
MATLAB: Workshop 7 - Introduction to Functions page 1

MATLAB Workshop 7 - Introduction to Functions

Objectives: Learn about user-defined functions in MATLAB.

MATLAB Features:

 general function file heading
 function [output value list] = fcn_name(input value list)

• More on scripts in MATLAB
 Consider the following script to accomplish the same goals as Workshop 5, Activity 1 (calculate
the absolute pressure at the bottom of a tank).

% Solution to Workshop 7
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% Variable dictionary
% rho water density, kg/m^2
% g gravitational acceleration, m/s/s
% height tank height, m
% pout outside pressure, Pa
% pabs_b pressure at tank bottom in SI units, Pa

% set display format
format short e

% display header to screen
wkshp7_header

% get problem values
[rho, g, height, pout] = wkshp7_getdata;

% calculate Pabs,b in Pa
pabs_b = wkshp7_pbot(rho, g, height, pout);

% display results
wkshp7_results(rho, g, height, pout, pabs_b)

 This script definitely has far fewer lines of code. Furthermore, it is easy to read through the
script and see what tasks are being performed to accomplish the goals of the script without being
overwhelmed by the multiple individual steps. This script has given up complexity of detail for clarity
in understanding what is happening and the order in which it is happening (control structure).

 In order to accomplish the clarity associated with what is happening, the complex details of how
it is happening have been hidden in the user-defined functions wkshp7_header, wkshp7_getdata,
wkshp7_pbot, and wkshp7_results. If we are interested in the detail, we need to look at the
functions. As the functions are not available, we will have to develop them in this workshop.

MATLAB: Workshop 7 - Introduction to Functions page 2

• User-defined functions in MATLAB
 Functions are used to accomplish a single (complex) calculation or perform a single task. Some
examples of a task are (1) displaying the script header/use information when a script is invoked, (2)
obtaining input values from the user (keyboard) for further computation, (3) obtaining input values
from a file for further computation, (4) doing a series of related computations such as calculating the
mean, median, mode, and standard deviation for a data set, (5) displaying a plot of experimental data,
(6) determining the “best fit” to a data set, (7) reporting results of computations to the screen, and (8)
writing results of computations to a designated file.

 Many user-developed functions are general purpose and have become the standard functions that
are available in MATLAB for everyone to use. Examples of these are the vector functions described in
Workshop 3, e.g., mean, median, sum, and max. Most functions, however, are specific to a given
problem or script or user.

 Functions are contained in m-files. The first line of any function m-file looks like this

 function [output value list] = fcn_name(input value list)

where the keyword function alerts MATLAB to the fact that the m-file contains a function and not
a script. The function file should be saved as fcn_name.m where fcn_name is a user-chosen name
for the function that is descriptive of what the function does.

 Functions generally, but not always, require a set of input values that will be used by the function
to do its job. Variable names are used to hold the input values. The input variable names are listed in
parentheses following the function name in the first line of the function. If more than one name is
listed, the names are separated by commas.

 Likewise, functions generally, but not always, return a set of values that were obtained from the
function performing its job. The output variable names are listed in square braces following the
keyword function and preceding the assignment operator in the first line of the function. If more
than one name is listed, the names are separated by commas. Each name listed in the output value list
must appear on the left hand side of an assignment statement somewhere in the function.

• Designing a function
 Functions are easy to design if the following steps are taken in the order presented.
 (1) Identify precisely what task the function is supposed to accomplish. For example: (a) get

some (explicit) values from the user that will be used by another function later on; (b)
determine the best fit to a set of (x,y) data points; or (c) display the results of computations.

 (2) Identify what values will result if the function completes its task successfully. For
example: (a) the user input values; (b) the slope, intercept, and goodness of fit statistic for
the line; or (c) nothing - display only.

 (3) Identify what values the function requires to perform its tasks. This refers to values that are
passed to the function inside the script, not values that come from an outside source such as
file or user input. For example: (a) nothing (all values will come from outside the
computer); (b) the (x,y) data points; or (c) the values to be displayed.

