
MATLAB: Workshop 10 - Decision Making: menus and switch/case page 1 

 

MATLAB Workshop 10 - Decision Making: menus and switch/case  
 
Objectives: Learn two methods to display a menu, use of a while loop to perform error checking 

for input information, use of the switch/case construction to make decisions.  Learn 
to break a large script into smaller functions and design and test each function 
separately.  

 
MATLAB Features:  
 
 relational operators 

Symbol Meaning 
== is the same as 
~= is not the same as 
> greater than 
>= greater than or equal to 
< less than 
<= less than or equal to 

 
 logical operators 

Symbol Meaning 
& logical and 
| logical or 
~ logical not 

 
 workspace commands 

Command Action 
pause halts command/window/script/function execution pending 

response 
menu creates pop-up window with choices as buttons  

 
 repetitive action while loop structure  

loop body initialization statements
loop condition initialization
while (condition is true)

execute loop body
update to see whether condition is now false

end % while 
 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 2 

 

 multiple selection switch/case structure  
switch (expression_value)
case {vA1, vA2} % execute when expression_value == vA1 or vA2

action A1
action A2
...

case {vB1, vB2} % execute when expression_value == vB1 or vB2
action B1
action B2
...

...
otherwise % optional default if expression_value ≠≠≠≠ any prior value

action default1
action default2
...

end  
 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 3 

 

•  A thermodynamics problem   
 Gas phase thermodynamic equations of state relate the three state variables of temperature, 
pressure, and volume for a gas.  One of the three state variables can be calculated through the equation 
of state if values for the other two variables are known.  For example, the ideal gas law states 
  RTVP =~  
where 
 P  :  pressure, Pa 
 V~  :  specific or molar gas volume, m3mol  
 R  :  ideal gas constant, (= 8.314 J/(mol K)) 
 T :  absolute temperature, K 
 
 Two other popular equations of state are the van der Waals equation of state given by 

  RTbV
V
aP =−�

�

�
�
�

� + )~(~ 2
 

where a and b are constants that depend upon the particular gas.  Oxygen will have different values for 
a and b than carbon dioxide.  Can you figure out what the units associated with a and b are, 
respectively?  The Redlich-Kwong equation of state is more complex and is given by 

  
)~(~~ 5.0 bVVT

a
bV

RTP
+

−
−

=  

where a and b are, again, constants associated with a particular gas.  Can you figure out what the units 
associated with a and b are, respectively, for the Redlich-Kwong equation of state?  Note that even 
though the same symbols, a and b, are used in both the van der Waals and Redlich-Kwong equations of 
state, the symbols do not have the same meaning.   
 
 Your thermodynamics instructor has asked you to create a MATLAB script that will calculate the 
pressure for specified temperature and specific volume of any gas by any of the three equations of state.  
 
•  Developing a plan of attack 
 You should develop a coherent plan of attack (a program outline) before trying to actually code a 
new script.  This requires that you do some background thinking and scratching on a piece of paper 
before you touch the computer keyboard.  A small amount of time invested at this stage will save hours 
of frustration at the computer keyboard.  You need to remember: computers are stupid!  They will do 
exactly what you tell them to do.  But, if you cannot tell them exactly what to do (step-by-step), they 
will complain and fuss at you and frustrate you. 
 A good way to develop a plan of attack is to divide (and conquer!) a large problem into smaller 
components.  Properly combining solutions for the smaller components in the proper order should yield 
a solution to the large problem.  Most computer problems can be broken down into the distinctly 
separate actions of 
 1. getting information into the computer 
 2. using the information to create new information (computations) 
 3. reporting the results of the new information generated. 
Each action may require one or more task (function) to accomplish the action.  The script design for the 
actions does not need to be done in a linear fashion.   
 As an illustration, the computation section of the equation of state problem can be developed as 
 
 function pcalc



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 4 

 

 (1) Function to calculate the pressure using the (1) ideal gas law, (2) van der Waals equation, 
or (3) Redlich-Kwong equation. 

