INFSCI 2140
Information Storage and Retrieval
Lecture 8: Alternative Retrieval Techniques

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/2140-51

Ad-hoc IR in text-oriented DS

- The context (L1)
- Querying and matching (L2,L3)
- How to evaluate results (L4)
- How it all works internally (L5,L7)
- Better search and presentation taking user unto account: RF, QE, UM (L6)
- Better organization and visualization of search results (L10)
- What else?
A Broader view of the course

- Classic Information Retrieval
- Improving Classic Information Retrieval
- What else beyond Classic IR?
 - Alternative IR (L8)
 - Multimedia IR (L8)
 - Visualization (L10)
- Newest trends
 - User Modeling for IR (L6, L8, L10)
 - Web IR (L9)

Alternative techniques?

- Information Filtering
- Natural Language Processing
- Hypertext: Links and browsing
- Citation Processing
- Adaptive hypermedia / navigation support
- Implicit queries (recommenders)
- Multimedia IR
- Dynamic queries (L10)
Hypertext: Definition

- Shneiderman [SK89]:
 - "a database that has active cross-references and allows the reader to "jump" to other parts of the database as desired".
- A hypertext is a database.
- The typical user action is a jump between parts of the database.
- Apart from pieces of information, called nodes, the database contains links between related nodes.
Hypertext: Anatomy

- Nodes
 - scrolling (WWW “pages”)
 - fixed size (HyperCard)
 - several pages
- Anchors (*hot world*, *hot spot*)
- Links
 - Anchor to node
 - Source anchor to destination anchor (Intermedia)

Hypermedia

- J. McDaid [McDaid-91]:
 - Hypermedia is ... an extension of Nelson's earlier coinage, "hypertext" (for non-sequential writing), hypermedia implies linking and navigation through material stored in many media: text, graphics, sound, music, video, etc.
History of Hypertext: Founders

1945: Vannevar Bush proposes *Memex* in his article "As We May Think".

1965: Ted Nelson introduces *Xanadu* and coins the term hypertext.

1967: Andries van Dam develops the *Hypertext Editing System* at Brown University, the first working hypertext.

1968: Doug Engelbart gives a demo of *NLS*, a part of the Augment project, started in 1962.

History of Hypertext: Promoters

1975: A team at CMU, headed by Robertson, develops the *ZOG* system, later *KMS*.

1978: A team at MIT, headed by Andrew Lippman, develops the *Aspen Movie Map*.

1985: Janet Walker develops the Symbolics *Document Examiner*, the first hypertext system used by "real" customers.

1985: Several other hypertext systems - *NoteCards* (Xerox), *Intermedia* (Brown University) ...
History of Hypertext: Real Word

1986: OWL introduces *Guide for the Macintosh*, the first widely available hypertext system, based on the *Unix Guide* (Peter Brown, University of Kent)

1987: Apple delivers *HyperCard* free with every Macintosh

1987: The ACM organizes the first Conference on Hypertext

1990: The *World Wide Web* delivers Hypertext to millions

Link Behavior

- **Jump** (goto) to another node
 - node shown in the same window
 - node shown in different window (NoteCards)

- **Pop-up window** with definition (Guide, HyperCard)

- **Stretchtext**
Another Node

Now jump back!

Link Behavior

- **Jump** (goto) to another node
 - node shown in the same window
 - node shown in different window (NoteCards)

- **Pop-up window** with definition (Guide, HyperCard)

- **Stretchtext** Pop-up Window activates when you click the mouse button and disappears when you release the button
Link Behavior

- **Jump** (goto) to another node
 - node shown in the same window
 - node shown in different window (NoteCards)
- **Pop-up window** with definition (Guide, HyperCard)
- **Stretchtext**

Link Behavior

- **Jump** (goto) to another node
 - node shown in the same window
 - node shown in different window (NoteCards)
- **Pop-up window** with definition (Guide, HyperCard)
- **Stretchtext** - expansion of text (Guide)
 - additional text is inserted when you click!
 - you may also **collapse** the expansion back
Hypertext Navigation

- Goals
 - Understanding “what’s there”
 - Find some information
 - Learn something

- Problems
 - Where am I?
 - Where I can go from here?
 - Where I should go?

