
MATLAB: Workshop 9 - Decision Making: if/elseif/else page 1

MATLAB Workshop 9 - Decision Making: if/elseif/else

Objectives: Learn about using if/elseif/else constructions to make decisions and take different

actions based upon the decision.

MATLAB Features:

 relational operators

Symbol Meaning
== is the same as
~= is not the same as
> greater than
>= greater than or equal to
< less than
<= less than or equal to

 logical operators

Symbol Meaning
& logical and
| logical or
~ logical not

 one-sided if structure

if (condition)
% execute these commands when condition is true

action 1
action 2
...

end

 two-sided if/else structure

if (condition)
% execute these commands when condition is true

action 1
action 2
...

else % default actions
% execute these commands when condition is false

action default1
action default2
...

end

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 2

 multiple selection if/elseif/else structure

if (condition_A)
% execute these commands when condition_A is true

action A1
action A2
...

elseif (condition_B)
% execute these commands when condition_B is true

action B1
action B2
...

elseif (condition_C)
% execute these commands when condition_C is true

action C1
action C2
...

...
else % default actions

% execute these commands if none of the above are true
action default1
action default2
...

end

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 3

N

S

EW

0°

180°

90°270°

240°
60°

N

S

EW

0°

180°

90°270°

240°
60°

• Decision making
 Thus far, we have been solving problems with a straight-line logic pattern. That is, we followed
a sequence of steps (setting constant parameters, getting variable values, computations/calculations,
and displaying results) that flowed directly from one step to another. The steps had to be in the
programmed order and taken sequentially in order to achieve the desired result. Basically, we were
using MATLAB to perform the same types of calculations that we could do by hand or with a
calculator.
 The real power of a computer (as opposed to a calculator) is the ability to make decisions
(decision making or branching actions) and repeat the same set of steps over and over (repetitive or
looping actions). This workshop will look at various aspects of decision making in MATLAB.
Repetitive actions will be left until Workshop XX.

• Civil Engineering problem
 As summer intern assigned to the surveying section of a civil engineering company, you have
been asked to design a MATLAB function, named convert_heading, that will take a compass
heading in degrees and return the proper bearing for later use.
 The relationship between a compass heading in degrees and
a compass bearing is illustrated at the right. A compass heading
is a specification in degrees, between 0 and 359.999..., with
N(orth) being 0 degrees. The arrow in the illustration shows a
compass heading of 240 degrees.
 A compass bearing is given in terms of face either north or
south and then turn a specified number of degrees to the east or
west. The compass bearing will look like
 face (degrees) turn,
For the compass heading in the illustration, this becomes
 south (60) west
which is read as face south, turn 60 degrees to the west.
 The transformation table for converting compass headings into compass bearings is provided in
the following table.

Heading (in degrees) Bearing Computation
0 ≤ heading < 90 north (heading) east
90 ≤ heading < 180 south (180-heading) east
180 ≤ heading < 270 south (heading-180) west
270 ≤ heading < 360 north (360-heading) west

• Designing the function
 The required function can be designed using the function design algorithm from Workshop 7.

 function convert_heading
 (1) Function to convert a compass heading in degrees to the equivalent bearing of
 face (degrees) turn.
 (2) Produces face, degrees, turn.
 (3) Needs heading.
 (4) Algorithm
 Need to make a decision based on the value of heading
 if (0 ≤ heading < 90)

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 4

 bearing <-- north
 degrees <-- heading
 turn <-- east
 elseif (90 ≤ heading < 180)
 bearing <-- south
 degrees <-- 180 - heading
 turn <-- east
 elseif (180 ≤ heading < 270)
 bearing <-- south
 degrees <-- heading - 180
 turn <-- west
 elseif (270 ≤ heading < 360)
 bearing <-- north
 degrees <-- 360 - heading
 turn <-- west
 else {Note: heading was not between 0&360 - Error!}
 bearing <-- Error! Error! Error!
 degrees <-- 0
 turn <-- Heading not in range 0 <= heading < 360

