
Lecture 27: 

Formal Language Theory (2)

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 12/7/2023



Overview

12/7/2023 2

 HW10: What did you think?

 Formal language theory
 Eisenstein (2019) Ch.9 Formal language theory, draft copy

 Mathematical Methods in Linguistics by B. Partee, A. ter Meulen and R. 
Wall

 Excerpt posted on Canvas, under "Modules"

 Course wrap

 ... and lots of announcements

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
http://www.amazon.com/Mathematical-Methods-Linguistics-Studies-Philosophy/dp/9027722455


Are FSA good enough? 

12/7/2023 3

Question:

 Is the Finite-State Machine powerful enough to capture the 
grammatical system of English phonology? 

 How about English morpho-syntax? 

 How about English syntax? 

This inquiry forms the basis of the formal language theory. 



Are all languages equally complex?

12/7/2023 4

 Languages over A = {a, b}:

 L1 = {x | x is 2 characters long or shorter}

 L2 = {x | x contains any number of a's followed by a single b}

 L3 = {x | x contains an even number of a's}

 L4 = {x | x has form anbn}

 L5 = {x | x contains equal numbers of a's and b's in any order}

 L6 = {x | x is a palindrome}

 L7 = {x | x has form ww, i.e., consists of two halves that are identical}

 L8 = {x | x contains #-many a's where # is a prime number} 

 Questions: 

 Are some languages more complex than others?

 Which languages are on the same complexity scale level? 

"copy" 
language



Complexity scale

12/7/2023 5

 Languages over A = {a, b}:
  L1 = {x | x is 2 characters long or shorter}

  L2 = {x | x contains any number of a's followed by a single b}

  L3 = {x | x contains an even number of a's}

  L4 = {x | x has form anbn}

  L5 = {x | x contains equal numbers of a's and b's in any order}

  L6 = {x | x is a palindrome}

  L7 = {x | x has form ww, i.e., consists of two halves that are identical}

  L8 = {x | x contains #-many a's where # is a prime number} 

 Complexity scale
 L1, L2, L3    <     L4, L5, L6    <    L7, L8

 A higher level of complexity requires a more powerful computing 
device (=automaton). 

                                 Which level can be captured by FSA? 









Languages definable by a FSA/regex

12/7/2023 6

L1 = {x | x is 2 characters long or 

shorter}

     = (a|b)?(a|b)?    regex

L2 = {x | x contains any number of a's 

followed by a single b}

    = a*b 

L3 = {x | x contains an even number 

of a's}

     = b*(ab*ab*)*



2START

a

1
b

3START

a

b

21

a

b

A language definable by a FSA/regex is called a regular language. 

START

b

2

b

1

a

a



Can these be described by a FSA?

12/7/2023 7

L4 = {x | x has form anbn}

L6 = {x | x is a palindrome} 2START

a

1
b

3START

a

b

21

a

b

?



Can these be described by a FSA?

12/7/2023 8

L4 = {x | x has form anbn}

L6 = {x | x is a palindrome} 2START

a

1
b

3START

a

b

21

a

bNo, they 
can't.

?

They are not
regular languages.



Complexity scale and automata

12/7/2023 9

 Languages over A = {a, b}:

L1 = {x | x is 2 characters long or shorter}

L2 = {x | x contains any number of a's 

followed by a single b}

L3 = {x | x contains an even number of a's}

L4 = {x | x has form anbn}

L5 = {x | x contains equal numbers of a's 

and b's in any order}

L6 = {x | x is a palindrome}

L7 = {x | x has form ww, i.e., consists of 

two halves that are identical}

L8 = {x | x contains #-many a's where # is a 

prime number} 

Regular languages; 
can be computed by 

a Finite-State 
Automaton







Needs a counting 
device (=memory); 

cannot be computed 
by a FSA   



Complexity scale and automata

12/7/2023 10

 Languages over A = {a, b}:

L1 = {x | x is 2 characters long or shorter}

L2 = {x | x contains any number of a's 

followed by a single b}

L3 = {x | x contains an even number of a's}

L4 = {x | x has form anbn}

L5 = {x | x contains equal numbers of a's 

and b's in any order}

L6 = {x | x is a palindrome}

L7 = {x | x has form ww, i.e., consists of 

two halves that are identical}

L8 = {x | x contains #-many a's where # is a 

prime number} 

Regular languages; 
can be computed by 

a Finite-State 
Automaton







Needs computing 
machine more 

powerful than FSA

Needs an even 
more powerful 

computing 
machine 



Pushdown automata: more powerful

12/7/2023 11

 The pushdown automaton (PDA)
 Essentially a finite-state automaton with an additional device: an auxiliary 

tape where it can read, write, and erase symbols

 Tape works like a "stack":  last-in, first-out

 Upon reading a symbol in input, it also adds, removes, or exchange the top 
slot of the stack

 An input is accepted when:
 the entire input has been read, and

 the PDA is in  a final state, and

 the stack is empty. 

 There is a PDA that accepts:
     L4 = {x | x has form anbn}

     L6 = {x | x is a palindrome}        ( non-deterministic PDA)

 Languages described by a PDA are called context-free languages.

https://web.stanford.edu/class/archive/cs/cs103/cs103.1132/lectures/17/Small17.pdf#page=21


Complexity scale and automata

12/7/2023 12

L1 = {x | x is 2 characters long or shorter}

L2 = {x | x contains any number of a's 

followed by a single b}

L3 = {x | x contains an even number of a's}

L4 = {x | x has form anbn}

L5 = {x | x contains equal numbers of a's 

and b's in any order}

L6 = {x | x is a palindrome}

L7 = {x | x has form ww, i.e., consists of 

two halves that are identical}

L8 = {x | x contains #-many a's where # is a 

prime number} 









Regular languages
(finite-state automata)

Context-free 
languages

(pushdown automata)

Context-sensitive 
languages

(linear bounded 
automata)

More complex languages

(Turing machine)



Natural language as formal language

12/7/2023 13

 Alphabet (vocabulary) = A = {Bart, Lisa, likes, hates, and, or}

 The largest possible language generated on A: 

 

          Any word sequence made out of the vocabulary is grammatical. 
              There is no ungrammatical sentence – even '' (=e) is well-formed! 
                  This is an infinite set. 

 A language over A is any subset of A*. 

                LE is part of English: 'Bart Lisa likes' is ungrammatical for LE. 

                               LJ is Japanese-like: 'Bart Lisa likes' is grammatical. 

L0 = A* = {e, 'Bart', 'Lisa', 'Bart Lisa', 'and Bart', 'Lisa Lisa',  'Bart likes

                Lisa', 'Bart likes Lisa and Lisa likes Lisa', 'or Lisa Bart Bart', ...}

LE = {'Bart likes Lisa', 'Lisa hates Bart', 'Lisa likes Bart and Bart likes

         Bart', 'Lisa likes Bart and Bart hates Lisa or Bart hates Lisa', ...}

LJ = {'Bart Lisa likes', 'Lisa Bart hates', 'Lisa Bart likes and Bart Bart

         likes', 'Lisa Bart likes and Bart Lisa hates or Bart Lisa hates', ...} 



Languages as sets of strings

12/7/2023 14

A*

Bart likes Lisa

Bart hates Bart

Lisa likes Lisa

Lisa hates Bart

Lisa likes Bart and Lisa hates Bart

Lisa likes Lisa or Lisa likes Lisa

Lisa likes Bart and Lisa hates 
Bart or Lisa likes Lisa

Bart

Lisa Bart

Lisa Bart likes

e

likes and

and Bart

likes likes

Bart and

or and likes

likes

Lisa Lisa hates

Bart Bart likes or Bart Lisa hates

Bart Lisa hates

Bart Lisa likes

and

LJ 

LE

...
...

...

...

... ...

...

...

...

likes Bart Lisa

hates Lisa and Bart



English syntax as FSA

12/7/2023 15

 So, this toy English language has a FSA representation and therefore is a 
regular language.

 Questions:

 Is the ENTIRE English language a regular language?

 Assuming the language universal, is human language a regular language? 