MATLAB: Workshop 7 - Introduction to Functions page 3

 (4) Identify a computational pathway/algorithm to get from known (input) values to the desired
result (output) values. For example: (a) a series of input statements; (b) the equations to
determine slope, intercept, and goodness of fit statistic; or (c) a series of disp commands.

 We will employ this outline to design the functions for this and succeeding workshops. Several
examples follow.

• Designing a function with no input and no output values
 Displaying a script/program header to the screen is an example of a function that does not require
any values to perform its task or create any values from performing its task. Applying the function
design steps:

 function wkshp7_header
 (1) Function to display the script/program header to the screen.
 (2) Produces no values.
 (3) Needs no values.
 (4) Algorithm
 disp statements to display header text

 The MATLAB code that embodies this outline is

function [] = wkshp7_header()
%
% Header display function for Workshop 7
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% display header to screen
clc
disp(' ')
disp('Solution to Workshop 7')
disp('Your Name(s)')
disp('Class (e.g. Engr 0012, TH 10:00, Instructor Name)')
disp('Today''s Date')
disp('Your e-mail address')
disp(' ')

 (1) Create the function wkshp7_ac1_header.m using the MATLAB editor by cutting and

pasting appropriate lines from wkshp5_ac1.m. Alternatively, you could create the
function file by typing the above code into the editor.

 Test your function by entering
 » wkshp7_header

Solution to Workshop 7
Your Name(s)
Class (e.g. Engr 0012, TH 10:00, Instructor Name)
Today's Date
Your e-mail address

MATLAB: Workshop 7 - Introduction to Functions page 4

 Typing
 » help wkshp7_ac1_header

Header display function for Workshop 7
Your Name(s)
Class (e.g. Engr 0012, TH 10:00, Instructor Name)
Today's Date
Your e-mail address

 will display the comment lines immediately following the function line in the file.

• Designing a function with one output value but no input values
 Turning conversion factors into functions has at least two very large advantages: (1) The
functions are always available when needed if you store them in your MATLAB path; and (2) once
they are created, you never need to look up the conversion factor again - you can simply call the
function. Applying the function design steps:

 function ft_to_m
 (1) Function to get conversion factor for feet to meters.
 (2) Produces conversion factor.
 (3) Needs no values.
 (4) Algorithm
 convfac <-- 0.3048

 The MATLAB code that embodies this outline is

function [convfac] = ft_to_m()
%
% Function to return conversion factor for feet to meters
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% Variable dictionary
% convfac conversion factor for ft to m

% set conversion factor
convfac = 0.3048;

 Note the use of names in this function. Because ft_to_m is the name of the function it cannot
be used as a variable name within the function. To do so would confuse MATLAB tremendously.
Thus, the variable name convfac is used to hold the conversion factor value in the function. Placing
convfac in the output variable (value) list returns the value (not the name) to the calling location.
Also note that this function requires a variable dictionary.

 (2) Create the function ft_to_m.m using the MATLAB editor by cutting and pasting

appropriate lines from wkshp5_ac1.m. Alternatively, you could create the function file by
typing the above code into the editor.

MATLAB: Workshop 7 - Introduction to Functions page 5

 Test your function by entering
 » ft_to_m

ans =
0.3048

 Note that the value of the conversion factor was returned. You could use this directly on

the right hand side of an assignment statement or assign the value to a variable for later
use.

 (3) Create the functions yd_to_m.m and atm_to_Pa.m. Apply the function design steps

before coding the functions. Test your functions to see whether they return the proper
value.