 (2) Produces pressure (in SI units). 
 (3) Needs eqn_choice (1 = ideal gas, 2 = van der Waals, 3 = Redlich-Kwong) 
    temp (temperature in SI units) 
    sp_vol (specific volume in SI units) 
    a (vdW or RK parameter) 
    b (vdW or RK parameter) 
  Note: R is a constant that is embedded in the function.  It is not an information “need”. 
 (4) Algorithm 
  Need to make a decision based on the value of eqn_choice 
   if ( eqn_choice is 1 ) 
    use ideal gas law to calculate pressure  
   elseif ( eqn_choice is 2 ) 
    use vdW equation to calculate pressure  
   else (Note: by default eqn_choice is 3 ==> else rather than elseif ) 
    use RK equation to calculate pressure  
 
 Developing the computation section first tells us that we need to have values for eqn_choice, 
temp, sp_vol, a, and b available in the computer before the function can be called.  The only way to 
get these values into the computer is through action 1: getting information into the computer.  So we 
turn our attention to action 1. 
 
 function pcalc_get_info
 (1) Function to get equation choice (1) ideal gas law, (2) van der Waals equation, or (3) 

Redlich-Kwong equation, and temperature, specific volume, and vdW or RK constants 
from user. 

 (2) Produces eqn_choice (1 = ideal gas, 2 = van der Waals, 3 = Redlich-Kwong) 
    temp (temperature in SI units) 
    sp_vol (specific volume in SI units) 
    a (vdW or RK parameter) 
    b (vdW or RK parameter) 
 (3) Needs nothing!!!  Remember, this is asking what information the function needs that is 

already inside the computer.  This function will get its information from outside the 
computer.   

 (4) Algorithm 
  Ask user for eqn_choice  (1 = ideal gas, 2 = van der Waals, 3 = Redlich-Kwong) 
  Get temp (temperature in SI units) 
  Get sp_vol (specific volume in SI units) 
  Get a and b  
   if ( eqn_choice is 1 ) 
    Set a and b to zero (not needed for ideal gas law) 
   elseif ( eqn_choice is 2 ) 
    Identify eqn of state = vdW 
    Get a and b (be sure to note units when asking) 
   else (Note: by default eqn_choice is 3 ==> else rather than elseif ) 
    Identify eqn of state = RK 
    Get a and b (be sure to note units when asking) 
 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 5 

 

 Finally, the output section can be developed.  The major effort in designing the output section 
should be to ensure that the resulting display is user-friendly and easy to read. 
 
 function pcalc_results
 (1) Display pressure for given temperature and specific volume as calculated by chosen 

equation of state (and appropriate parameters). 
 (2) Produces nothing!!!  Remember, this is asking what information the function will return 

inside the computer.  This function displays results outside the computer.   
 (3) Needs eqn_choice (1 = ideal gas, 2 = van der Waals, 3 = Redlich-Kwong) 
    pressure (pressure in SI units) 
    temp (temperature in SI units) 
    sp_vol (specific volume in SI units) 
    a (vdW or RK parameter) 
    b (vdW or RK parameter) 
 (4) Algorithm 
  Display pressure  (with SI units) 
  Display temp (with SI units) 
  Display sp_vol (with SI units) 
  Display eqn of state and a and b  
   if ( eqn_choice is 1 ) 
    Display ideal gas law 
   elseif ( eqn_choice is 2 ) 
    Display vdW equation of state 
    Display a and b (with SI units) 
   else (Note: by default eqn_choice is 3 ==> else rather than elseif ) 
    Display RK equation of state 
    Display a and b (with SI units) 
 
 Putting these three functions back together should produce the desired script.  Note how the 
information flows from one function to another. 
 
•  Asking the user to choose - menus   
 A common programming practice is to ask the user to select a choice from a list of options (or 
menu) for which set of actions to perform.  The function or script then takes actions appropriate to the 
choice entered by the user.  MATLAB provides two methods for acquiring a user response. 
 
 (1)  Using disp and input to create a menu. 
 
  We have already used disp to display text messages in the Command Window and 

input to get values from the user.  A simple menu is easily created by combining these 
two commands.  disp is used to display the options.  input is used to get the choice. 

 
  Open a new file in the MATLAB editor and enter the following. 

function [eqn_choice, temp, sp_vol, a, b ] = pcalc_get_info()
% function header information

% variable dictionary
%

% get user choice for equation of state
disp(' ')



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 6 

 

disp('What equation of state would you like?')
disp(' (1) Ideal gas law')
disp(' (2) Van der Waals')
disp(' (3) Redlich-Kwong')
eqn_choice = input('Please enter choice (1, 2, 3) ==> '); 
disp(' ')

 
  Be sure to enter appropriate code for the function header information and variable 

dictionary sections. 
 
  disp commands are used to display textual information.  The input command is used to 

pick up the user response.  

