IS12 - Introduction to Programming

Lecture 11: While Loop

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/0012-051/

Expressions again

Expression: something that has a value

- Types of expressions we know
- Literal constants: 33 or 3.14
- Variables: count
- Simple - two operands and operator: $3+5$
- Complex: (count - (44-12) / 7) * num

Some expressions have side effect
x = 0 /* = is an operator! */ printf("Hello, World! \n")

From expressions to statements

Statement: expression with a semicolon
33;
3+5;
$\mathrm{x}=0$;
$\mathrm{x}=\mathrm{y}=0$; $/ * \mathrm{x}=(\mathrm{y}=0) ;$ */ printf ("Hello, World! \n");

- A statement makes sense if an expression in the statement has some side effect

Block and sequential execution

Block: \{\}

- A group of statements
- Statements are sequentially executed
- Syntactically equivalent to a statement Example:
\{
$a=a+1 ;$
$b=a \div 2 ;$
\}

while (expression) {
while (expression) {
statement-1
statement-1
*
*
statement-K
statement-K
}
}
nextstatement
nextstatement
- If expression is not 0 - dive into the loop
- If expression is 0 - skip to nextstatement
- I.e, while expression is not 0 , do the loop

Example: Countdown (1)

/* Example 1: counting to zero
Course ISO 012
Author: Peter Brusi lovs ky */
\#inc lude <stdio. h >
void main()
\{
int counter $=5$; /* setting the counter */
printf ("St art count ing. .. \n");
whi le (count er) \{
printf ("\%d\n" , counter);
counter $=$ counter - 1;
\}
printf ("Fire! \n");

Increment expressions

Post-Increment: num++

- Side effect: num is incremented
- same as num $=$ num +1
- Value: the value before increment
- same as num

Pre-Increment: ++num

- Side effect: num is incremented
- same as num $=$ num +1
- Value : the value after increment
- same as num + 1

Decrement expressions

- Post-Decrement: num--
- Side effect: num is decremented - same as num $=$ num - 1
- Value: the value before decrement - same as num

Pre-Decrement: --num

- Side effect: num is decremented
- same as num $=$ num -1
- Value : the value after decrement

Some new operations

Special assignment expressions
result $=$ result $+100 ; \rightarrow$ result $+=100$;
result $=$ result $-100 ; ~ \rightarrow$ result $-=100$;
result $=$ result $\% 100 ; ~ \rightarrow$ result $\%=100$;
result $=$ result $* 100 ; ~ \rightarrow$ result $*=100$;
result $=$ result / 100; \rightarrow result /= 100;
As every expression it has a value

- The value after assignment

The side effect is the assignment

Example: Countdown (2)

/* Example 2 - counting to zero
Author: Peter Brusi lovs ky 9/12/00 */
\#inc lude <stdio.h>
\#def ine HOW MANY 5
void main()
\{
int counter = HOW_MANY; /* set ting the counter * /
printf ("St art count ing. .. $\backslash \mathrm{n}$ ");
whi le (count er) printf ("od n ", counter--);
printf ("Fire! \n");
\}

Example: Interest over Years

void main() \{
int years; /* years the capital stays in bank */
float interest_rate; /* interest rate in percent s */
float capital; /* capital in dollars */
printf ("St artup capital (\$\$\$.cc) : ");
scanf ("\% f", \& capit al) ;
printf ("Interest rate in percents (xx.xx): ");
scanf("\% f", \& inter est_rate) ;
printf ("How many years? ");
scanf("\%d", \&years);
whi le (y ears) \{
capital += capital * interest_rate / 100;
-ye ars;
\}
printf ("New capital \%9. $2 \mathrm{f} \backslash \mathrm{n}$ ", capital);
\}

Before Next Lecture:

- Do reading assignment
- Perry: Chapter 10; Chapter 14 (First reading)
Run Classroom Examples
Check yourself by working with
KnowledgeTree and WADEIn system
Last HW before the Midterm
Start thinking about Midterm

