
MATLAB: Workshop 8 - More on Functions  page 1 

 

MATLAB Workshop 8 - More on Functions  
 
Objectives: Learn more about functions: how values are passed to and returned from functions and 

how functions interact with the MATLAB workspace. 
 
•  More on functions 
 An understanding of some of the properties of the functions that you are learning to create 
interact with the MATLAB workspace is critical for control of information flow (data or values) in 
your scripts.  It is also important for debugging functions that you design.  Frequently, functions will 
have errors when first created.  The process of removing the errors so that the functions work properly 
and provide correct answers is called debugging. 
 
 This workshop requires that MATLAB scripts named wkshp8_ac1.m, wkshp8_ac3.m, and 
wkshp8_ac4.m be in the current directory.  These scripts are available on the program disk.  Please 
copy them into the current MATLAB directory before proceeding. 
 
 (1)  Passing values to functions. 
 
  Whenever a function is called, that is, whenever a function is used in the workspace, in a 

script, or in another function, MATLAB seeks to pass values (not variables) that will be 
needed by the function to do its job.  Consider the function wkshp8_ac1.m, defined here. 

 
function [out1, out2] = wkshp8_ac1(in1, in2)
% Workshop 8, Activities 1 and 2
% John F. Patzer II
% MATLAB Primer
% 26 June 2003

% variable dictionary
% in1 incoming value
% in2 incoming value
% out1 outgoing value
% out2 outgoing value

% calculations
out1 = in1+in2;
out2 = in1-in2;

 
  Start MATLAB, or if MATLAB is already running,  enter    

» clear all
  to start with a clear workspace.  Next enter    

» [a,b] = wkshp8_ac1(1,1)
a =

2
b =

0
  This statement called wkshp8_ac1.m and sent it the two values listed in parentheses 

after the function name.  The values were provided as numbers.  The first value in the list 
was assigned to the first input variable in the function definition (in1) and the second 
value to the second input variable (in2) in the function definition. 

 



MATLAB: Workshop 8 - More on Functions  page 2 

 

  MATLAB then performed the calculations listed in the function definition and returned two 
values as listed in the function definition.  The first value in the output list (associated with 
out1) was assigned to the first variable on the output side of the function call (a).  The 
second value in the output list (associated with out2) was assigned to the second variable 
on the output side of the function call (b).  

 
  Now enter    

» [c,d] = wkshp8_ac1(a,b)
c =

2
d =

2
  This time, MATLAB obtained the values associated with a (= 2) and b (= 0) and passed 

them to the function.  Again, the first value in the list was assigned to the first input variable 
in the function definition (in1) and the second value to the second input variable (in2) in 
the function definition.  The values resulting from the calculations were returned with the 
first (out1) being assigned to c and the second (out2) being assigned to d.   

 
  Now try this    

» [e,f] = wkshp8_ac1(a*c,b+d)
e =

6
f =

2
  Again, MATLAB performed the indicated arithmetic operations to produce the values 

associated with a*c (= 4) and b+d (= 2) before passing them on to the function.  The first 
value in the list was assigned to the first input variable in the function definition (in1) and 
the second value to the second input variable (in2) in the function definition.  The values 
resulting from the calculations were returned with the first (out1) being assigned to e and 
the second (out2) being assigned to f.   

 
 
 (
 
  

•  MATLAB transfers values, one-for-one, for both the input list and output list of functions. 

•  
 
 
 

•  

•  
Values passed to a function can be specified by 
•  Listing an actual value, e.g., 1626.  MATLAB will transfer the value directly. 
•  Listing a variable name, e.g., angle.  MATLAB will get the associated value for transfer. 
•  Listing an arithmetic expression, e.g., 2*pi.  MATLAB will do the calculation and transfer the value. 
A corollary to the above is that variable names in the calling statement and function definition do not 
need to be the same!!!  (Note that none of the variable names used in the calling statements were the 
same as those used in the function definition (in1, in2, out1, and out2).  
Only the position in the list matters since MATLAB transfers the values one-for-one into the function and 
one-for-one out of the function.
2)  Functions do not add their variables to the workspace. 

Recall that whenever a script is run, all variables in the script on the right hand side of the 
assignment operator are added to the workspace.  Functions do their calculations on a 
piece of scrap paper.  Values are transferred to the scrap paper, calculations performed on 
the scrap paper, and then values are transferred from the scrap paper back to the 



MATLAB: Workshop 8 - More on Functions  page 3 

 

workspace.  As a result, variables defined inside functions are never associated with the 
workspace.  To clearly see this, enter    

» who
Your variables are:
a b c d e f

  Only the variables defined by placing them on the right hand side of the function calling 
statement in the three calls to wkshp8_ac1 are in the workspace.  in1, in2, out1, and 
out2, which belong to the function are not present.  They were only present on a piece of 
scrap paper which has now been discarded.   

