MATLAB Workshop 2 - Using MATLAB to solve algebraic problems
Objectives: Learn about scalar variable properties in MATLAB, use MATLAB to solve algebraic engineering problems, create a diary, and archive results.

MATLAB Features:

scalar variable properties

Property	Comment
var_name	user chooses names - name should represent meaning of variable ex: use radius rather than \mathbf{x} or \mathbf{s} for radius - letters, digits (0-9), underscore (_) allowed in name - must start with a letter - case sensitive (Radius is different than radius) - can be any length, but first 31 characters must be unique
value	all numerical values are - double precision ~ 16 significant figures (not decimal places) - and imaginary has both real and imaginary parts $\mathrm{a} \pm \mathrm{bi} \quad($ where $\mathrm{i}=(\sqrt{-1}))$ both \mathbf{a} and \mathbf{b} are double precision if $\mathbf{b}=0$, MATLAB only displays real part, \mathbf{a}
$\begin{aligned} & \text { memory } \\ & \text { location } \end{aligned}$	MATLAB assigns - you do not need to worry about this

diary commands

MATLAB Command	Comment
	creates and opens the specified diary - provide full directory path, filename, and extension ex: c: \temp\engr_hmwk diary name
defaults current directory: engr_hmwk \bullet if diary already exists opens for appending new session all lines following this command are placed in diary	
diary off	closes the current diary
diary on	opens the most recently used diary

- Variables in MATLAB

Variables are named as needed for use in MATLAB. For example, the MATLAB command》 radius $=5$
would create a variable named "radius" and assign the (real) value 5 to it. Behind the scenes, MATLAB would find an available location in computer memory to use for holding the value. Computer memory can be loosely regarded as similar to a spreadsheet as shown here.

MATLAB will look for an empty cell to use for storing the value; for example, cell c3. MATLAB will remember that the value for radius is stored in cell c3 for us. We do not need to keep track of this. Whenever the name radius is used in the MATLAB assignment statement, MATLAB will either retrieve the stored value from cell c3 (if radius appears on the right hand side of the assignment operator, =) or assign a new value to cell c3 (if radius appears on the left hand side of the assignment operator.

MATLAB treats all numbers alike: they are all contain approximately 16 significant figures, termed double precision in computer jargon, and have both real and imaginary parts. If you are not familiar with imaginary numbers and imaginary number arithmetic and algebra - that is ok. The rules that govern real numbers and real number arithmetic are a subset of the rules that govern imaginary number arithmetic. This means that MATLAB will work with real numbers just fine. It also means that, when necessary, MATLAB will be able to work with imaginary numbers also.

If you violate the rules of real number arithmetic, you may be surprised by the result, but MATLAB will still work. Consider the quadratic equation

$$
a x^{2}+b x+c=0
$$

The roots of the quadratic equation are given by

$$
\text { roots }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If the value inside the square root is positve, the result is real. If the value inside the square root is negative, the result is imaginary. We can use MATLAB to find the roots for a quadratic expression as follows

(1) Using MATLAB to find the roots of a quadratic expression.

Find the roots of $x^{2}-4 x+3=0$
Enter the following at the Command Line prompt
> \% roots of the quadratic equation

```
> a = 1;
> b = -4;
> c = 3;
> greater_root = (-b+sqrt (b^2-4*a*c))/(2*a)
greater_root =
    3
> lesser_root = (-b-sqrt (b^2-4*a*c))/(2*a)
lesser_root =
    1
```

Find the roots of $x^{2}-16 x+5=0$
This is very similar to the preceding equation. Rather than reenter all of the previous lines, we can use the arrow keys to recall previously entered lines. Press the up arrow until
> $\quad \mathbf{c}=3$;
appears. Change the value 3 to the value 5 and press enter. Now press the up arrow until
$>$ greater_root $=\left(-b+s q r t\left(b^{\wedge} 2-4 * a * c\right)\right) /(2 * a)$
appears and press enter. MATLAB responds with
greater_root =
$2.0000+1.0000 i$
Now press the up arrow until
> lesser_root $=\left(-b-s q r t\left(b^{\wedge} 2-4 * a * c\right)\right) /(2 * a)$
appears and press enter. MATLAB responds with
lesser_root =
2.0000-1.0000i

The arrow keys, \uparrow and \downarrow, can be used to scroll through commands on the command line.