• Designing a function with more than one output value but no input values
 A common activity or task is to get input values from the user for use later in the script. The
important thing in designing for this task is to decide what values (and in what units) are really required
for further computations. This then defines what values to ask for and what conversions might have to
take place before the values are returned to the calling location.
 Applying the function design steps to the present workshop:

 function wkshp7_getdata
 (1) Function to get fluid density (rho) in SI, gravitational acceleration (g) in f/s/s, tank height

(height) in yards, and atmospheric pressure (pout) in atmospheres from user and return all
in SI units to calling location.

 (2) Produces rho, g, height, pout - all in SI units.
 (3) Needs no values - will get them from the user.
 (4) Algorithm
 input statement for each value followed by conversion to SI if necessary.

 The MATLAB code that embodies this outline is

function [rho, g, height, pout] = wkshp7_getdata()
%
% Function to get fluid density (rho) in SI, gravitational
% acceleration (g) in ft/s/s, tank height (height) in yards,
% and atmospheric pressure (pout) in atmospheres from user
% and return all in SI units to calling location.
%
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% Variable dictionary
% rho fluid density, kg/m^3
% g gravitational acceleration, m/s/s
% height tank height, m
% pout atmospheric pressure, Pa

% get user input

MATLAB: Workshop 7 - Introduction to Functions page 6

rho = input('Please input fluid density in kg/m^3 ==> ');
g = input('Please input grav accel in ft/s/s ==> ');
height = input('Please input tank height in yd ==> ');
pout = input('Please input atm pressure in atm ==> ');

% convert to SI units
g = ft_to_m*g;
height = yd_to_m*height;
pout = atm_to_Pa*pout;

 Note that only a single variable is needed for each input and converted value. Also note that use
is made of the user-defined conversion factor functions ft_to_m.m, yd_to_m.m, and atm_to_Pa.m
in the last three lines of the function.

 (4) Create the function wkshp7_getdata.m using the MATLAB editor by cutting and pasting

appropriate lines from wkshp5_ac1.m. Alternatively, you could create the function file by
typing the above code into the editor.

 Test your function by entering
 » wkshp7_getdata

Please input fluid density in kg/m^3 ==> 1
Please input grav accel in ft/s/s ==> 1
Please input tank height in yd ==> 1
Please input atm pressure in atm ==> 1
ans =

1

 Note that only one value was reported (as ans) - yet four should have been returned. If

you want to capture all four values, you will need to “call” the function, giving variable
names to assign the values to. Try

 » [rho, g, height, pout] = wkshp7_getdata
Please input fluid density in kg/m^3 ==> 1
Please input grav accel in ft/s/s ==> 1
Please input tank height in yd ==> 1
Please input atm pressure in atm ==> 1
rho =

1
g =

0.3048
height =

0.9144
pout =

101300

 Now all four values have been captured by the call and assigned to the specified variables.

Note that even though the value 1 was input for all values, the “converted” values (SI units)
were returned for use.

 Finally, try this (add a semi-colon to the end of the function call)
 » [rho, g, height, pout] = wkshp7_getdata;

Please input fluid density in kg/m^3 ==> 1
Please input grav accel in ft/s/s ==> 1
Please input tank height in yd ==> 1

MATLAB: Workshop 7 - Introduction to Functions page 7

Please input atm pressure in atm ==> 1
 »

 As before, use of the semi-colon suppresses display of the values assigned to the output

variables.

• Designing a function with one output value and more than one input value
 Although we would not usually design a calculation function for one line of calculation, we do so
here in order to show a function that requires input values to do a calculation. The design of this type
of function assumes that the values have already been obtained from the user or produced by another
function and are available in the workspace.

 function wkshp7_pbot
 (1) Function to calculate absolute pressure at the bottom of the tank in SI units.
 (2) Produces absolute pressure at bottom of the tank (pbot) in SI units.
 (3) Requires fluid density (rho), gravitational acceleration (g), tank height (height), and

atmospheric pressure (patm) - all in SI units.
 (4) Algorithm
 pbot <-- rho*g*height+patm