 
 
 (3)  Functions will not overwrite existing values for variables of the same name in the workspace. 
 
  Unlike scripts, which operate in the workspace, functions operate on a piece of scrap 

paper.  Only values are transferred between the workspace and the function.  Hence, 
functions can have variables of the same name as those in the workspace without 
interfering with the values associated with variables in the workspace.  (Another reason to 
like functions - they do not mess with your workspace!). 

 
  Consider the function wkshp8_ac3.m, defined here. 
 

function [out1, out2] = wkshp8_ac3(in1, in2)
% Workshop 8, Activity 3
% John F. Patzer II
% MATLAB Primer
% 26 June 2003

% variable dictionary
% in1 incoming value
% in2 incoming value
% a an internal variable
% b an internal variable
% c an internal variable
% d an internal variable
% out1 outgoing value
% out2 outgoing value

% calculations
a = 1234;
b = 6 + 3*i;
c = a*b;
d = c/b;
out1 = in1+in2;
out2 = in1-in2;

 
  This function makes assignments to the variables a, b, c, and d, as well as out1 and 

out2.  Remember, a (=2), b (=0), c (=2), and d (=2) are variables currently in your 
workspace with the values indicated.  Run the function by entering    

» [g,h] = wkshp8_ac3(1,3)
g =

4

•  Functions do not add variables to the workspace. 



MATLAB: Workshop 8 - More on Functions  page 4 

 

h =
-2

  Now check on the values of the variables a, b, c, and d by entering the variable name at 
the command prompt.  They should be the same as shown above - not the strange values 
assigned to them in the function.  

 
 
 
 
 

 
 
 
 

 
 

 

•  Running a MATLAB function does not affect any variable values in your workspace. 
 •  Variable names in functions are associated with the function only. 
 •  You can use the same variable name in functions without changing its value in the workspace. 
 •  Names are local: Jane Doe in Washington, D.C. is not the same as Jane Doe in Vancouver, B.C. 
(4)  Functions will only use values passed in the calling statement. 

 This issue is important in designing and debugging functions.  A common method for 
developing functions that can lead to problems is to initiate the function design as a script.  
Because scripts have access to the workspace and functions do not, this can lead to some 
frustrating consequences unless you realize that functions actually operate on a piece of 
scrap paper and do not have access to any variables and their associated values in the 
workspace.  

 Consider the function wkshp8_ac4.m, defined here. 

function [out1, out2] = wkshp8_ac4(in1, in2)
% Workshop 8, Activity 4
% John F. Patzer II
% MATLAB Primer
% 26 June 2003

% variable dictionary
% in1 incoming value
% in2 incoming value
% a an internal variable
% b an internal variable
% c an internal variable
% d an internal variable
% out1 outgoing value
% out2 outgoing value

% calculations
c = a*b;
d = c/b;
out1 = in1+in2;
out2 = in1-in2;

 This function was developed originally in script form and only later translated to a function.  
Execute the function by entering   

» [p,q] = wkshp8_ac4(1,3)
??? Undefined function or variable 'a'.
Error in ==> C:\temp\wkshp8_ac4.m
On line 18 ==> c = a*b;



MATLAB: Workshop 8 - More on Functions  page 5 

 

 
  MATLAB objects because the indicated calculation requires a value for a that was never 

assigned in the function and is, therefore, not available.  a may have been present in the 
workspace when the function was being developed as a script (which would have access 
to the workspace), but a is definitely not defined in the function (which does not have 
access to the workspace) prior to trying to use it.  Hence the error message.    

 
 
 (5)  Semicolons are used to suppress display from functions. 
 
  We seek to explicitly control display from our scripts and functions to be user friendly and 

show only what we want to show in the format we want to show it.  Hence, we use 
semicolons at the end of assignment statements in functions to suppress unwanted 
display from the function (the results of intermediate calculations are rarely of interest to 
the user). 

 
  Edit the function wkshp8_ac1.m to remove the semicolons following the assignment 

statements for out1 and out2.  Run the function.  What displayed?  Even though the 
results of executing the assignment statements in the function were displayed, the 
variables out1 and out2 have not been added to the workspace.  (Functions cannot add 
variables to the workspace!)  This is easily demonstrated by entering out1 at the 
command prompt.  What happens? 

 
 
Recap:  You should have learned 
•  Functions run on scrap paper.  
•  Only values, not variables, are passed between the workspace and a function.  
•  Functions cannot add variables to the workspace.  
•  Functions cannot change variable values in the workspace.  
•  Functions cannot access variables or variable values in the workspace.   
•  A MATLAB command in a function has nothing to do with a MATLAB command in the 

command window.  
•  Semicolons are used to suppress unwanted display from functions.  

•  Avoid developing functions from scripts.  Follow the design procedure in Workshop 7 instead. 