 
  Save the Editor window as pcalc_get_info.m.  Test your function so far by entering 

» pcalc_get_info
  at the Command prompt (Note: you can test partially completed functions!!!).  The menu 

above should appear.  Respond with a 1.  What value displays for ans?  (Remember the 
first value in the output list is assigned to ans).  So far, so good.  Now run the function two 
more times, answering first 2 and then 3.  What happens if you respond with a 4?  Is this 
good? 

 
 (2) Error checking input. 
 
  A major problem with menus is assuring that the user response is actually one of the 

permitted responses (remember, you are building your script under the assumption that 
valid input is available later on).  Because users will tend to mess up your program 
whenever possible, you need to limit that potential.  The following code will provide an 
error check to assure that only an allowed value is entered. 

 
% get user choice for equation of state

errorflag = 0;
while (errorflag == 0)

disp(' ')
disp('What equation of state would you like?')
disp(' (1) Ideal gas law')
disp(' (2) Van der Waals')
disp(' (3) Redlich-Kwong')
eqn_choice = input('Please enter choice (1, 2, 3) ==> '); 
disp(' ')
% check for valid input

if( eqn_choice == 1 | eqn_choice == 2 | eqn_choice == 3)
errorflag ==1;

else
disp(' *** Invalid choice ')
disp(' *** Please respond with a 1, 2, or 3 ')
disp(' *** Press ENTER to continue ' )
pause

end % if
end % while

Style notes 
•  Notice the indenting.  Indenting is used to identify sections of code that belong together.  
•  A blank disp(' ') before and after text display separates the text in the Command Window when it 

runs.  This is user-friendly and makes your scripts more pleasant to use. 
•  Note the indenting inside the disp commands.  This also makes your display more user-friendly. 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 7 

 

 
  This code uses a while loop to assure the input of valid information.  The general form for 

a while loop is 
 

loop body initialization statements
loop condition initialization
while (condition is true)

execute loop body
update to see whether condition is now false

end % while
 
  In the above code, errorflag is initialized and used for the condition, the disp and 

input commands of the menu (which do not need to be initialized) form the loop body, 
and the if/else is the update to change the condition (errorflag) if valid input has 
been obtained.  If a valid choice has not been obtained, an error message is displayed and 
the loop recycles.  If a valid choice has been entered, the condition becomes false and the 
loop is exited.   

 
  The above code also uses a new MATLAB command, pause.  pause causes a script or 

function to stop and wait for the user to respond (by hitting any key, not just the enter key) 
before continuing.  The use of pause here is user friendly because it forces the user to 
respond to the fact that an error has taken place before redisplaying the menu.  Try 
running the script with and without the pause.  Which do you find better?   

 
  Finally, a new variable, errorflag, was defined.  Did you add it to the variable 

dictionary? 
 
 (3)  Using menu to create a menu. 
 
  MATLAB also has a built-in menu function that is convenient to use.  It creates a pop-up 

window with buttons for the response.  The general format for the menu command is 
 

response = menu('header', 'item1', 'item2', ... );
 
  MATLAB will place the header at the top of the menu pop-up window and item1, item2, 

etc, will be on the window buttons.  When the user clicks on one of the buttons, the button 
number (1 for item1, 2 for item2, etc) will be assigned to response.  response can be 
any descriptive name.  To see how this works, enter the following into the MATLAB 
Command Window 

 
» eqn_choice = menu('Which equation of state?', 'Ideal gas', ...
'Van der Waals', 'Redlich-Kwong');

 
  The pop-up menu window depicted at the right should appear.  

Click on one of the buttons and the window disappears.  Note that 
a semicolon was used in the menu command to suppress display 
of the value assigned to eqn_choice (there is no need for the 
user to know your secret codes!)  Check to see what value was 
assigned by typing 

 
» eqn_choice 

   



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 8 

 

  MATLAB should respond with a 1 if you clicked on Ideal gas, 2 if you clicked on Van der 
Waals, or 3 if you clicked on Redlich-Kwong. 

 
  The menu command can replace the entire text-based menu above.  There is no need to 

have error checking because the user can only select one of the buttons and MATLAB 
assigns the integers 1, 2, ... in order to the buttons.    

 
  If you want, you can replace the text-based menu with the menu command.  If you do, be 

sure to remove errorflag from the variable dictionary. 
 
 (4)  Using switch/case to make decisions. 
 
  MATLAB has an alternative method to the if/elseif/else structure to evaluate and 

execute decisions, as shown here: 
switch (expression_value)
case valueA % execute when expression_value == valueA

action A1
action A2
...

case valueB % execute when expression_value == valueB
action B1
action B2
...