Navigation aids

- Metaphors (museum, travel)
- Getting the whole picture
- Going back
- Avoiding loops
- Giving more information to decide
- Using structure (sequence, tree)
- Adaptive navigation support
Getting the whole picture...

... without getting lost

- Guided tours
- Landmarks
- Index pages
- Maps
 - Local map
 - Global map
- Fisheye views and hyperbolic trees

Hyperbolic Trees

Going back

- “Back” button
- History list
 - partial: path only (Netscape)
 - full: all visited nodes (IE)
- History tree
- Bookmarks

Where I should (should not) go?

- Loops and inefficient navigation
 - Unique anchors
 - Bread crumbs
 - Highlighting visited links
- More information to decide
 - Typed links
 - Sneak preview
- Adaptive navigation support
Typed Links

- Verbal typing:
 - subheading, prefix
- Spatial typing:
 - location, grouping
- Typed by visual cues
 - Font: size, style, type
 - Icon/bullet
 - Color of font, background, icon/bullet

Sneak Previews

More at http://www8.org/w8-papers/4b-links/visual/visual.html
Using the structure

- Sequence (HyperCard)
 - forward
 - backward
 - home
- Tree
 - top
 - ancestor
 - descendants
 - siblings
- Table of contents

Navigation aids: summary

- backtracking
- bread crumbs
- highlighting links
- unique anchors
- sneak preview
- typed links
- history list
- history tree
- landmarks
- bookmarks
- maps
- indexes
- fish-eye views
- guided tours
Hypertext Course

– http://wwwis.win.tue.nl/2L690/
– Your Student id is your pitt e-mail

From IR to Hypertext

- Browsing offers an alternative and powerful way of information access
- What can we do if there are no links between documents and browsing is not possible?
- Similarity-based navigation
 – Document similarity
 – Access similarity
Citation processing

- Citations as extra information about a document
 - Co-citation as a similarity measure
 - Link between documents citing same source
- Citations as a measure of importance
- Citation-based navigation
- Examples: WebOfScience, CiteSeer
- Problem: no citation standard

What’s in a citation?

- Authors
- Title
- Source data
 - Journal: Title, publisher
 - Book: Title, editor, publisher
 - Conference: Title, date, location
- Location in the source
Citation processing

- Is it only relevant to science papers?
- Where else similar technologies can be used?

Browsing the Web

- Can we support the user who is browsing?
- No query: need to know information need or user model
 - How to deduce that? \(\Rightarrow\) User modeling
- No “search results”: need to guide the user to good pages
 - How to guide? \(\Rightarrow\) Adaptive navigation support
Adaptive hypermedia: Why?

- Different people are different
- Individuals are different at different times
- "Lost in hyperspace"
 - Large variety of users
 - Variable characteristics of the users
 - Large hyperspace

Where it can be useful?

- Web-based education
 - ELM-ART, AHA!, KBS-Hyperbook, MANIC
- On-line information systems
 - PEBA-II, AHA!, AVANTI, SWAN, ELFI, ADAPTS
- E-commerce
 - Tellim, SETA, Adaptive Catalogs
- Virtual and real museums
 - ILEX, HYPERAUDIO, HIPS, Power, Marble Museum
- Information retrieval, filtering, recommendation
 - SmartGuide, Syskill & Webert, IfWeb, SiteIF, FAB, AIS
What can be adapted?