- Using MATLAB to solve engineering (algebraic) problems

Activity 2: Pressure at the bottom of a tank

Problem Statement: The absolute pressure at the bottom of a liquid storage tank that is vented to the atmosphere is given by the relation, $P_{a b s, b}=\rho g h+P_{\text {out }}$, where $\mathrm{P}_{\text {abs }, \mathrm{b}}$ is the absolute pressure, ρ is the liquid density, g is gravitational acceleration, h is the height of the liquid, and $\mathrm{P}_{\text {out }}$ is the outside atmospheric pressure. Find $P_{a b s, b}$ in SI units if $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=32.2 \mathrm{ft} / \mathrm{s}^{2}, \mathrm{~h}=7 \mathrm{yd}$, and $\mathrm{P}_{\text {out }}=1$ atm.

Background: This is a problem in units conversion.
Solution strategy: Convert all units to SI before performing calculation
ρ is already in SI units.
need factors: \quad ft_to_m $=0.3048$
yd_to_m $=0.9144$
atm_to_Pa $=1.013 \cdot 10^{5}$
Calculate $\mathrm{P}_{\text {abs,b }}$

(2) Using MATLAB to find the pressure at the bottom of a tank.

```
Enter the following at the Command Line prompt
diary wkshp2_ac2 % or choose your own name/path
% Solution to Workshop 2, Activity 2
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
% Your e-mail address
    format short e
% conversion factors
    ft_to_m = 0.3048; yd_to_m = 0.9144; atm_to_Pa = 1.013e5;
% set problem parameters (note definitions)
    rho = 1000; % water density, kg/m^3
    g = 32.2; % gravitational acceleration, ft/s/s
    height = 7; % tank height, yd
    pout = 1; % outside pressure, atm
% convert all parameters to SI
    rho_si = rho; % water density, kg/m^3
    g_si = ft_to_m*g;% gravitational acceleration, m/s/s
    height_si = yd_to_m*height; % tank height, m
    pout_si = atm_to_Pa*pout; % outside pressure, Pa
% calculate Pabs,b in Pa
    pabs_b_si = rho_si*g_si*height_si+pout_si % pabs,b, Pa
pabs_b_si =
        1.6412e+005
>
diary off
```

Notes on programming style:

- All programming endeavors should have a header section that identifies
- Who is doing the programming
- What the program "solves"
- Class for which the program is being prepared
- Date the program was implemented or last revised
- Use lots of "whitespace" to make your program easier to read
- An empty return at the command prompt adds space between lines
- Indenting (using the spacebar or tab key) also adds whitespace
- Use comments judiciously to keep you and others informed of what is happening
- Define all variables (with units) first time used
- More than one statement can be placed on a line!
- If separated by a semicolon, ; , the display is suppressed.
- If separated by a comma, , , the display follows the first return.
- Solving problems requires a strategy!!
- Identify what the desired result is.
- Identify what is known.
- Identify relations that move from what is known to what is desired.
- Develop MATLAB solution working in logical progression with good annotation.

Be sure to use the diary off command to close the diary (otherwise, you may lose the diary file). Use your favorite text editor to open the file wkshp2_ac2 in the current directory (or whatever you called it in whatever directory you placed it). Note that it contains a listing of all screen display (including white space and comments) that was entered from the time that the diary was initiated. This record can be edited (if necessary to remove errors and error statements that might occur), printed, and attached to a homework, report, or work file as an excellent record of your solution.

Activity 3: Spring mechanics

Problem Statement: A spring has a spring constant of $25 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}$. What force is required to stretch the spring 3 in? How much work is done by the force in stretching the spring 3 in?

Background: From physics and conservation of momentum, the force required to stretch the spring is given by

$$
F=k d
$$

and the work performed by the spring is

$$
W=k d^{2} / 2
$$

where F is the force, k is the spring constant, d is the distance, and W is the work.
Solution strategy: Convert all units to SI before performing calculation
in_to_m = 0.0254
lbf_to_N = 4.448
Find F and W by straightforward substitution into the equations.

(3) Using MATLAB to solve for spring mechanics.

Enter the following at the Command Line prompt

```
diary wkshp2_ac3 % or your choice
>
% Solution to Workshop 2, Activity 3
% Your Name(s)
% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
% Today's Date
Your e-mail address
    format short e
conversion factors
    in_to_m = 0.0254; lbf_to_N = 4.448;
% set problem parameters
    spr_k = 25; % spring constant, lbf/in
    stretch = 3; % spring stretch, in
% convert to SI
    spr_k_si = spr_k*lbf_to_N/in_to_m; % spring const, N/m
    stretch_si = stretch *in_to_m; % spring stretch, m
```

```
> % calculate force in N and work in J (SI units)
> force_si = spr_k_si*stretch_si % force, N
force_si =
        3.3360e+002
>
> work_si = spr_k_si*stretch_si^2/2.0 % work, J
work_si =
        1.2710e+001
>
> diary off
```


Activity 4: Light bulb life expectancy

Problem Statement: The life of an incandescent light bulb has been experimentally determined to vary inversely as the $12^{\text {th }}$ power of the applied voltage. A rated life of a bulb is 800 hours at 115 V . What is the life expectancy at 120 V ? What is the life expectancy at 110 V ?