 The function algorithm is a straightfoward applicaton of the decision table. An
if/elseif/else construct is appropriate, rather than five separate if statements, for two reasons:
(1) the decision for which branch to take depends only upon the value of heading and (2) the
if/elseif/else construct will execute more rapidly than five separate if statements because the
condition is only evaluated until a true branch is found in the if/elseif/else construct while all
five separate if statement conditions must be evaluated. Thus, in the if/elseif/else construct,
only three comparisons will be required on average while five comparisons will always be required
when separate if statements are used.
 Note that a default (else) clause was used to identify the possibility of an error. You should
always ask yourself what can go wrong with a computation and make allowances to protect against the
occurrence of an error. A common problem with computations is input values outside of an acceptable
range.

• Decisions, decisions, decisions
 The above design outline is making a decision about what actions to take based upon the value of
heading. MATLAB provides two basic structures for making decisions and executing code based
upon the decision. The more general structure is the if/elseif/else construct, which is described
in this workshop. The switch/case construct is a more restricted, but useful, structure that is
described in Workshop 10.
 Making decisions in any programming language, MATLAB included, involves making a logical
comparison between two or more values. Logical comparisons involve such statements as
 is A the same as B? (A == B)
 is F greater than G? (F > G)
 is C less than or equal to D? (C <= D)
The MATLAB code corresponding to the textual question is provided to the right of the query. These
represent simple pairwise comparisons that use the MATLAB relational operators to ask a question.

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 5

 If a comparison (condition) is true, then one or more actions associated with the statement need to
be taken. If the statement (condition) is false, evaluation continues with the next statement (condition),
skipping the actions associated with the false statement (condition).
 More complex comparisons must be broken into pairwise comparisons using the relational
operators which are then joined by a MATLAB logical operator. For example,
 is (A the same as B) and (F less than G)?
 ((A == B) & (F < G))
 is ((S less than or equal to H) and (H less than or equal to T))?
 ((S <= H) & (H <= T))
 is ((A the same as B) and (F the same as G)) or (C less than D)?
 (((A == B) & (F == G)) | (C <= D))
can also be evaluated as true or false. MATLAB (and other programming languages) can only perform
pairwise comparisons. More on design and interpretation of logical comparisons can be found in
XXXX.

 (1) Using if/elseif/else to make decisions.

 MATLAB uses the if/elseif/else construct to execute different sets of actions

depending upon the truth of a condition. The basic form of the construct is
if (condition_A)

% execute these commands when condition_A is true
action A1
action A2
...

elseif (condition_B)
% execute these commands when condition_B is true

action B1
action B2
...

elseif (condition_C)
% execute these commands when condition_C is true

action C1
action C2
...

...
else % default actions

% execute these commands if none of the above are true
action default1
action default2
...

end
 Note that if, elseif, else, and end are all blue (both in the Command Window and the

Editor). This indicates that these words are reserved keywords in MATLAB that cannot be
used as a variable or function name. Their meanings are fixed and cannot be changed.
Also note that the actions associated with any of the keywords are indented under the
keyword. The MATLAB Editor will automatically indent for you. The purpose of
indentation is to easily identify which actions belong with which keyword and condition.
Finally, the actions can be any legitimate MATLAB command, including, but not limited to,
assignment statements, function calls (such as disp and input), another
if/elseif/else construct, or a looping construct.

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 6

 Two abbreviated forms of the general construct are frequently used. The first is the simple
if construct

if (condition)
% execute these commands when condition is true

action 1
action 2
...

end
 and the second is the if/else construct

if (condition)
% execute these commands when condition is true

action 1
action 2
...

else % default actions
% execute these commands when condition is false

action default1
action default2
...

end
 The if construct is frequently referred to as a one-sided decision - actions are only taken

if the condition is true. The if/else construct is frequently referred to as a two-sided
decision - actions are taken regardless of whether the condition is true. When the
condition is true, the “true” actions are executed. When the condition is false, the default
actions are executed.

