Ad-hoc IR in text-oriented DS

- The context (L1)
- Querying and matching (L2,L3)
- How to evaluate results (L4)
- How it all works internally (L5,L7)
- Better search and presentation taking user unto account: RF, QE, UM (L6)
- Better organization and visualization of search results (L10)
Overview

- Query Expansion and Relevance Feedback
- User modeling and adaptive information access
 - User profiles
 - Adaptive filtering
 - Adaptive search
 - Adaptive presentation in IR and information systems

Relevance Feedback and Query Expansion - 3 points of view

- Pragmatic view
 - Modern Information Retrieval, Baesa-Yates
- Designer’s view
 - Bob Korfhage
- Interaction view
 - Nick Belkin
QE: Pragmatic point of view

- Query Expansion is a general technique of improving query to achieve better result (precision or recall)
- The idea is to “steer” the query closer to the vector subspace of the relevant documents
- How to steer? Vector operations:
 - Project (remove), Add, Re-weight

Query Expansion

- The idea: add some extra “good” terms to a query in a hope that it will bring more results or better precision
- Possible sources
 - Automatic: Properties of the document space and term distribution
 - Local analysis (current search)
 - Global analysis (whole space)
 - User-based: Relevance feedback
Automatic Query Expansion

- Local analysis: documents and term distribution in the current search
 - Local Clustering
 - Local Context Analysis
- Global analysis: document and term distribution in the whole space
 - Using Similarity Thesaurus
 - Using Statistical Thesaurus

QE with local clustering

- Idea: add terms that are similar to good terms in the context of good documents
- Step 1: Cluster all terms using similarity metrics based on co-occurrence in documents
- Step 2: For each term in a query add M nearest neighbors in the cluster to a query
QE with local context analysis

- Idea - add concepts “similar” to the whole query
- Step 1: Get N top ranked passages using original query
 - Document is divided into small chunks
- Step 2: Calculate similarity between each concept from the passage and the whole query using a version of TF*IDF
- Step 3: Add top concepts to the query

QE with global analysis

- Similar ideas based on global analysis of terms in document collection
- Use global similarity thesaurus (terms clustered as documents with inverse indexing)
- Represent a query in the space of concepts and find terms that are most close in this space to the whole query
Korfhage’s view

- QE is a manipulation with query to improve search results
- Main source of information - user
- What can be changed
 - query, document, algorithms
- What kind of manipulation
 - re-weighting, adding/removing, altering
- User profiles and genetic algorithms

Belkin’s view

- Information retrieval is an interaction between a human and information [system]
- Query is simply the first step in a dialogue - a part of user model that the system can build
- More interaction is required to update models of dialog partners
Relevance Feedback

- A IR system can learn something about the user preferences using the *relevance feedback*
- The user indicates the relevance of a set of documents and the system uses this feedback to modify its retrieval behaviors
- Then a new set of documents is presented and the retrieval process starts again

What kind of feedback?

- Positive feedback
 - Mark relevant documents
- Negative feedback
 - Mark irrelevant documents
- Mixed feedback
 - Positive and negative
 - Rating on some scale (cold/hot/lukewarm)
Relevance Feedback: The Idea

- A system can use positive relevance judgment trying to obtain more documents similar to those judged relevant
- A system can use negative relevance judgments trying to avoid documents similar to the one that were rejected

Relevance Feedback: Where?

- Where can we apply the information provided by the user?
- Query
- Profile
- Document representation
- Retrieval algorithm
Modifying the query

- This is what we can call user-based query expansion
- It is the simplest way
- It has no lasting impact on the system (that is a mixed blessing)
- Explored by Salton and Rocchio
 - Rocchio Algorithm

Modifying the user profile

- Profile - a long term representation of user interests
 - We will learn details later
- These modifications last
- User profile and query often have the same or nearly the same representation
 - it is possible to use the same techniques
- The modifications should not be made on the basis of a single query
Modifying the document representation

- Modifications that last and can effect the behavior of the system for all the users
- It can be accepted if the community of users is a closed community of experts
- Methods are similar to query modification
 - Some variants of Rocchio algorithm can be used

Modifying the search algorithm

- It is something to do very carefully
- It is possible to change
 - Algorithms parameters (easy to undo)
 - The algorithm itself (this modifies deeply the behavior of the system)
Rocchio Algorithm (IR)

\[Q' = Q + \frac{1}{n_1} \alpha \sum_{i=1}^{n_1} R_i - \frac{1}{n_2} \beta \sum_{i=1}^{n_2} S_i \]

where
Q is the vector of the initial query
R_i is the vector for relevant document
S_i is the vector for the irrelevant documents
\(\alpha, \beta \) are Rocchio’s weights

