Overview

- Characterizing the Web
 - Size
 - Topology
 - Users
- Searching the Web
- Browsing the Web
- Information services of the future
Web challenge: Infospace

- **Huge**
 - 350 M Documents in 1998; 20 M per month

- **Growth**
 - 20 M per month - doubled in 9 month!

- **Volatile**
 - 40% of pages change every month

- **Distributed**
 - 30K largest servers hold 50% of Web pages
Web challenge: Content

- Redundant
 - 30% of Web pages are duplicates or variants
- Heterogeneous
 - Text, HTML, images, videos, music...
- Multi-language
 - 10 major languages hold >1% of the Web
- Varying quality
 - Publishing without editors
- Linked
 - An average page has 5-15 links (average is 8)

Web challenge: Users

- Largest variety of users
 - Differ in needs, education, skills…
- Not skilled in query formulation
 - Average query is about 2 words, no operators
- Not patient/skilled in browsing results
 - 85% of users only look at the first screen returned by search engine
 - 78% of users use only one query
- But there are incredible power users
How large is the Web?

- Steve Lawrence and Lee Giles, NECI
- Multi-search engine technology

How to measure the Web?

- Sampling and checking technology
 - Sample: pick a large subset of pages
 - Check whether each is indexed by an engine
Web Size: Dec 1997 Snapshot

- Estimated size of the indexable Web (IW) is 320 million pages
- Search engine coverage varies by an order of magnitude
- Any major engine index only a fraction of IW
- Combining the results of multiple engines can increase coverage

Web Size and SE coverage: 1997
Web Size: 1999 Snapshot

- The publicly indexable WWW contained about 800 million pages - 15TB of info.
- The search engine with the largest index, Northern Light, indexed roughly 16% of the publicly indexable WWW (coverage decreased!)
- The combined index of 11 large search engines covered (very) roughly 42% of the publicly indexable World Wide Web.

Search Engine Coverage 2002

By http://www.searchengineshowdown.com/
Dynamics of the Coverage

Top 7: Size Change Aug. '01 - Dec. '02
Results from same 25 searches

© 2003 G. Notess

Search Engines Overlap

Overlap of 4 Searches
141 Pages on Mar. 6, 2002

© 2002 G. Notess

by 1 (71)
by 10 (2)
by 9 (3)
by 8 (2)
by 7 (3)
by 6 (3)
by 5 (3)
by 4 (14)
by 3 (10)

Ten Engines:
AllTheWeb, AltaVista,
Dilbert H!l, Google,
HotBot, Win, MSN,
NNResearch, Teoma,
WiseNut
Evaluation of Web Search

- How we can use traditional evaluation metrics?
- How we can measure precision if the user does not scroll?
- How we can measure recall if the coverage is inherently incomplete?
- "Web Directories" method (using category names/content of Web directories)

Web Growth (OCLC Data)

- **Number of Web Sites**
 - A Web site is defined as a distinct location on the Internet, identified by an IP address, that returns a response code of 200 and a Web page in response to an HTTP request for the root page. The Web site consists of all interlinked Web pages residing at the IP address.
 - **1998**: 2,851,000
 - **1999**: 4,882,000
 - **2000**: 7,399,000
 - **2001**: 8,745,000
 - **2002**: 9,040,000
Web Content: Language

<table>
<thead>
<tr>
<th>Language</th>
<th>1999</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>72%</td>
<td>English</td>
</tr>
<tr>
<td>German</td>
<td>7%</td>
<td>German</td>
</tr>
<tr>
<td>French</td>
<td>3%</td>
<td>Japanese</td>
</tr>
<tr>
<td>Japanese</td>
<td>3%</td>
<td>Spanish</td>
</tr>
<tr>
<td>Spanish</td>
<td>3%</td>
<td>French</td>
</tr>
<tr>
<td>Chinese</td>
<td>2%</td>
<td>Italian</td>
</tr>
<tr>
<td>Italian</td>
<td>2%</td>
<td>Dutch</td>
</tr>
<tr>
<td>Portuguese</td>
<td>2%</td>
<td>Chinese</td>
</tr>
<tr>
<td>Dutch</td>
<td>1%</td>
<td>Korean</td>
</tr>
<tr>
<td>Finnish</td>
<td>1%</td>
<td>Portuguese</td>
</tr>
<tr>
<td>Russian</td>
<td>1%</td>
<td>Russian</td>
</tr>
<tr>
<td>Swedish</td>
<td>1%</td>
<td>Polish</td>
</tr>
</tbody>
</table>

Web Content

- **Type (1999)**
 - 83% commercial
 - 6% scientific and education
 - 1.5% adult

- **The growth of Adult Web Sites**
 - Public Web sites whose primary content is sexually explicit images or text.

<table>
<thead>
<tr>
<th>Year</th>
<th>N</th>
<th>% Public Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>68,000</td>
<td>2.3%</td>
</tr>
<tr>
<td>2001</td>
<td>74,000</td>
<td>2.4%</td>
</tr>
<tr>
<td>2002</td>
<td>102,000</td>
<td>3.3%</td>
</tr>
</tbody>
</table>
Web topology

- Domain suffixes and names
- Hierarchical structure
- Hubs and Authorities (J. Kleinberg)

Search tools

- Search Engines
 - Good coverage, low quality
- Directories
 - Good quality, low coverage
 - Automatic classification?
- Meta-search engines
- Dynamic search
Search Engines: Architecture

Crawlers (robots, spiders, walkers) run on the local server (they do not move on the Web) and send requests to remote Web servers.