- Hypermedia = Pages + Links
- Adaptive presentation
 - content adaptation
- Adaptive navigation support
 - link adaptation
Adaptive navigation support: goals

- Guidance: Where I can go?
 - Local guidance (“next best”)
 - Global guidance (“ultimate goal”)
- Orientation: Where am I?
 - Local orientation support (local area)
 - Global orientation support (whole hyperspace)

Adaptive navigation support

- Direct guidance (WebWatcher)
- Restricting access
 - Removing, disabling, hiding
- Sorting
- Annotation
- Generation
 - Similarity-based, interest-based
- Map adaptation techniques
Example: Adaptive annotation

Annotations for topic states in Manuel Excel: not seen (white lens); partially seen (grey lens); and completed (black lens)

Example: Adaptive annotation

What can be adapted: links

- Contextual links (“real hypertext”)
- Local non-contextual links
- Index pages
- Table of contents
- Links on local map
- Links on global map

Link types and technologies

<table>
<thead>
<tr>
<th></th>
<th>Direct guidance</th>
<th>Sorting</th>
<th>Hiding</th>
<th>Annotation</th>
<th>Map adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual links</td>
<td>OK</td>
<td></td>
<td>(disabling)</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Non-contextual links</td>
<td>OK</td>
<td>OK</td>
<td>?</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Table of contents</td>
<td>OK</td>
<td></td>
<td>?</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>OK</td>
<td></td>
<td>?</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Local map</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Global map</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
Adaptive navigation support: evaluation

- Sorting
 - HYPERFLEX, 1993
- Annotation (colors) and hiding
 - ISIS-Tutor, 1995
- Annotation (icons)
 - InterBook, 1997
- Hiding
 - De Bra’s course, 1997

Evaluation of sorting

- HYPERFLEX: IR System
 - adaptation to user search goal
 - adaptation to “personal cognitive map”
- Number of visited nodes decreased
 (significant)
- Correctness increased
 (not significant)
- Goal adaptation is more effective
- No significant difference for time/topic
Annotation and hiding: ISIS-Tutor

- An adaptive tutorial for CDS/ISIS/M users
- Domain knowledge: concepts and constructs
- Hyperspace of learning material:
 - Description of concepts and constructs
 - Examples and problems indexed with concepts (could be used in an exploratory environment)
- Link annotation with colors and marks
- Removing links to “not relevant” pages

Sample index page (annotation)
Sample index page (hiding)

Results: performance

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of steps</th>
<th>Time (sec)</th>
<th>Concept repetitions</th>
<th>"Unforced" concept repetitions</th>
<th>Task repetitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-adaptive</td>
<td>81.3</td>
<td>2196</td>
<td>17.3</td>
<td>11.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Adaptive</td>
<td>65.2</td>
<td>1418</td>
<td>9.0</td>
<td>5.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Restrictive</td>
<td>58.2</td>
<td>1785</td>
<td>8.9</td>
<td>4.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Adaptive annotation makes navigation more efficient
InterBook: concept-indexed ET

- “Knowledge behind pages”
- Structured electronic textbook (a tree of “sections”)
- Sections indexed by domain concepts
 - Outcome concepts
 - Background concepts
- Concepts are externalized as glossary entries
- Shows educational status of concepts and pages

Book view
Adaptive annotation can:

- Reduce navigation efforts
 - Results are not significant (variety of styles?)
- Reduce repetitive visits to learning pages
 - Significant - if applied properly
- Encourage non-sequential navigation
- Increase learning outcome
 - For those who are ready to follow and advice
- Make system more attractive for students

Implicit Query - Recommenders

- A user identifies 1 or several objects as being of interest
- The recommender system suggests matching objects from the DS
- Inverse paradigm - push vs. pull: the user is passive (not really querying), the system is active - recommending
- Shares a lot in common with IF
Parameters for recommenders

- Short term of long term “interest”
 - 1-2 “interesting” items in one session
 - many items over time
- Direct or indirect “rating”
 - Direct rating
 - “Looking at”: click, browse
 - Other ways to show interest:
 -
 -

Parameters for recommenders

- Content-based vs collaborative “filtering”
- Content based:
 - find items similar to the set of interesting by content
- Collaborative “filtering”
 - Find users who have similar opinion with you
 - What else these user consider interesting?
Case Study: Paper Recommender

- Suggest publication for several reasons
 - Similar to just downloaded paper
 - Cites just downloaded paper
 - Cited by just downloaded paper
 - Most frequently downloaded together
 - Added since last visit and cited by earlier downloaded paper
 - Most popular but not yet considered
- Doubled # downloads per visit!