Relevance feedback: “space” view

- D_r - set of relevant documents \{d_r\}
- D_n - set of non-relevant documents \{d_n\}
- Rocchio’s Formula:
 \[q_m = \alpha \ q + (\beta / |D_r|) \Sigma d_r - (\gamma / |D_n|) \Sigma d_n \]
- Ide’s Regular Formula
 \[q_m = \alpha \ q + \beta \Sigma d_r - \gamma \Sigma d_n \]
- Ide’s Dec Hi Formula
 \[q_m = \alpha \ q + \beta \Sigma d_r - \gamma \Sigma \max_{\text{non-rel}} (d_j) \]
Problems - User Side

- **Rating**
 - More information vs. user overload

- **Supporting iterative search**
 - The user gets tired after 3 or 4 iterations
 - The user prefers to have a sort of “incremental interface” with the new documents highlighted in order to avoid scanning the same documents again and again

Interface for RF Search

- What can help?
- Better interface
- The use of long-term profiles
User models in adaptive systems

Classic loop user modeling - adaptation in adaptive systems

SDI: The origin of profiles

- Selective Dissemination of Information
 - User defines her profile of interests
 - System filters all relevant new sources
 - Profile - more than a query - long term interests - that is where the work on user profiles started

- Used for retrospective and awareness
- Profiles kept updated by the users
Information Filtering

- **Common meaning**
 - Modern version of SDI also known as Awareness Systems
 - These systems are designed to keep the user informed about an area of interest
 - The user submits his profile as a permanent query that periodically is matched by the system to the new information

- **Bob Korfhage’s view:**
 - “Mining rich ore”

User profile

- **Common term for user models in IR/IF**
- **A user’s profile is a collection of information about the user of the system.**
- **These information is used to get the user to more relevant information**
- **Views on user profiles**
 - Korfhage - another reference point
 - Belkin - starting part of the user model
Simple vs. Extended User Profile

- **Simple profile**
 - A set of search terms (0-1 vector)
 - A boolean query
 - A set of terms with their weights (vector)

- **Extended profile**
 - contains information related to the user as a person in order to understand or model the use that a person will make with the information retrieved

Extended profile

- **Knowledge**: about the system and the subject
- **Goals**: local and global
- **Interests**
- **Background**: profession, language, prospect, capabilities
- **Preferences** (types of docs, authors, sources…)

Who maintains the profile?

- Profile is provided and maintained by the user/administrator
 - Sometimes the only choice
- The system constructs and updates the profile (automatic personalization)
- Collaborative - user and system
 - User creates, system maintains
 - User can influence and edit

General system types

- Search-oriented Web IR systems
 - Ad-hoc IR
 - Information Filtering
- Browsing-oriented IR systems
 - Hypertext and the Web
- Information Visualization
- Personalized information spaces
 - Bookmarking systems, MyLibrary systems
- Search services
 - Cover several functions around single user model
What Can Be Adapted?

- Adaptive search and filtering
- Adaptive presentation
 - Presenting a page (analyze results)
- Adaptive information visualization
- Adaptive navigation support
 - Presenting search results (analyze results)
 - Presenting links on a page (proceed from)
- Adaptive collection (crawling)

Adaptive Information Filtering

- Goals:
 - Improve the long-term user profile to get better filtering results
- Methods
 - Variations of relevance feedback for improving the profile
 - Machine learning approaches to learn users’ “true” long-term interests
Example: Adaptive News Server

- Adapts to long-term user preferences
- What to consider:
 - Which news items the user browses
 - How many pages in a new item the user read (mobile platform)
- Uses machine learning
- Significantly improved the number of messages read. Startup launched

Adaptive Search

- Goals:
 - Find documents (pages) that are most suitable for the individual user
- Methods:
 - Employ user profiles representing long-term interests (Korfhage)
 - Use heuristics for adaptation to user types and actions
User profile for adaptive search

- The profile is used to give a context to the query, in order to reduce ambiguity.
- For example, the background of the user can be helpful to understand what kind of information he is looking for. A query about the theory of groups has a different meaning for a mathematician and a sociologist. Moreover, a student in math is interested in the basic concepts, while an expert is interested in advanced materials.