They gather Web pages.
Search Engines: Architecture

Indexers creates the surrogate or document representation that is memorized in the index.

On the other side we have the part that is related to the user.

Some search engines cache the most common queries and the corresponding results.
Crawling and crawling problems

- **What is a crawler?**
- **Problems of crawling**
 - Lots of work once and again
 - Where to go?
 - Be fair to Web sites
- **Solutions:**
 - Distributed crawling (Google vs. Harvest)
 - Ranking for crawling (Winograd)
 - Techniques to deal with hitting Web sites
 - Re-visiting techniques
Harvest Distributed Crawling

- A gather collects the information from the Web and extracts indexing information from the material
- A broker provides the indexing mechanism and the query interface to the user
 - A broker can run on a Web server generating no extra traffic for that server
 - One of the goal of the project is to build a topic-specific broker, focusing the index content and avoiding many of the vocabulary problems
- A replicator is used to replicate brokers
- An object cache is used to reduce network and servers load
Indexer and indexing problems

- Size! What an indexer can store?
 - Terms (and positions of terms in a document)
 - Date of visiting
 - Start of a page
 - The whole page (cached)

- The example of Google

- The problem of changing Web
 - Internet Archive: Wayback Machine:
 http://web.archive.org/

Search problems

- How to find results fast?
 - Smaller indexes
 - stop words, stemming, one-case
 - Distributed architecture

- How to rank results
 - Users have no patience
 - High-quality first
 - Fight spam
Ranking search results

- Classic Vector Model
 - TF*IDF and relative term frequencies
- Spread Activation
 - Takes links into account
 - Boolean and vector spread activation
- Google’s PageRank Algorithm
- Kleinberg’s HITS Algorithm

Meta-search Engines

- Why should you develop your own search engine? There are so many...
- Discovery from Web measurement
 - Intersection between search engines is small
- The problem of ranking
- Adaptive Meta-Search
Dynamic Search

- The idea is not to search the information stored in a search engine, but actually *the Web itself*
 - The search is slower (agent metaphor)
 - It might be used in small and dynamic subsets of the web
- Also known as focused crawling
- Same considerations as in building crawlers

Dynamic Search

- One of the proposed algorithm is *fish search* which exploits the intuition that relevant documents often have neighbors that are relevant
- The main idea of these algorithms is to follow links in some priority given:
 - a starting page
 - a query that defines the kind of page we are looking for
Adaptive Focused Crawling

- An ability to launch an agent that search the Web for you taking into account your query and your profile and discover useful resources
- More close to Information Filtering
- A number of research projects – Bazaar, Arachnid – MySpiders: http://myspiders.informatics.indiana.edu/

Dynamic Search

The query is used to chose the next link to follow
Browsing + Crawling

- The idea
 - While you are browsing the Web, your “agent” runs ahead of you checking pages one-two-three steps in front of you
 - Knowing your interests (and whatever else your User Model stores) it can recommend best pages and best direction for browsing
- Letizia project (Henry Lieberman, MIT)

Current Challenges

- New IR models are needed in order to
 - face the constant change of the document set
 - (better) exploit HTML and link information: link position in the page, anchors, etc…
- Querying modes
 - So far we searched only for content, but we can also search for structure (of a page, or links to or from a page, we should want to search for hubs or references).
Current Challenges

- **Crawling**
 - more sophisticated architectures in order to cope with the grow rate of the Web.

- **Ranking**
 - ranking pages not only on the basis of the relevance to the query but also the “authority” of the page (better than Google)
 - ranking meta-search results

- **Searching “hidden Web”**
 - A large part of the Web is dynamically created for the user. These pages are invisible for a search engine

- **Multimedia search**
 - We need a way to search images, video, audio, Flash animations, Animated GIFs

- **Personalization**
 - We need to provide adaptive IA
Current Challenges

- Query space does not match document space
- Main hypothesis of IR is broken!
- How to build a mapping from a query to documents?
- Rely on human relevance judgement!
 - Using Web directories
 - Mining Web anchors (Kraft, WWW 2004)
 - Mining results of successful search

Evaluation of Web Search

- How we can use traditional evaluation metrics?
- How we can measure precision if the user does not scroll?
- How we can measure recall if the coverage is inherently incomplete?
- “Web Directories” method (using category names/content of Web directories)
Adaptive Web IA systems

- Adaptive Search Engine Filters
- Adaptive Meta-search engines
- Adaptive Focused Crawlers (agents)
- Browsing guides
 - Adaptive guidance (WebWatcher)
 - Adaptive annotation (Syskill&Webert)
- Recommenders
 - Closed Corpus (Sitelf)
 - Open Corpus (Letizia, SurfLen)
- Adaptive bookmark managers

Information services

- Integrates several functions
 - Support users in ad-hoc retrieval
 - Support SID filtering
 - Support bookmarking
 - Support users in browsing
 - Provide collaborative recommendation
 - Launch adaptive agents for collecting information
- Examples: FAB, ELFI