID (system use!)
- Metadata: author, title, year
- Content representation (aboutness)
 - Keywords
 - Abstract / Extract

Case Study: Photo archive

- Photos are stored, but are not searchable
- Searchable are descriptions
- Description: what, when, where
 - Content (abstract vs. classifier)
 - Time (granularity!)
 - Location (coding scheme vs words)
Case Study: PhD Thesis Archive

Case Study: Movie Rental Store
What’s in a Surrogate?

- Metadata (about it)
 - Usually well-formalized, stored in a formatted database
- Content description
 - Rarely formalized, non-formatted storage
 - Keywords, terms...
 - Full-text abstract/extract
 - Restricted on unrestricted vocabulary

Unrestricted vs. Restricted NL

- What could be use to describe the content (abstracts, keywords, terms, classifiers…)
- Controlled vocabulary
 - Words/terms to describe document content only can come from this vocabulary
- Unrestricted vocabulary
 - Any NL sentences/phrases can be used
Controlled Vocabulary

- Effectiveness of the overall system - storage and search
- Reliability and precision of search
 ...but...
- Overhead
- Hard to force users and info providers
- Need *thesaurus*
- Loosing fine elements of meaning

Unrestricted NL

- More complicated logistics, slower search, limited search options
- Lower reliability and precision of search
 ...but...
- Almost no overhead for humans
- No thesaurus
- Can express any meaning
What’s in a Digital Document?

- Digital documents
 - Text
 - Rich text and hypertext
 - Images
 - Multimedia
 - Compound documents

- From real to digital document
 - Digitize (code) and store

Document Representation

- Computer store information digitally in binary format

- Ultimately everything is ones and zeroes
 - characters, numbers
 - e-mail messages, poems
 - pictures, video, music

- Binary coding:
 - 7 = 00000111, ‘!’ = 0001000011;
Representing Text

- Coding problem
- Replace every symbol for a 1 byte code
 - Meaningful symbols and control symbols
- Problems of different coding - same symbol has multiple codes
- Standards: ASCII, ANSI, KOI-8…
- Too many coding standards, 1 byte??
- Universal standards, unicode

Rich Text and Hypertext

- Rich text - fonts, formatting, styles…
 - NROFF/TROFF, TeX/LaTeX
 - proprietary word processor, RTF
 - HTML
- Hypertext - links, anchors…
 - System-dependent way
 - No standard yet, open hypermedia
 - HTML’s HREF tag
Representing Images

- Image as a matrix of dots (pixels)
- How many bytes per pixel?
 - \(\frac{1}{2} \) for 16 colors
 - 1 for 256
 - 2 for \(2^{16} \)
- An image consumes lots of space

Image Formats

- Simple bitmap formats
 - BMP, Pict
- Publishing software formats
 - Photoshop, Canvas...
- Complex formats for BW/Color images
 - JBIG, TIFF, GIF, JPEG
Music and multimedia

- **Sound:**
 - Digitized music: aiff, wav, ... MP3
 - Encoded music: MIDI
- **Multimedia = moving pictures + sound**
 - QuickTime, WMP...
 - MPEG standard
 - SMILE Web standard
- **Streaming vs. non-streaming**

Compression Issues

- **Storage space vs. access time**
 - Uncompressed surrogates, compressed documents
- **Classic text compression**
 - Huffman codes; Ziv-Lempel codes
- **Image and multimedia compression**
 - .gif vs. .jpeg; .aiff vs. .mp3
- **Loss of information in encoding and compression**
Homework

Exercise:
- Submit an answer to Korfhage search problem to the discussion forum, get ready to present in class (up to 2pt)

Readings:
- See Course site

Assignment 1 Due Tuesday 9/6/05:
- Try various Blackboard features
- Home page with picture (4pt)
- Provide examples of IR systems (3pt)
- Submit an HTML file with an analyzed example of an information system (via dropbox) (3pt)