Using user’s profile for search

- The user profile can be applied in three ways:
 - To modify the query itself (pre-filter)
 - To process results of a query (post-filter),
 - To change the usual way of retrieval
 - Profile is treated as a reference point
Post-filter

- The user profile is used to organize the results of the retrieval process
 - present to the user the most interesting documents
 - Filter out irrelevant documents
- Extended profile can be used effectively
- In this case the use of the profile adds an extra step to processing
- Similar to classic information filtering problem
- Typical way for adaptive Web IR

Pre-filter

- In this case the profile is used to modify the query.
- Imagine that:
 - the documents,
 - the query
 - the user profile
 are represented by the same set of weighted index terms
Pre-filter: Linear Transformation

- The query \(q = q_1, q_2, \ldots, q_n \)
- The profile \(p = p_1, p_2, \ldots, p_n \)

The query modified by the user profile will be something like that:

\[
modified q_i = K p_i + (1-K) q_i \quad i=1,2,\ldots,n
\]

Pre-filter: Linear Transformation

\[
modified q_i = K p_i + (1-K) q_i
\]

- In this case we add the terms of the profile to the query ones, weighted by \(K \)

for \(K=0 \) modified \(q_i = q_i \), the query is unmodified
for \(K=1 \) modified \(q_i = p_i \), the query is substituted by the profile
Piecewise linear transformation

- If the term appears in the query and in the profile, then the linear transformation is applied.
- If the term appears in the query but not in the profile, it is left unmodified or diminished slightly.
- If the term appears in the profile but not in the query, it is not introduced, or introduced with a weight lower than in the profile.

Separate reference points

- In this case, documents are retrieved if they are “near” the query or the profile.
- In the following discussion, we assume that the similarity is measured by distance $\|D, Q\|$ where D is the document and Q is the query.
Separate reference points

We have different ways to integrate query and profile as separate reference points:

- Disjunctive model of query-profile integration
- Conjunctive model of query-profile integration
- Ellipsoidal model
- Cassini oval model

Disjunctive model

In this case, we will take the document if the following condition is satisfied:

$$\min(\|D, Q\|, \|D, P\|) < d$$

The D document should be “near” the query Q or the profile P.
Conjunctive model

- Condition to satisfy
 \[\max(\|D, Q\|, \|D, P\|) < d \]

 The document should be “near” the query and the profile.

- In this case if profile and query have little, or noting, in common very few documents are retrieved.

Ellipsoidal model

- Condition to satisfy
 \[\|D, Q\| + \|D, P\| < d \]

 This is the equation of an ellipse.

If the profile and query are “far apart” a lot of documents not relevant are retrieved.
Cassini model

- Condition to satisfy
 \[\|D, Q\| \times \|D, P\| < d \]

Types of systems

- Pre-filter with QE - Mobasher’s
- Adaptive search: SmartGuide
- Post-filters: Syskill & Webert, WIFS
- Search-based Recommenders: a combination of IR and IF
- Adaptive Meta-Search engines
 - Adaptive selection and ranking of sources
Example: SmartGuide

- Access to the CIS-like information
- User has a long-term interests profile and current queries
- Information is searched using a combination of both
- Profile is initiated from a stereotype and kept updated
- Increased user satisfaction, decreased navigation overhead

Example: WIFS

- Adaptive post-filter to AltaVista search engine
- Maintains an advanced stereotype-based user model (Humos subsystem)
- User model is updated by watching the user
- The model is used to filter and re-order the links returned by AltaVista
Adaptive Presentation

- Provide the different content for users with different knowledge, goals, background
- Select/stress most relevant content for the user
- Remove/fade irrelevant pieces of content
- Show additional relevant material for some categories of users
 - comparisons
 - extra explanations
 - details
- Sort fragments - most relevant first

Adaptive presentation techniques

- Conditional text filtering and stretchtext
 - ITEM/IP, PT, AHA!, MetaDoc, KN-AHS, PUSH, ADAPTS
- Frame-based adaptation
 - Hypadapter, EPIAIM, ARIANNA, SETA
- Full natural language generation
 - ILEX, PEBA-II, Ecran Total
- Most of techniques rely on extended profiles
Conditional text filtering

- Similar to UNIX cpp
- Universal technology
 - Altering fragments
 - Extra explanation
 - Extra details
 - Comparisons
- Low level technology
 - Text programming

If switch is known and user_motivation is high

- Fragment 1
- Fragment 2
- Fragment K

Example: Stretchtext (PUSH)
Example: Stretchtext (ADAPTS)

Adaptive presentation: evaluation

- MetaDoc: On-line documentation system, adapting to user knowledge on the subject
- Reading comprehension time decreased
- Understanding increased for novices
- No effect for navigation time, number of nodes visited, number of operations