LE = {'Bart likes Lisa', 'Lisa hates Bart', 'Lisa likes Bart and Bart likes

         Bart', 'Lisa likes Bart and Bart hates Lisa or Bart hates Lisa', ...}

2

4START likes1

3
Lisa

and

Bart

hates

Bart

Lisa

or



Complexity scale and automata

12/7/2023 16

L1 = {x | x is 2 characters long or shorter}

L2 = {x | x contains any number of a's 

followed by a single b}

L3 = {x | x contains an even number of a's}

L4 = {x | x has form anbn}

L5 = {x | x contains equal numbers of a's 

and b's in any order}

L6 = {x | x is a palindrome}

L7 = {x | x has form ww, i.e., consists of 

two halves that are identical}

L8 = {x | x contains a # of a's where # is a 

prime number} 









Regular languages
(finite-state automata)

Context-free 
languages

(pushdown automata)

Context-sensitive 
languages

(linear bounded 
automata)

More complex languages

(Turing machine)

Where do 
natural languages 

fall on this 
complexity scale?



Natural language syntax: regular or not?

12/7/2023 17

L4 = {x | x has form anbn}

L6 = {x | x is a palindrome}

 Context-free languages
(pushdown automata)

▪ Is English a regular language?

▪ Can we find aspects of English syntax that can't be modeled by a FSA?

▪ How about:

▪ The cat died.

▪ The cat the dog chased died.

▪ The cat the dog the rat bit chased died.

▪ The cat the dog the rat the elephant admired bit chased died. 

▪ Do you see parallels with:



▪ Nested dependencies:
▪ The cat died.
▪ The cat the dog chased died.
▪ The cat the dog the rat bit chased died.
▪ The cat the dog the rat the elephant admired bit chased died. 

▪ They are a cross between two known context-free languages:

▪ Syntactic categories:

      (the + common noun)n  Vtn-1  Vi

▪ Noun-verb agreement:

         a   b   c   d   d   c   b   a

• Mathematically, intersecting two context-free languages results in CFL.

     These sentences require at least CFL-level complexity. 

     English as a whole is (at least) a context-free language. 

Nested dependencies

12/7/2023 18

L4 = {x | x has form anbn}

L6 = {x | x is a palindrome}





More powerful?

12/7/2023 19

 So, nested dependencies prove that English is not a regular 
language but a context-free language. 

 It means FSA cannot adequately model English; it requires a 
pushdown automaton.

 By extension, this proves that human language as a whole is at 
least a context-free language.

 Question:

 Is context-freeness enough? 

 = Can pushdown automata model all aspects of human language?

 = Are there any aspects that require an even more powerful computing 
machine? 



Beyond context-free

12/7/2023 20

 Cross-serial dependency in Swiss German:
 Jan   säit  das  mer  em Hans  es huuns         hälfed   aastriiche

    John said  that  we     Hans-Dat   the house-Acc    helped     paint

  "John said that we helped Hans paint the house."

 Jan säit das mer d'chind     em Hans  es huuns     lönd hälfed aastriiche

  John said that we the-kids-Acc Hans-Dat    the house-Acc let    help     paint

  "John said that we let the children help Hans paint the house."

 Can these sentences be modeled by a pushdown automaton?

 No. This construction is analogous to:

L7 = {x | x has form ww, i.e., consists of two 

halves that are identical ("copy language")}
 Context-sensitive languages

(linear bounded automata)



Human language is context-sensitive

12/7/2023 21

 Cross-serial dependency in Swiss German:
 Jan säit das mer d'chind     em Hans  es huuns     lönd hälfed aastriiche

  John said that we the-kids-Acc Hans-Dat    the house-Acc let    help     paint

  "John said that we let the children help Hans paint the house."

 Cross-serial dependencies require something more powerful than a 
pushdown automaton. 

 Swiss German is more complex than context-free languages. 

 Human language as a whole is not context-free; it is context-sensitive in 
terms of complexity scale. 

Turns out, there are finer levels within context-sensitiveness; 

Human language can be shown to be only mildly context-sensitive. 



But what about trees and rules?

12/7/2023 22

 A ‘tree’ structure for The happy girl eats candy:

 Rules used:
 S → NP VP

 VP → V NP

 NP → Det Adj N

 NP → N

 Det → the

 Adj → happy

 ...

 Phrase structure rules can also be subjected to formal treatment. 

S

                     VP

      NP

                           NP

Det   Adj    N      V     N

the  happy  girl   eats  candy



A finite device to describe an infinite set

12/7/2023 23

 A language is potentially infinite.
                       (All interesting languages are infinite. The vocabulary is always finite.)

