
Math 0413 Supplement

Logic and Proof

January 17, 2008

1 Propositions

A proposition is a statement that can be true or false. Here are some examples
of propositions:

• 1 = 1

• 1 = 0

• Every dog is an animal.

• Every animal is a dog.

• There is a real number r such that r2 = 2.

• There is a rational number r such that r2 = 2.

Every proposition has a value of either True of False, abbreviated T or F .
The term statement is often used as a synonym for “proposition.” We will

use these words interchangeably.

1.1 New Propositions from Old

If you start with one or more propositions, you can build new propositions from
them by combining them with logical operations.

Logical Negation. The simplest logical operator is the not operator. If P
is a proposition, then the proposition not P , abbreviated ∼P , has the opposite
truth value to P . This is spelled out in a truth table which gives the value of
∼P for every possible value of P . The truth table for ∼P is shown in Figure 1.
For example, if P is the proposition 1 = 0, then ∼P is the proposition 1 6= 0.

Logical And. If P and Q are propositions, the proposition “P and Q” is
denoted symbolically by P ∧Q. It’s true when P and Q are both true, and false
otherwise. This is summarized in Figure 2.

1



P ∼P
T F
F T

Figure 1: Truth table for ∼P

P Q P ∧ Q
T T T
T F F
F T F
F F F

Figure 2: Truth table for P ∧ Q

Logical Or. The proposition “P or Q” is denoted symbolically by P ∨ Q. It
is true if one or both of P , Q is true. It is false if both P and Q are false. This
is summarized in Figure 3.

Conditional Statements. The proposition “If P then Q” is a conditional

statement. It asserts that Q is true whenever P is true. It is denoted sym-
bolically by P ⇒ Q. Its truth value is false when P is true and Q is false.
Otherwise, the P ⇒ Q is true. This is summarized in Figure 4. The proposition
P is called the hypothesis of the conditional statement P ⇒ Q. The proposition
Q is the conclusion.

Converse. The converse of the if-then proposition P ⇒ Q is the if-then
proposition Q ⇒ P . It’s important to note that an if-then proposition is not

logically equivalent to its converse. Let’s illustrate with a simple example. Con-
sider the conditional statement

If n is prime, then n is an integer.

Its converse is

If n is an integer, then n is prime.

P Q P ∨ Q
T T T
T F T
F T T
F F F

Figure 3: Truth table for P ∨ Q

2



P Q P ⇒ Q
T T T
T F F
F T T
F F T

Figure 4: Truth table for P ⇒ Q

P Q ∼Q ∼P ∼Q ⇒ ∼P
T T F F T
T F T F F
F T F T T
F F T T T

Figure 5: Truth table for ∼Q ⇒ ∼P

The first proposition is true, since every prime number is an integer. The second
is false, since there are integers that are not prime.

Contrapositive. The contrapositive of the proposition P ⇒ Q is the
proposition ∼Q ⇒ ∼P . For example, the contrapositive of

If x is prime then x is an integer

is

If x is not an integer then x is not prime.

If you read these two statements carefully, you will see that they say exactly
the same thing, but in different ways. You will also note that both statements
are true.

In general, the truth value of ∼Q ⇒ ∼P depends on the truth values of
P and Q. You can work out the dependence with a truth table, as shown in
Figure 5. You can see from Figure 5 that for every combination of truth values
for P and Q, the truth value of ∼Q ⇒ ∼P is the same as that of P ⇒ Q. In
this case, we say that the two statements are logically equivalent. Thus, any
if-then statement is logically equivalent to its contrapositive.

Biconditionals. The proposition “P if and only if Q” is denoted symbolically
P ⇔ Q. It is true when P and Q have the same truth values and false otherwise,
as shown in Figure 6.
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P Q P ⇔ Q
T T T
T F F
F T F
F F T

Figure 6: Truth table for P ⇔ Q

2 Quantifiers

2.1 Existential Quantifiers

Consider the statement

There is a rational number r such that r2 = 2.

This statement, which, by the way, is false, asserts the existence of a member
of some set, in this case the set of rational numbers, having a certain property.
The first part of this statement can be expressed symbolically as ∃r ∈ Q. The
symbol ∃ is an existential quantifier.” It may be read as “there exists.” The
whole statement becomes

(

∃r ∈ Q
)

r2 = 2.

The general form of an existential proposition is

(

∃x ∈ A
)

P (x)

which asserts that there is a member x of the set A such that the property P
holds for x.

2.2 Universal Quantifiers

Consider the statement

For every real number x we have cos2 x + sin2 x = 1.

The first part of this statement can be expressed symbolically as ∀x ∈ R. Here
the symbol ∀ is a universal quantifier. It is read “for all” or “for every.” The
entire statement can be expressed symbolically as

(

∀x ∈ R
)

cos2 x + sin2 x = 1.

2.3 Nested Quantifiers

You will often have to deal with statements that involve two or more quantifiers.
Here is a typical example with two quantifiers.

For every ε > 0 there is a natural number n such that | sin n| < ε.
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Proposition Negation

P ∼P

∼P P

P ∧ Q (∼P ) ∨ (∼Q)

P ∨ Q (∼P ) ∧ (∼Q)

P ⇒ Q P ∧ (∼Q)

(∃x) P (x) (∀x) ∼P (x)

(∀x) P (x) (∃x) ∼P (x)

Figure 7: Negation rules

In symbols,
(

∀ε ∈ (0,∞)
) (

∃n ∈ N
)

| sin n| < ε.