 If you are working from a reasonably well-developed outline, such as above, coding a

decision in MATLAB is relatively straight-forward. If you are not working from such an
outline, good luck!

 For example, the algorithm outline in the function design can be (partially) encoded as

 % convert heading to bearing

if ((0 <= heading) & (heading < 90)) % first quadrant
face = 'north';
degrees = heading;
turn = 'east';

elseif (??) % second quadrant
...

elseif (??) % third quadrant
...

elseif (??) % fourth quadrant
...

else % default - heading not valid
...

end

 Create the function convert_heading in the MATLAB editor. Be sure to follow the

format

function [output list] = fcn_name(input list)
% function description
% header information

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 7

% variable dictionary

% algorithm

 Save your function in your current directory. Test your function. How many tests are

required to ensure that the function is operating properly?

• Testing your script
 You have just spent a modicum of effort in creating a function. It now needs to be tested to in
order to assure that it provides the appropriate responses for any given input.
 You should always test your functions with values for which you know the answer!! If it
works for those problems, you can have some confidence that it will work for other values for which
you do not know the answer.
 So, test your function. How many different tests are required to ensure that the function is
operating properly?

• Exercises:

1. Calculation of energy loss due to fluid flow through a pipe is common to several engineering

disciplines. Energy loss can be calculated by

µ

ρπ DVReDA
A
QVV

D
LfhL ===��

�

�
��
�

�
�
�

�
�
�

�= ;
4

;;
2

22

 where: Lh : energy loss per mass of fluid flowing, (J/kg)
 f : friction factor, dimensionless
 L : pipe length, m
 D : pipe diameter, m
 V : average fluid velocity, m/s
 Q : volumetric flow rate, m3/s
 A : pipe cross-sectional area, m2

 Re : Reynolds number, dimensionless
 ρ : fluid density, kg/m3
 µ : fluid viscosity, kg/(ms)

 The friction factor, f , is calculated as
 000,2Re/64 ≤= Rewhenf
 and

 000,28506.5ln0452.5ln)01.2(
2

8981.0 >
�
�
�

�
�
�

�
�

	

�

�

�

�
�
�

�−−=
−

Rewhen
ReRe

f

 You have been asked to design a MATLAB function that will calculate the energy loss per mass

of flowing fluid for fluid flow in a pipe given the pipe diameter, pipe length, fluid volumetric
flow rate, fluid density, and fluid viscosity (all in SI units).

MATLAB: Workshop 9 - Decision Making: if/elseif/else page 8

2. Given a year between 1982 and 2048, inclusive, the date for any Easter Sunday can be computed
from the set of relations

 A = Year modulus 19
 B = Year modulus 4
 C = Year modulus 7
 D = (19*A + 24) modulus 30
 E = (2*B + 4*C + 6*D + 5) modulus 7
 Easter Sundy is then Sunday, March (22 + D + E). Note that (22+D+E) could be greater than 30,

giving a date that is really in April!

 Design a MATLAB function that when given the year, returns the day of the week on which

Easter Sunday falls, the month in which Easter Sunday falls, and the date of the month on which
Easter Sunday falls. If the year lies outside the permissible range, the day of the week should
return the phrase “Error!!!”, the month should return a phrase indicating that the year is not in the
acceptable range, and the date of the month should return the offending year.

3. Design a function that, given an (x,y) data point, will respond with a text message locating the

point on the cartesian coordinate graph. Possible responses include: Quadrant 1, Quadrant 2,
Quadrant 3, Quadrant 4, Positive x-axis, Negative x-axis, Positive Y-axis, Negative Y-Axis, and
Origin. Note: efficient algorithm construction for this function will require that you “nest”
if/else statments within if/else statements.

Recap: You should have learned
• The relational operators in MATLAB.
• The logical operators in MATLAB.
• The utility of outlining a script before coding.
• The one-sided if structure.
• The two-sided if/else structure.
• The multiple condition if/elseif/else structure.
• The multiple condition switch/case structure.
• That the switch/case structure should only be used for integer or character switch values.
• To test your scripts with known problems before trusting them with unknown problems.

