
Unobtrusive Data Collection for Web-Based Social
Navigation

Katja Hofmann1, Catherine Reed2, Hilary Holz2

California State University, East Bay
25800 Carlos Bee Boulevard

Hayward, CA 94542
1katja.hofmann@gmail.com

2{catherine.reed, hilary.holz}@csueastbay.edu

Abstract. In initial laboratory studies, subsymbolic user behavior1 has shown
promise as a source of information for social navigation. Scalable, unobtrusive
methods are needed for acquiring data on subsymbolic user behavior in field
studies or live systems. Current methods are not suitable for use outside the
laboratory because they interfere with normal user behavior and environment.
We present a method for unobtrusively collecting subsymbolic user behavior in
web-based systems, and report results from a field study. Our method is
unobtrusive in that it uses current web technologies, works on the vast majority
of current browsers, requires minimal instrumentation of existing web-based
systems, and requires no additional user effort. This unobtrusive data collection
method paves the way for future research on using subsymbolic user behavior
to improve social navigation.

Introduction

Recently, researchers have been exploring the use of subsymbolic user behavior for
social navigation. This source of information can be used in situations where explicit
feedback is difficult or impossible to acquire, or would interfere with normal user
behavior. Claypool et al. [2] analyzed subsymbolic user behavior in recommender
systems and found time spent reading (TSR) and time spent scrolling to be good
indicators for user interest in web pages, comparable to ratings provided as explicit
feedback. Farzan and Brusilovsky [4] show that time-spent reading can improve the
quality of a social navigation mechanism in educational context.

Subsymbolic user behavior may contain valuable information that could
complement currently used approaches. Hijikata [6] describes a method for extracting
keywords that interest the user based on subsymbolic user behavior within a web page
(i.e. following text with the mouse, highlighting text). Hijikata shows that this method
can extract keywords with much higher accuracy than approaches based on the page
as a whole. Subsymbolic user behavior could also be used to identify users that
interact similarly with resources, opening up a way to personalize social navigation.

1 We use the term subsymbolic user behavior to refer to low-level user behavior, that is, users’

interactions through mouse and keyboard with a web-based system.

We expect subsymbolic user behavior to be especially useful in relatively poorly
understood domains, such as in educational adaptive hypermedia.

Little research exists that systematically analyzes the use of subsymbolic user
behavior in social navigation. A major barrier is the lack of scalable, unobtrusive
methods for acquiring subsymbolic user behavior. Commonly, unobtrusive data
collection is done using server log files [4][7] or “strong indicators” [8]. Server log
files record user behavior on the level of click streams, i.e., which web pages were
visited at what time, and can be used to determine TSR. Strong indicators, such as
buying a book or downloading a recipe, record activity that is part of normal user
behavior. Strong indicators can be very accurate, but are domain specific and may be
difficult to identify for domains that are not well understood.

Initial research on subsymbolic user behavior developed various methods of data
collection that were employed in small-scale laboratory experiments. Goecks and
Shavlik [5] use a browser plug-in that keeps track of user behaviors such as link
pointing, scrolling, and links followed from a website. Claypool et al. [2] collect
implicit and explicit feedback through a custom web browser. Hijikata [6] employs
JavaScript, Java Applets and an embedded proxy server to record how users interact
with textual information on a web page. However, these methods are not suitable for
large-scale experiments, field studies, or deployment in a live system, as they require
additional user effort, such as installation of software, or configuration changes, or do
not submit collected data to a central server.

We present a methodology for unobtrusively collecting subsymbolic user behavior
in web-based systems, suitable for large-scale field studies or live systems. Our
method is unobtrusive in that it uses current web technologies and requires no
additional user effort. We present our method and the results of using that method in a
field study on a live system.

The Usertrack Data Collection Method

We developed our data collection method using iterative and participatory design. We
began by specifying data and design requirements. Using those requirements we
evaluated possible data collection technologies. The requirements, filtered through the
possible technologies, determined what kinds of data could be collected and the
ultimate experiment design.

The live system we used for our field study is the Adaptive Collaborative UNIX
Tutorial (ACUT). ACUT was conceived and initially developed to teach UNIX skills
required for computer science (CS) studies, based on small group learning, an
informal education metaphor [3]. The current version of ACUT is an open source
system primarily intended as an experimental platform for research in adaptive
hypermedia based on the small group learning metaphor [1].

As ACUT is based on informal education, the applicability of user modeling
approaches traditionally used in Intelligent Tutoring Systems and Educational
Adaptive Hypermedia is limited. In contrast to traditional online educational systems
based on textbook or problem solving metaphors, ACUT does not prompt for
additional information such as answers to questions or specification of problem-

solving steps. Rather, ACUT seeks to models users without interfering with normal
user behavior or normal user environment.

