Expressions again

- Expression: something that has a value
- Types of expressions we know
 - Literal constants: 33 or 3.14
 - Variables: count
 - Simple - two operands and operator: 3 + 5
 - Complex: (count - (44 - 12) / 7) * num
- Some expressions have side effect
 x = 0 /* = is an operator! */
 printf("Hello, World!\n")
From expressions to statements

- Statement: *expression with a semicolon*

  ```
  33;
  3+5;
  x = 0;
  x = y = 0; /* x = (y = 0); */
  printf("Hello, World!\n");
  ```

- A statement makes sense if an expression in the statement has some side effect

Block and Sequential Execution

- Block: `{
 - A group of statements
 - Statements are *sequentially* executed
 - Syntactically equivalent to a statement

- Example:
  ```
  {
    a = a +1;
    b = a % 2;
  }
  ```
Block and Sequential Execution

- Flowcharts are used to show the control flow inside the program.
- Sequential execution inside a block means that the control (over the processor) flows downwards from statement to next statement.

```
a = a +1
b = a % 2
```

Blocks and Variables

- A block in C can start with a declaration of variables (just as the whole function).
- The scope of these variables is within this block - they can't be used outside of the block.
- If variables with the same name exist outside of the block, they will be shadowed by the local block variables and not visible within the block.

```c
Example:
int main() {
    int a, b;
    {
        int a;
        a = a +1;
        b = a % 2;
    }
}
```
While Loop

while (expression)
 loopstatement
nextstatement

– If expression is not 0 (true) - dive into the loop
– If expression is 0 (false) - skip to nextstatement
– I.e, while expression is true, do the loop

While Loop with a Block

while (expression) {
 statement-1
 ...
 statement-K
}
nextstatement

– If expression is not 0 - dive into the loop
– If expression is 0 - skip to nextstatement
– I.e, while expression is not 0, do the loop
Flowchart of the While Loop

Example: Countdown (1)

/* Example 1: counting to zero
 Course IS0012
 Author: Peter Brusilovsky */
#include <stdio.h>
void main()
{
 int counter = 5; /* setting the counter */
 printf("Start counting...
");
 while (counter) {
 printf("%d
", counter);
 counter = counter - 1;
 }
 printf("Fire!
");
}
Increment Expressions

- Post-Increment: num++
 - Side effect: num is incremented
 - same as num = num + 1
 - Value: the value before increment
 - same as num

- Pre-Increment: ++num
 - Side effect: num is incremented
 - same as num = num + 1
 - Value: the value after increment
 - same as num + 1

Decrement Expressions

- Post-Decrement: num--
 - Side effect: num is decremented
 - same as num = num - 1
 - Value: the value before decrement
 - same as num

- Pre-Decrement: --num
 - Side effect: num is decremented
 - same as num = num - 1
 - Value: the value after decrement
 - same as num - 1
Some New Operations

- Special assignment expressions

 result = result + 100; \implies result += 100;
 result = result - 100; \implies result -= 100;
 result = result % 100; \implies result %= 100;
 result = result * 100; \implies result *= 100;
 result = result / 100; \implies result /= 100;

- As every expression it has a value
 - The value after assignment
- The side effect is the assignment

Example: Countdown (2)

```c
/* Example 2 - counting to zero
   Author: Peter Brusilovsky 9/12/00 */
#include <stdio.h>
define HOW_MANY 5

void main()
{
    int counter = HOW_MANY; /* setting the counter */

    printf("Start counting...\n");
    while (counter)
      printf("%d\n", counter--);
    printf("Fire!\n");
}
```
Example: Interest over Years

```c
void main() {
    int years; /* years the capital stays in bank */
    float interest_rate; /* interest rate in percents */
    float capital; /* capital in dollars */

    printf("Startup capital ($$.cc): ");
    scanf("%f", &capital);
    printf("Interest rate in percents (xx.xx): ");
    scanf("%f", &interest_rate);
    printf("How many years? ");
    scanf("%d", &years);
    while (years) {
        capital += capital * interest_rate / 100;
        --years;
    }
    printf("New capital %9.2f\n", capital);
}
```

Before Next Lecture:

- Do reading assignment
 - Perry: Chapter 10; Chapter 14 (First reading)
- Run Classroom Examples
- Check yourself by working with QuizPACK and WADEIn systems
- Explore alternative readings with Knowledge Sea
- Do your homework (HW5)