Here’s one with three quantifiers:

For every ε > 0 there is a natural number K such that for every
n ≥ K we have |n sin(1/n) − 1| < ε.

In symbols,
(

∀ε ∈ (0,∞)
) (

∃K ∈ N
) (

∀n ∈ N ∩ [K,∞)
)

|n sin(1/n) − 1| < ε. (1)

3 Negating a Proposition

You will often find yourself having to negate a complex proposition. For exam-
ple, the negation of the proposition (1) is

(

∃ε ∈ (0,∞)
) (

∀K ∈ N
) (

∃n ∈ N ∩ [K,∞)
)

|n sin(1/n) − 1| ≥ ε.

Some rules to help you with this task are given in Figure 7.

4 Proofs

A proof of a proposition establishes that the proposition is true by a sequence
of logical steps. The purpose of this section is to familiarize you with several
proof strategies that you will use frequently.

4.1 Proving conditional statements

Recall that a conditional statement has the form “If P then Q.” The statement
P is the hypothesis, and Q is the conclusion.

A direct proof proceeds by assuming that the hypothesis is true, and arguing
that the conclusion must be true. Here is an example.
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Theorem 4.1. If a and b are even integers then a + b is even.

Proof. Assume that a and b are even integers. Then there are integers k and ℓ
such that a = 2k and b = 2ℓ. Therefore

a + b = 2k + 2ℓ = 2(k + ℓ).

Since a + b is a multiple of 2, it is even.

Another way to prove a conditional statement is by contraposition. This
means that instead of proving the statement directly, you prove its contraposi-
tive. Since any conditional statement is logically equivalent to its contrapositive,
this will establish the original statement. A proof by contraposition begins by
assuming that the conclusion fails. From there, you argue that the hypothesis
must fail as well. Here’s an example.

Theorem 4.2. If n is an integer such that 3n + 5 is odd, then n is even.

Proof. Assume that n is not even. Then n is odd. This means that there is an
integer k such that n = 2k + 1. Then

3n + 5 = 3(2k + 1) + 5 = 6k + 8 = 2(3k + 4)

and so 3n + 5 is even, contrary to hypothesis.

4.2 Proving Biconditionals

Recall that a biconditional statement has the form “P if and only if Q.” The
biconditional is logically equivalent to

(P ⇒ Q) ∧ (Q ⇒ P ).

Proof of a biconditional usually proceeds by proving the two conditional state-
ments separately. Here is an example

Theorem 4.3. An integer n is even if and only if its square is even.

Proof. We first prove the “only if” part: If n is even, then n2 is even. Since n
is even, we can write n = 2k for some integer k. Therefore

n2 = (2k)2 = 4k2 = 2(2k2).

Since n2 is a multiple of 2, it is even.
We next prove the “if” part: If n2 is even, then n is even. We prove this part

by contraposition. Suppose that n is not even. Then n is odd, so n = 2k + 1
for some integer k. Therefore

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Thus, n2 has the form 2ℓ + 1 with ℓ = 2k2 + 2k, so n2 is odd, contrary to
hypothesis.
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4.3 Proof by Contradiction

To prove a theorem by contradiction, you assume statement is false, and derive
from that another statement which is demonstrably false. Here is an example

Theorem 4.4. There is no rational square root of 2.

Proof. By way of contradiction, suppose there is a rational number r such that
r2 = 2. Since r is rational, it can be expressed as a quotient

r =
m

n

where m and n are integers with no common factors. In particular, m and n
are not both even. Since r2 = 2, we have

m2 = 2n2. (2)

Therefore m2 is even. But, since the square of any odd number is odd, it follows
that m is even. Therefore

m = 2k

for some integer k. Inserting this into (2) gives

4k2 = 2n2.

Dividing through by 2 gives
2k2 = n2,

and so n2 is even. Since the square of any odd number is odd, it follows that
n is even. We have now shown that m and n are both even, contradicting the
fact that m and n have no common factors. Thus, the assumption that 2 has a
rational square root leads to a contradiction. It follows that 2 has no rational
square root.

5 Exercises

1. Use truth tables to show that the conditional statement P ⇒ Q is logically
equivalent to the statement (∼P ) ∨ Q).

2. Use truth tables to show that the statement ∼(P∧Q) is logically equivalent
to (∼P ) ∨ (∼Q).

3. Use truth tables to show that the statement ∼(P∨Q) is logically equivalent
to (∼P ) ∧ (∼Q).

4. Show that ∼(P ⇒ Q) is logically equivalent to P ∧ (∼Q).

5. Negate the statement “For every x ∈ R, x2 > 0.”

6. Negate the statement “There is a prime number p satisfying p > 101000.”
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7. Negate the statement “For every a, b ∈ R with a < b there is an r ∈ Q

with a < r < b.

8. Negate the statement “For every ε > 0 there is an n ∈ N such that
| sin n| < ε.

9. Negate the statement “For every x ∈ R there is an n ∈ N such that x < n.”

10. Negate the statement “There is an a ∈ R such that for every ε > 0 there is
a K ∈ N such that for every n ∈ N with n ≥ K we have |(1+1/n)n−a| <
ε.”
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