Adaptation in Paper Recommender

- What?
 - Learns relative importance of the reasons by watching agreements to suggestions
- When?
 - Clicked “suggest”, downloaded paper, idle time
- Adaptability (user can specify)
 - Which reasons not to consider
 - Topics of interests
- URL:
 http://www.ics.uci.edu/~pazzani/Publications/Publications.html
Case Study: Paper Recommender

- How the users show their interests?
- Long term or short term interests?
- Which technology is better - content-based or collaborative filtering?

Case Study: XLibris

- XLibris can generate marginal links and further reading list
- The user reads the text and annotates it using a pen

http://www.fpal.xerox.com/xlibris/
Case Study: XLibris

- How the users shows their interests?
- Long term or short term interests?
- Which technology is better - content-based or collaborative filtering?

Case Study: WATSON

- WATSON system (Northwestern U)
 - The user types or work in GUI
 - The system observes his/her work
 - The recommendation window shows relevant resources
- Instant Queries
Case Study: WATSON

- How the users show their interests?
- Long term or short term interests?
- Which technology is better - content-based or collaborative filtering?

Case Study: MovieCentral

- The users rate movies
- The system can suggest best bets
- Users keep rating movies while checking best bets

http://www.moviecentral.com
Alternative URL: http://www.movielens.umn.edu/
Case Study: MovieCentral

- How the users shows their interests?
- Long term or short term interests?
- Which technology is better - content-based or collaborative filtering?

Case Study: Amazon.com

- How the users shows their interests?
- Long term or short term interests?
- Which technology is better - content-based or collaborative filtering?
Web Recommenders vs. ANS

- Recommenders originate from filtering systems and use an old “search” approach, ANS originates from hypertext and focuses on navigation support.
- Even advanced recommenders use simple 1-D “list of links” presentation, ANS use 1.5-D presentation
 - Power of a recommendation engine could be enhanced by power of a proper interface.
- Modern AH systems require content knowledge, modern recommender systems can create/extract it.

A broader picture - adaptive IS

- Users work with an adaptive IS, the system attempts to develop a user model (knowledge, interests, goals) and assist each user adaptively.
- There are different ways to model the user (knowledge, interests, collaborative, content-based...)
- There are different ways to use the knowledge to assist the user.
Case Study: Knowledge Sea

- What the users are doing
- What kind of information the system is able to extract from watching the users and how
- How the system assist the users in the process of information access?

Multimedia IR

- Text as Image (Digital Libraries)
- Images
- Video
- Spoken documents
- Music
- Arbitrary sound
Text as Image (Digital Page Image)

- Text image vs. text
- Problems
 - From image to text - OCR vs manual
 - Page segmentation
 - Graphic extraction
- Examples
 - CORE, JSTOR, TULIP
 - Early Canadiana http://www.canadiana.org/

Image retrieval

- Application areas
 - Retrospective
 - Stock photos
 - Filtering
 - Satellite imaging
 - Law enforcement and immigration
- Main approaches
 - Concept-based retrieval
 - Content-based retrieval
Concept-based image retrieval

- Key: Concept-based indexing of images
 - Based on attributes extracted manually
 - Based on logical, high level features
- Systems for image indexing
 - ICONCLASS, A&AT, ...
- What?
 - Time, location, content

Content-based image retrieval

- Key: Automatic indexing of images based on low-level features
 - Color
 - Texture
 - Shape
 - Spatial orientation and layout
 - Sketch
Examples - content based IR

- QBIC - IBM’s Query By Image Content:
 http://www.qbic.almaden.ibm.org

- MIT PhotoBook:
 http://www.white.media.mit.edu/vismod/demos/photobook/

- Virage: http://www.virage.com

- VisualSeek:
 http://www.ctr.columbia.edu/~jrsmith/VisualSEEk

Video and spoken language

- Problems:
 - Segmentation
 - Indexing

- Examples:
 - CMU Informedia:
 • http://www.informedia.cs.cmu.edu
 - Virage:
 • http://www.virage.com/services/ivq.html