Background: From the problem statement

$$
L=A V^{-12}
$$

where L is the expected life of the light bulb (hr), V is the applied voltage (V), and A is the proportionality constant $\left(\mathrm{hr} \cdot \mathrm{V}^{12}\right)$.

Solution strategy: Find A from $\mathrm{L}=800$ hours at 115 V . Calculate L at $\mathrm{V}=120 \mathrm{~V}$. Calculate L at $\mathrm{V}=$ 110 V .

(4) Using MATLAB to solve for light bulb life expectancy.

Enter the following at the Command Line prompt

```
> diary wkshp2_ac4 % or your choice
```

»
» \% Solution to Workshop 2, Activity 4
» \% Your Name(s)
» \% Class (e.g. Engr 0012, TH 10:00, Instructor Name)
》 \% Today's Date
» \% Your e-mail address
»
» format short e
»
» \% set problem parameters
» life115 = 800; \% expected life at $115 \mathrm{~V}, \mathrm{hr}$
» volts $=115$; $\%$ voltage, v
»
» \% calculate proportionality constant (hr. $\mathrm{V}^{\wedge} 12$)
» Aconst $=$ life*volts^12 \% proportionality const, hr.v^12
Aconst =
4.2802e+027
»
» \% expected lifetime at $120 \mathrm{~V}, \mathrm{hr}$
》 life120 = Aconst*120^(-12) \% expected life at 120 V , hr
life120 =

```
            4.8005e+002
>
> % expected lifetime at 110 V, hr
> life110 = Aconst*110^(-12) % expected life at 110 V, hr
life110 =
        1.3638e+003
>
> diary off
```


Exercises

1. Use MATLAB to solve the following problem.

Problem Statement: A piece of cast iron, which has a density of $450 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$, has a very irregular shape. You need to determine its volume in SI units. To do so, you submerge the specimen in a cylindrical water tank ($\mathrm{d}=0.5 \mathrm{yd}$). The water rises 8.64 cm above its original level.

Background: The volume of the specimen is equal to the volume of displaced water. The volume of displace water is equal to

$$
V=\left(\frac{\pi d^{2}}{4}\right) h
$$

where h is the rise in water level.
Need to convert everything to SI units for consistency.
Solution strategy: Convert everything to SI units before calculating V
Need conversion factors
yd_to_m $=0.9144$
cm_to_m $=0.01$
(Note: density conversion not needed to find volume!!!!)
Calculate volume, V
2. Use MATLAB to solve the following problem.

Problem Statement: A pipeline in an oil refinery is carrying oil to a large storage tank. The pipe has a 20 in internal diameter. The oil is flowing at $5 \mathrm{ft} / \mathrm{s}$. The density of the oil is $57 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$. What is the mass flow rate of oil in SI units? What is the mass and volume of oil, in SI units, that flows in a 24-hour time period.

Background: Need to be careful about units. By dimensional analysis, the mass flow rate of oil, $\dot{M}(\mathrm{~kg} / \mathrm{s})$ is

$$
\dot{M}=\rho v A
$$

where ρ is the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, v is the flow speed (m / s), and A is the cross-sectional area of the pipe $\left(\mathrm{m}^{2}\right)$. The flows in any time period, $\mathrm{T}(\mathrm{s})$, are given by

$$
M=\dot{M} T \quad \text { and } \quad V=M / \rho
$$

where M is the mass (kg) and V is the volume $\left(\mathrm{m}^{3}\right)$.
Solution strategy: Convert everything to SI units before proceeding.

Need conversion factors
in_to_m $=0.0254$
ft_to_m $=0.3048$
lbm_to_kg $=0.4535$
hr_to_s $=3600$
Make conversions for ρ, v, and d .
Calculate cross-sectional area, $\mathrm{A}=\pi \mathrm{d}^{2} / 4$
Calculate mass flow rate, \dot{M}.
Calculate total mass in 24 hours, M.
Calculate equivalent volume, V.
3. Use MATLAB to solve the following problem.

