IS12 - Introduction to Programming

Lecture 8:

Data Types and Expressions in C

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/0012-051/

Primitive Data Types

Integer data

1, 10, -999, 1000
Floating point data
3.1415, -0.001, 2.0

Characters
'A', 'B', '_', '@'

Primitive data can be printed

```
    /* Example: Printing primitive data with printf */
```

 \#include <stdio.h>
 void main()
 \{
 printf ("Hello, World!\n");
 printf ("Here are integers: \%d \%d\n", 10, 99);
 printf ("Here are floats: \%f \(\circ f \backslash n ", 3.1415,0.001\));
 printf ("Here are characters: \%c \%c\n", 'A', '@');
 \}

How printf works

- Simple form - prints a string printf ("Some String\n");
- Note special symbols It and ln

Regular form
 Expr1, Expr2, Expr3);

- \% specifications should match expressions

Expressions?

■ What is an expression?

- Anything that can have a value
- In C almost anything is an expression

■ Expressions can have values of different type

- A literal constant is an expression:
4
3.1415
99
'A'
0.0001

Arithmetic operations

\#include <stdio.h>
void main()
\{
printf("Let's calculate! $\backslash n$ ");
printf("1234 + $4321=\% 5 d \backslash n ", 1234+4321)$;
printf("2 * $3.1415=\% 7.1 \mathrm{f} \backslash \mathrm{n} ", 2$ * 3.1415);
printf("5/2 = od\n", 5 / 2); /* int division */ printf("5.0 / $2=\circ f$ n", $5.0 / 2$);
/* type conversion */
printf("5 \%\% 2 = \%d\n", $5 \% 2$); /* remainder */
\}

Type conversion

Automatic type conversion

- If operands are of the same type, the result will be of this type too
- If operands are of different types, they will be converted to the "broader" type (I.e., int to float) before the calculation
Later we will learn about assignment conversion and casting

Multi-step calculations

/* Temperature Converter */
\#include <stdio.h>
void main()
\{ printf("100 Fahrenheit = \%6.2f Celsius\n", (5.0 / 9.0) * (100 - 32));
\}

Example with brackets

$$
(5.0 / 9.0) *(100-32)
$$

Example with brackets

Example with brackets

Order of calculation

■ Operations have priorities (* and / have higher priority than + and -)
Within operators of the same priority the order is defined by their associativity
Use brackets when you need to change the default order of calculations or when you are not sure
Learn precedence/associativity table! (K\&R2, p.53; D\&D, p. 44; Perry, insert)

Precedence of operators

$\begin{array}{lll}\text { ■ } / ~ & \circ & \rightarrow \text { third priority } \\ \square & - & \rightarrow \text { fourth priority }\end{array}$

- $3+12$ * $6 \equiv 3+(12$ * 6$)$
± 1.2 * $2+3 \equiv(1.2$ * 2$)+3$
$\square 3-99 \div 5 \equiv 3-(99 \div 5)$

Before next lecture:

Do reading assignment

- Perry, Chapter 2 (starting from "Kinds of Data"); Chapter 4; Chapter 9 (first reading)
Run Classroom Examples
Check your understanding on quizzes
Check yourself by working with exercises in WADEIn system