 The MATLAB code that embodies this outline is

function [pbot] = wkshp7_pbot(rho, g, height, patm)
%
% Function to calculate absolute pressure
% at the bottom of the tank in SI units
%
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% Variable dictionary
% rho fluid density, kg/m^3
% g gravitational acceleration, m/s/s
% height tank height, m
% patm atmospheric pressure, Pa
% pbot pressure at tank bottom, Pa

% calculate pressure
pbot = rho*g*height+patm;

 (5) Create the function wkshp7_pbot.m using the MATLAB editor by cutting and pasting

appropriate lines from wkshp5_ac1 and the other Workshop 7 functions that have been
created. Alternatively, you could create the function file by typing the above code into the
editor.

 Test your function by entering
 » wkshp7_pbot(1,1,1,1)

ans =
2

MATLAB: Workshop 7 - Introduction to Functions page 8

 Why is the answer 2? Is this a good test of the function?

• Designing a function with no output value and more than one input value
 Functions with input values but no output values are typically found at the end of a script and are
used to display the results from running the script.

 function wkshp7_results
 (1) Function to display the results of calculating the pressure at the bottom of the tank.
 (2) Produces nothing.
 (3) Requires fluid density (rho), gravitational acceleration (g), tank height (height), and

atmospheric pressure (patm) , and bottom pressure (pbot) - all in SI units.
 (4) Algorithm
 disp call to display information and results

 The MATLAB code that embodies this outline is

function [] = wkshp7_results(rho, g, height, patm, pbot)
%
% Function to calculate absolute pressure
% at the bottom of the tank in SI units
%
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address

% Variable dictionary
% rho fluid density, kg/m^3
% g gravitational acceleration, m/s/s
% height tank height, m
% patm atmospheric pressure, Pa
% pbot pressure at tank bottom, Pa

% display results
disp(' ')
disp('Tank of height, m')
disp(height)
disp('containing fluid of density, kg/m^3')
disp(rho)
disp('in gravitational field, m/s/s')
disp(g)
disp('and atmospheric pressure, Pa')
disp(patm)
disp(' ')
disp('has absolute pressure at bottom, Pa')
disp(pbot)

 (6) Create the function wkshp7_results.m using the MATLAB editor by cutting and pasting

appropriate lines from wkshp5_ac1 and the other Workshop 7 functions that have been

MATLAB: Workshop 7 - Introduction to Functions page 9

created. Alternatively, you could create the function file by typing the above code into the
editor.

 How would you test this function for proper operation?

• Script for wkshp7.m
 We have now created all of the functions necessary to run the script wkshp7.m, which is
available on the program disk and should be placed in your current directory. Try it using the same
values used to test the original Workshop 2, Activity 2 problem (rho = 1000 kg/m3, g = 32.2 ft/s/s,
height = 7 yards, atmospheric pressure = 1 atm). It should produce the same answer as obtained in
Workshop 2.

• Closing notes
 User-defined functions are very useful because they allow us to focus on what is happening in a
program. They also allow us to focus on a small portion of the overall script requirements (such as an
input or output function) and develop a solution for the small portion following the four steps of the
function design procedure. The solution can then be tested independently of other functions or the
overall problem. When all of the functions required for a script have been designed and tested, putting
them together in the proper sequence should create a script that produces the proper answers.

• Exercises:

1. Convert the script wkshp5_ex1.m. to one which uses functions.

2. Convert the script wkshp5_ex2.m. to one which uses functions.

3. Convert the script wkshp5_ex3.m. to one which uses functions.

4. Convert the script wkshp5_ex4.m. to one which uses functions.

5. Convert the script wkshp5_ex5.m. to one which uses functions.

6. Convert the script wkshp5_ex6.m. to one which uses functions.

Recap: You should have learned
• The basic ideas behind functions and function organization.
• The basic design algorithm (procedure) for functions.
• That MATLAB functions are saved as m-files.
• That all functions must have a header section.
• That all functions must have a variable dictionary as appropriate.
• That functions can be tested independently of scripts.

