Engr 0012: Introduction to Engineering Computing Fall Term, 2003 (04-1)

Wednesday 10 September - Class Session 05

Homework:

Read Budny: Sec 4.6, 4.9, 4.10 Programming Assignment 3: Due Wednesday 17 September

Class Activities:

1. *Problem Statement*: A cable of length l_0 is needed to suspend an object of mass m_{obj} from the ceiling. The load, $T = m_{obj}g$, is the force that the mass exerts on the cable. The deflection (elongation) of the cable under the load must be less than Δl_{max} . Ignoring the mass of the cable (m_{cable} , which adds to the load), what cable mass is required to just support the load without permanent deformation?

Background: This is a stress-strain problem (S = Ee). Permanent deformation occurs when the stress on the cable exceeds the yield stress, S_y , i.e., when $S > S_y$.

Stress:
$$S = \frac{T}{A_0}$$
 where $A_0 = \frac{\pi d^2}{4} = S = \frac{4T}{\pi d^2}$

S: stress, T: tension (load supported), A₀: cable cross-sectional area, d: cable diameter

Strain:
$$e = \frac{\Delta l}{l_0}$$
 where $\Delta l = l - l_0$

e: strain, l_0 : initial cable length, Δl : change in cable length, l: cable length under load

Mass: $m_{cable} = \rho V$ where $V = A_0 l_0 = \pi d^2 l_0 / 4$ m_{cable} : mass, ρ : cable density, V: cable volume

E: Elastic (Young's) modulus, S_y : yield stress, and ρ : cable density are material properties than can be looked up in tables of material properties.

Design an approach to solving this problem.

- a. What are you looking for?
- b. What must be specified in order to get the solution?
- c. Write a succinct statement identifying what will result and what is required
- d. What steps must be taken to get to the required solution?

Hint: look at the equations.

State what, rather than how, you would proceed.

Don't forget: specifying needs and displaying results are steps.

Turn in a single piece of paper with parts c and d. Your "header" biographical information must be written in the upper right corner of your paper.

2. *Problem Statement*: Your boss at the Internal Revenue Service (IRS) has asked you to develop a program that will determine how much taxes are due based upon a taxpayer's annual salary. The tax due is based upon the following table:

Salary Range, \$	Base Tax, \$	Percentage on Excess, %
0 - 14,999	0	15
15,000 - 29,999	2,250	18
30,000 - 49,999	5,400	22
50,000 - 79,999	11,000	27
80,000 & above	21,600	33

The percentage on excess is to be applied to salary over the minimum in a given range. Total tax is the base tax plus the percentage on excess.

Design an approach to solving this problem.

- a. What are you looking for?
- b. What must be specified in order to get the solution?
- c. Write a succinct statement identifying what will result and what is required
- What steps must be taken to get to the required solution? State what, rather than how, you would proceed. Don't forget: specifying needs and displaying results are steps.

Turn in a single piece of paper with parts c and d. Your "header" biographical information must be written in the upper right corner of your paper.