The need to collect data in the field mandates the following requirements for the
data collection method: the method needs to be unobtrusive so as to not interfere with
normal user behavior patterns; the method cannot require any additional user effort,
such as installation of software or configuration changes; the method must be
platform independent, i.e. able to run in any browser the ACUT tutorial can run in;
collected data must be transmitted to our server; and the data collection method
should require minimal instrumentation in the existing tutorial software.

The general problem of unobtrusive data collection in web-based systems requires
a client-server mechanism. User interactions with the web page need to be recorded
on the client side; then the recorded data needs to be submitted to a web server for
persistent storage and further processing.

Although several client-side scripting languages are in use for recording
subsymbolic user behavior, JavaScript is by far the most platform-independent and
widely used [6]. The kinds of data that can be collected comprise all events that can
be received by JavaScript event handlers. These include mouse movement, clicks,
keystrokes, periods of inactivity, scrolling, resizing of windows, moving the mouse
pointer over certain elements, etc.

Two possible technologies exist for sending the recorded data back to the server:
cookies and hidden form fields. Cookies require little implementation effort as they
are automatically submitted to the server and JavaScript has convenient methods to
set and read cookies. However, this option suffers from serious size restrictions
(commonly 20 cookies of 4096 bytes per domain), and is therefore only suitable for
small amounts of data. In addition, cookies are intrusive, as they persist on a user’s
computer. For the second option, hidden form fields, all links within a web page need
to be altered to call a JavaScript function instead of directly issuing an HTTP request.
The JavaScript function adds the collected data to a hidden form field within the page.
The HTTP request is sent as a POST request, allowing an unrestricted amount of
collected data to be sent to the web server. In addition, hidden form fields conform to
the stateless nature of the HTTP protocol without intruding onto the user’s computer.

Collecting data through JavaScript and hidden form fields allows truly unobtrusive
collection of implicit feedback. Sending data through hidden form fields is part of the
HTTP protocol and works on any JavaScript enabled web browser. Thus, our initial
analysis identified unobtrusive data collection using JavaScript and hidden form fields
as the most promising approach.

Implementation

The devised mechanism for collecting data with JavaScript and hidden form fields
was implemented as a mod_perl module named Usertrack, which was then layered
onto the existing ACUT server.

Figure 1 shows how Usertrack interacts with ACUT. Step 1: all web pages sent are
modified so that links and form buttons within the page do not send an HTTP request,
but rather call a JavaScript function. In addition, JavaScript functionality for

recording user behavior is added to the web page. Step 2: the processed web page is
sent to the client browser where the JavaScript functions keep track of the user’s
interaction with the web page. Step 3: when the user follows a link the link calls a
JavaScript function that adds the recorded data to the request, thus submitting the data
to the server as part of the HTTP request. Step 4: the collected data is retrieved from
the request and stored in a database.

Fig. 1. Overview of the architecture of the Usertrack data collection mechanism

The mechanics of JavaScript and the fact that many current browsers do not

comply with standards raised several implementation issues. As the data collection
mechanism is intended to be as platform independent as possible, browser
incompatibilities limit some of the data Usertrack can collect.

In order to use a client-server mechanism for recording online user behavior, event
timestamps need to be normalized between client and server. To resolve this issue, the
client-side JavaScript only records relative timestamps. When the recorded events are
sent to the server, the server calculates the actual event timestamps by adding the
recorded offset to the time when the corresponding request was served to the client.
This method neglects the delay introduced by transmitting a webpage over a network.
However, this delay is in the order of milliseconds and will likely not interfere with
applications of this data collection mechanism.

Building on Farzan & Brusilovsky’s use of “time spent reading” as implicit
feedback, we decided to collect data on periods of inactivity. We define periods of
inactivity as time during which the user does not interact with the web page via mouse
or keyboard. To record such periods of inactivity, a JavaScript function sets a variable
to the current timestamp on every “MouseMove” and “KeyDown” event. If the time
since the last update exceeds a certain threshold we record inactivity and duration.

In our implementation we collected the following data: mouse-over events
(timestamp, html element on which the event occurred); periods of inactivity
(timestamp, duration); mouse clicks (timestamp, html element on which the event
occurred); scrolling (timestamp); resizing the browser window (timestamp).

Client Side Server Side

Usertrack adds
JavaScript to response;
logs information about
the response being sent

JavaScript functions
record user behavior

User interacts with
the web page

ACUT Server
generates response

HTTP
Request

HTTP
Response

When user follows a
link, JavaScript attaches
the recorded data to
hidden form fields

Usertrack logs recorded
data extracted from the
request

4

2

3

1

Evaluation

We employed Usertrack in a field study to collect usage data for ACUT. The
mechanism performed well and we were able to collect the data as planned. In this
first field study using Usertrack, 30 users visited more than 600 pages and generated
more than 5000 events.