Problem Statement: A researcher proposes to use a hollow wrought aluminum alloy sphere, 500 cm outside diameter with a wall thickness of 3 mm , as a buoy to mark the location of an underwater research site. Will the sphere float? If so, how high does the sphere rise above the water?

Background: This is buoyancy problem. The sphere will float if its average density is less than that of water (assume to be $1 \mathrm{~kg} / \mathrm{L}=1000 \mathrm{~kg} / \mathrm{m}^{3}$). Need to calculate mass of aluminum used

$$
M=\rho_{A l}\left(\frac{\pi}{6}\right)\left(d_{0}^{3}-d_{i}^{3}\right)
$$

where M is the mass of aluminum $(\mathrm{kg}), \rho_{\mathrm{Al}}$ is the density of aluminum $\left(=2800 \mathrm{~kg} / \mathrm{m}^{3}\right), \mathrm{d}_{\mathrm{o}}$ is the outside wall diameter (m), and d_{i} is the inner wall diameter (m). The average density, $\rho_{\text {ave }}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, is then

$$
\rho_{\text {ave }}=\frac{M}{V_{s}}=\frac{6 M}{\pi d_{o}^{3}}
$$

where V_{s} is the volume of the sphere. If the sphere floats, the volume that it displaces is equivalent to a volume of water of equal mass, i.e.,

$$
V_{d}=M / \rho_{H_{2} O}
$$

where V_{d} is the submerged volume $\left(\mathrm{m}^{3}\right)$ and $\rho_{\mathrm{H}_{2} 0}$ is the density of water. This needs to be used in conjunction with the mensuration formula for the volume of a spherical sector,

$$
V_{h}=\frac{\pi}{6} R^{2} h
$$

where V_{h} is the volume $\left(\mathrm{m}^{3}\right)$ of a sector of depth $\mathrm{h}(\mathrm{m})$. If $\mathrm{V}_{\mathrm{d}}>\mathrm{V}_{\mathrm{s}} / 2$, need to think carefully about how to use the V_{h} relation (Why?).

Solution strategy: Make sure all parameters are in SI units.
Specify parameters: $d_{0}, d_{i}, \rho_{A l}, \rho_{H_{2} 0}$
Calculate sphere volume, V_{s}.
Calculate mass, M.
Calculate average density, $\rho_{\text {ave }}$.
If $\rho_{\text {ave }}>\rho_{\mathrm{H}_{2} 0}$, sphere sinks; else
Calculate h .
Calculate height above water, $H=d_{o}-h$.
4. Use MATLAB to solve the following problem.

Problem Statement: A 10 m , medium carbon steel cable is needed to support a load of 100,000 N . The deflection (elongation) of the cable under the load must be less than 1 cm . Ignoring the mass of the cable, what cable mass is required to just support the load without permanent deformation? $\left(E=207,000 \mathrm{MPa}, \mathrm{S}_{\mathrm{y}}=552 \mathrm{MPa}, \mathrm{S}_{\mathrm{t}}=690 \mathrm{MPa}, \rho=7900 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

Background: This is a stress-strain problem ($\mathrm{S}=\mathrm{Ee}$)
Stress: $S=\frac{T}{A_{0}} \quad$ where $A_{0}=\frac{\pi d^{2}}{4}$
S : stress, T : tension, A_{0} : cable cross-sectional area, d : cable diameter
Strain: $e=\frac{\Delta l}{l_{0}}$ where $\Delta l=l-l_{0}$
e: strain, l_{0} : initial cable length, Δl : change in cable length, l : cable length under load
Mass: $m=\rho V$ where $V=A_{0} l=\pi d^{2} l_{0} / 4$
m : mass, V : cable volume
Solution strategy: Make sure all units are SI. Need to check two limits for stress permanent deformation $==>T / A_{0}<S_{y} \quad$ or $\quad A_{0}>T / S_{y}$ maximum deflection $==>\mathrm{S}=\mathrm{T} / \mathrm{A}_{0}<\mathrm{Ee}_{\max }$ or $\mathrm{A}_{0}>\mathrm{T} /\left(\mathrm{Ee}_{\max)}\right.$
strategy: calculate A_{0} by both methods use larger A_{0} to compute mass

Recap: You should have learned

- How MATLAB treats scalar variables.
- How to use the arrow keys to scroll through commands at the command line.
- A strategic approach to solving problems.
- The use of white space and comments to make your sessions more readable.
- How to create a diary to record your MATLAB session.
- How to set up and solve problems with MATLAB