...
otherwise % optional default if expression_value ≠≠≠≠ any value

action default1
action default2
...

end
 
  If the same actions are to be taken for more than one value of expression_value, 

which is equivalent to a logical or, i.e., A or B, the switch/case construct is slightly altered 
to 

switch (expression_value)
case {vA1, vA2} % expression_value == vA1 or vA2

action A1
action A2
...

case {vB1, vB2} % expression_value == vB1 or vB2
action B1
action B2
...

...
otherwise % optional default if expression_value ≠≠≠≠ any value

action default1
action default2
...

end
 
  In contrast with the if/elseif/else construct, which tests for the truth of a logical 

expression, the switch/case construct simply compares the results of evaluating any 
legitimate MATLAB expression that produces a value with a list of possible outcomes 
(cases).  As we have seen, a legitimate MATLAB expression can be simply a “hard-wired” 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 9 

 

value, a variable name (which is a command to get the variable value), an arithmetic 
expression, or an algebraic expression that includes variable names and functions.  If a 
match is made between the resulting expression_value and any of the case values, 
the actions associated with the matching case are executed.  If no matches are made, 
then no actions are taken unless the optional otherwise clause is included.   

 
  Note: because the switch/case is testing for equivalency of values, only expressions 

that produce integers or characters can be used with the switch/case.  Strange and 
unexpected results can and will occur if an expression that produces a decimal number is 
used.   

 
  Let’s complete the coding for function  pcalc_get_info.  Following the menu code 

for getting eqn_choice, add the following 
 

% get temp and specific volume
temp = input('Please enter temperature in K ==> ' );
sp_vol = input('Please enter specific volume in m^3/mol ==> ' );

% get van der Waals or Redlich-Kwong parameters
if (eqn_choice == 1) % ideal gas law

a = 0;
b = 0;

elseif (eqn_choice == 2 ) % van der Waals
a = input('Please enter a in ??? ==> ' );
b = input('Please enter b in ??? ==> ' );

else % must be Redlich-Kwong
a = input('Please enter a in ??? ==> ' );
b = input('Please enter b in ??? ==> ' );

end

 
  Save the function and test it by entering  
 
  » [eqn_choice, temp, sp_vol, a, b] = pcalc_get_info
 
  at the Command prompt.  Since no semicolon was used to suppress display, MATLAB 

should respond with the values you entered. 
 
  Change the if/elseif/else structure to a switch/case structure, save the function, 

and retest it.  Do you get the same results? 
 
 
 (5)  Create function pcalc. 
 
  Encode function pcalc (see design above to refresh your memory) in the MATLAB 

Editor.  Be sure to have a function header section and variable dictionary.  Use an 
if/elseif/else structure to pick the appropriate equation of state and subsequent 
calculations.  Test your function (How? By calling it in the Command Window with values 
for which you know the results).  

 
 
 (6)  Create function pcalc_results. 
 
  Encode function pcalc_results (see design above to refresh your memory) in the 

MATLAB Editor.  Be sure to have a function header section and variable dictionary.  Use a 



MATLAB: Workshop 10 - Decision Making: menus and switch/case page 10 

 

switch/case structure to display the appropriate equation of state and subsequent 
information.  Test your function (How? By calling it in the Command Window with values 
for which you know the results). 

 
 
 (7)  Create the script wkshp10. 
 
  You now have the requisite functions to create a script that puts it all together.  Create a 

script, wkshp10.m, that does the following 
 
  •   displays script header information (call to wkshp10_header) 
  •   gets the necessary input information (call to pcalc_get_info)  
  •   performs the pressure calculation (call to pcalc)  
  •   displays the results (call to pcalc_results)  
 
  Be sure your script has an appropriate header section and variable dictionary. 
 
  Bonus question:  Can you add a while loop to your script so that the script asks the 

user whether to repeat for another pressure calculation and, if the answer is yes, repeats 
the input, calculation, display portion of the script?  (You do not generally want to display 
the header section each time the script repeats - once is enough). 

 
 
Recap:  You should have learned 
•  The relational operators in MATLAB.  
•  The logical operators in MATLAB.  
•  The utility of breaking a larger script into smaller tasks.   
•  The utility of outlining a function before coding.   
•  Two methods of creating menus. 
•  How pause can be used to halt script/function execution until a response is made.  
•  How the menu command creates a pop-up window with buttons. 
•  How a while loop operates.  
•  The multiple condition switch/case structure.  
•  That the switch/case structure should only be used for integer or character switch values. 
•  To test your scripts/functions with known values before trusting them to solve properly solve 

unknown problems.  


