
1

IS12 - Introduction to Programming

Lecture 2: Simple Programs

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/0012-051/

More on Logistics (I)

� Final grade
 (attendance + hw_points + quiz_points + extra_credit_points + exam_points)

(max_attendance +max_ hw _points + max_quiz_points+ max_exam_points

– Using this formula you can always check where you are standing.
50% corresponds to F, 50-62.5 is D range, 62.5-75 is C range,
75-87.5 is B range, and 87.5-100 is A range.

� Homeworks and Late submissions
– To get full credit submit homework before

 or on the due date!
– 20% of the grade is lost each late day

� Quizzes
– One lowest score will be dropped

2

More on Logistics (II)

� Extra credit
– Be active in forums, answer questions,

report errors and problems

– Take part in extra credit studies

� Catch up early:
– Get books, ask questions, seek help

– Run examples, experiment, write your
code

� Integrity

Outline

� Karel program syntax

� Programming errors

� Edit-Compile-Run-Test loop

� Karel built-in commands

� Defining new commands for Karel

� Naming Karel commands

3

Karel Program Syntax

� Karel programs have the following structure

beginning-of-program
beginning-of-execution

<commands>
turnoff;

end-of-execution
end-of-program
� Where <commands> is a sequence of Karel commands

separated by semicolons ;
� Note that it is a bit different from C language: in C a semicolon

ends a command

� "One command in each line" is a good style, not a syntax rule!

Syntax Errors

� What happens if the syntax rules are broken?

beginning-of-program
beginning-of-execution

move;
move;
turnleft
move;
turnoff;

end-of-execution
end-of-program

No “;”

4

Semantic Errors (bugs)

� If there are no syntax errors, does it mean that the program is
correct?

beginning-of-program
beginning-of-execution

move;
move;
move;
turnleft;
turnoff;

end-of-execution
end-of-program

Lines swapped

Where is the error?

beginning-of-program
beginning-of-execution

move;
move;
turnoff;
move;
turnleft;

end-of-execution
end-of-program

5

The edit-compile-run loop

1. Edit program

2. Compile program

3. If there are errors, fix and go back to 1
• you have got syntax error

• fix and go back to 1

4. Run it

5. If it produce wrong results
• you have got semantic error

• find the source of the error (debug)

• fix and go back to 1

The iterative nature
of programming

Edit Compile Run

Test/Debug

The “programming in small” loop

6

The Full set of Karel commands

� move - move one corner in the current
direction

� turnleft - turn left, change direction

� pickbeeper - pick 1 beeper from the
current corner, put into the beeper bag

� putbeeper - place 1 beeper from the
beeper bag on the current corner

� turnoff - turns itself off

Foolproof Karel: Error shutoff

� Can your errors hurt Karel?

� move - shutoff if facing a wall

� pickbeeper - shutoff if no beepers on
the corner

� putbeeper - shutoff if no beepers in the
beeper bag

� turnleft and turnoff - always possible

7

Problem: Move beeper

� Move a beeper from 1:4 to 3:5

Example: Move beeper

beginning-of-program
beginning-of-execution

move;
move;
pickbeeper;
move;
turnleft;
move;
move;
putbeeper;
move;
turnoff;

end-of-execution
end-of-program

8

We can define new instructions

� How to extend Karel’s set of instructions?

define-new-instruction <name> as
<instruction>;

� Example:

define-new-instruction go as
move

Why? Case 1: Square Dance

beginning-of-program
beginning-of-execution

move;
turnleft;
move;
turnleft;
move;
turnleft;
move;
turnleft;
turnoff;

end-of-execution
end-of-program

beginning-of-program
beginning-of-execution

move;
turnleft;
turnleft;
turnleft;
move;
turnleft;
turnleft;
turnleft;
move;
turnleft;
turnleft;
turnleft;
move;
turnleft;
turnleft;
turnleft;
turnoff;

end-of-execution
end-of-program

9

Block

� A syntactically correct way to make a
sequence of instruction looking as one
instruction. A block can be used whenever
single instruction can be used

begin
<instruction>;
<instruction>;
...
<instruction>;

end

Create a new instruction with the
block construct
� Blocks can be used to define new

instructions from several elementary ones

define-new-instruction <name> as
begin

<instruction>;
<instruction>;
...
<instruction>;

end;

10

Solution 1: The Missing turnright

� Now we can define turnright

define-new-instruction turnright as
begin

turnleft;
turnleft;
turnleft;

end;

Square Dancing Clockwise

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
beginning-of-execution

move;
turnright;

move;
turnright;
move;
turnright;
move;
turnright;
turnoff;

end-of-execution
end-of-program

The place for defining new instructions is between
beginning-of-program and beginning-of-execution

11

The Flow of Execution:
The Glossary Model

� When Karel encounters the new name
in the process of program execution, it
looks for its “definition” in the glossary of
commands

� If the definition of the new command is
found, Karel executes the body of the
command definition

� After that, Karel returns to the next
instruction

Name does not matter
(for execution)
� Names are just names. What the new

command will do is defined by its body, not
by its name

define-new-instruction turnright as begin
move;
move;
move;
move;

end;

12

Name does matter
(for understanding)
� From syntactic prospect, name could be any

combination of letters, numbers and hyphens
that starts with a letter

� From the understanding prospect, the name
should express the function of the new
command

define-new-instruction i543 as begin
turnleft;
turnleft;
turnleft;

end;

Before next lecture:

� Reading assignment
– Pattis:

• Chapter 2

• Chapter 3, Sections 3.1 - 3.7

– Tutorial: Lesson 4

� Follow Chapter 2 by writing and running
code

� Check yourself by doing exercises from
Chapter 2