A limitation of the current Usertrack implementation is that it can only send
collected data back to the server when the user follows a link within our website. For
this reason, the collected data will not be sent to the server when users navigate using
the browser’s “Back” and “Forward” buttons, type a new address in the browser’s
address bar, or close the browser window. In our field study we achieved coverage of
about 70%, which corresponds with the results on server-side data collection
described in [2]. One way to increase coverage would be to exploit asynchronous
requests for web-based applications, which allow the client to send and retrieve
additional data to and from the web server without issuing a new HTTP request.
However, asynchronous requests are only supported by the latest generation of web
browsers, and are currently not standardized. Thus asynchronous requests could be
added to the Usertrack approach as an additional layer, with browsers not supporting
this technology falling back to transmitting data in hidden form fields.

Additionally, web pages on which we want to collect usage data have to be
retrieved through our web server. However, technologies such as proxy servers could
be used to retrieve any web resource and prepare it for data collection with Usertrack.
In ACUT, third party web pages are retrieved via Light-Weight Processes (LWP) and
displayed within the tutorial pages.

Table 1 summarizes major advantages of Usertrack as compared to related
mechanisms described above. Usertrack does not require any additional effort on the
side of the user. Users were able to use ACUT from their preferred web-browser
without any additional configuration or installation. The collected data was
transmitted to the web server, where it was stored in a database for further evaluation.

Table 1. User effort and location of data storage for each of the described methods for data
collection

 Goecks &
Shavlik [5]

The curious
browser [2]

Hijikata [6] Usertrack

User
effort

Install browser
plug-in

Install custom
browser software

Install Java
Set configuration to use
embedded proxy server

none

Data
storage

Stored on client
system, retrieved
manually

Stored on client
system, retrieved
manually

Data stored on central
embedded proxy server

Stored in a data
base on web
server

The more general approach to collect subsymbolic user behavior with JavaScript

and hidden form fields can be implemented in almost any web-based system. The
only requirement for the client side is that JavaScript is enabled. On the server side,
some form of processing request parameters is sufficient to collect and store recorded
usage data (for example CGI, any programming language).

Conclusions and Future Work

Using existing web technologies, we have developed Usertrack, a truly unobtrusive
method for collecting data on subsymbolic user behavior. This data collection method
increases the amount of available data without increasing user effort or interfering
with normal user behavior or environment. Collecting such detailed behavioral data
unobtrusively will allow social navigation systems to build finer grained user and
interaction models, especially when combining subsymbolic user behavior with
current approaches, such as explicit feedback.

Although the coverage of this method is lower than that of the client-side data
collection mechanisms described in [2] and [5], on the web pages covered, Usertrack
achieves the same high data fidelity, while being truly unobtrusive and scalable. Thus,
Usertrack closes a gap between small-scale laboratory experiments on subsymbolic
user behavior, and larger scale field studies, as well as supporting the application of
the results of these experiments to social navigation in real-world systems. In
addition, Usertrack can yield high validity of the collected data as this method
minimizes interference with normal user behavior.

In current research, we are investigating the data collected through unobtrusive
data collection. Interesting applications include: finding groups of similar users based
on patterns in subsymbolic user behavior; or, in web-based educational systems,
recognizing when a student is not interacting with a resource effectively. Collecting
subsymbolic usage data unobtrusively provides new possibilities for social navigation
mechanisms, allowing adaptation based on how users interact with information within
a web page.

References

1. Adaptive Collaborative UNIX Tutorial (ACUT) (2006). Retrieved March 01, 2006 from
http://acc.csueastbay.edu/~acut/.

2. Claypool, M., Le, P., Wased, M., & Brown, D. (2001). Implicit interest indicators. Proc 6th
Intl Conf Intelligent User Interfaces (IUI ‘01), Santa Fe, NM, Jan 2001, 33-40.

3. Farzan, R. (2003). Adaptive Collaborative Online UNIX Tutorial for Computer Science
Students. CSU Hayward, CA. Retrieved February 9, 2004, from http://acc.csuhayward.edu/.

4. Farzan, R. & Brusilovsky, P. (2005). Social Navigation Support in E-Learning: What are the
Real Footprints? Proc 3rd Wkshop Int Tech for Web Pers, Edinburgh, UK, Aug 2005, 49-56.

5. Goecks, J., & Shavlik, J. (2000). Learning Users’ Interests by Unobtrusively Observing
Their Normal Behavior. IUI ‘00, New Orleans, LA, Jan 2000, 129-132.

6. Hijikata, Y. (2004). Implicit user profiling for on demand relevance feedback. IUI ’04
Funchal, Madeira, Portugal, Jan 2004, 198-205.

7. Kurhila, J., Miettinen, M., Nokelainen, P., & Tirri, H. (2002). Enhancing the Sense of Other
Learners in Student-Centred Web-Based Education. Proc Intl Conf Computers in Education,
Auckland, NZ, Dec 2002, 318-322.

8. Svensson, M., Laaksolahti, J., Höök, K., & Waern, A. (2000). A receipe based on-line food
store. IUI ’00, New Orleans, LA, Jan 2000, 260-263.