 We need a finite device that describes all of the grammatical strings in 
the language to the exclusion of all ungrammatical strings.

 Computing machines

 ex. Finite-state automata, push-down automata, linear bounded 
automata, Turing machine

 Functions as a recognizer: accepts grammatical strings and rejects 
ungrammatical strings. 

 Grammar
 ex. Phrase-structure grammar, transformational grammar

 Functions as a generator: generates grammatical strings. 

 



A formal definition of grammar

12/7/2023 24

 A formal grammar (or simply a grammar)
 is a deductive system of axioms and rules of inference, which generates the 

sentences of a language as its theorems. 

 A grammar consists of:
 VT  (a set of terminal alphabet)  = {a, b}

 VN  (a set of non-terminal alphabet)  = {S, A, B}

 S    (the initial symbol : a member of VN)

 R    (a set of rules) = S → ABS  A → a

     S → e  B → b

     AB → BA

     BA → AB

 Rules operate as "rewriting rules": starting from the initial symbol, rules are 
applied to any substring to yield a new string until the string entirely consists 
of terminal symbols.

 The language generated by a grammar is the set of all strings generated. 



In English, please?

12/7/2023 25

 A grammar:

 VT  (a set of terminal alphabet) = {Mary, sings}

 VN  (a set of non-terminal alphabet)  = {S, NP, VP}

 S    (the initial symbol : a member of VN)

 R    (a set of rules) = S → NP VP S NP → Mary

     S → e  VP → sings

     NP VP → VP NP

     VP NP → NP VP

 What do you think of this phrase structure grammar? 

 What do you think of the rules? 

 What kind of language does it generate?

 Does English need a grammar like this?

 Does English grammar need restrictions on what types of rules are and are 
not allowed? 



Too powerful

12/7/2023 26

 A grammar:

 VT  (a set of terminal alphabet) = {Mary, sings}

 VN  (a set of non-terminal alphabet)  = {S, NP, VP}

 S    (the initial symbol : a member of VN)

 R    (a set of rules) = S → NP VP S NP → Mary

     S → e  VP → sings

     NP VP → VP NP

     VP NP → NP VP

 This grammar allows many different forms of rewriting rules.

 It generates strings with an equal number of 'Mary' and 'sings', in any order                  

 We don't need rules like NP VP → VP NP, at least for English 

 Turns out, this grammar isn't very restricted → is a form of grammar with the 
greatest generative power. 



Generative power of grammar

12/7/2023 27

 A grammar:

 VT  (a set of terminal alphabet) = {Mary, sings}

 VN  (a set of non-terminal alphabet)  = {S, NP, VP}

 S    (the initial symbol : a member of VN)

 R    (a set of rules) = S → NP VP S NP → Mary

     S → e  VP → sings

     NP VP → VP NP

     VP NP → NP VP

 Grammars come with their own generative power. 

 A grammar can be too powerful → leads to overgeneration

 By placing restrictions on the form of the rules, one can restrict what type of 
string rewriting is possible and therefore restrict the power of the grammar. 

 As linguists, we are interested in finding a form of grammar that is powerful 
enough for all human languages but is not overly powerful.



Classes of grammar

12/7/2023 28

 The Chomsky Hierarchy

 By putting increasingly stringent restrictions on the allowed forms of rules, 
we can establish a series of grammars with decreasing generative power. 

• α,β,ψ: arbitrary strings (consist of terminal and non-terminal 
alphabets; can be empty)

• A, B: a non-terminal symbol

• x: a terminal symbol

▪ Type 0: any rules allowed

▪ Type 1: each rule is of the form αAβ → αψβ, where ψ ≠ e  

▪ Type 2: each rule is of the form A → ψ

▪ Type 3: each rule is of the form A → xB or A → x



Example of Type 2 grammar

12/7/2023 29

 What kind of language does it generate?
 Answer:               L6 = {x | x is a palindrome}

▪ Can the palindrome language be described by a Type 3 grammar? (each 
rule is of the form A → xB or A → x)

▪ Answer: NO. 

 Type 2: each rule is of the form A → ψ

 A grammar containing:

 VT  (a set of terminal alphabet)  = {a, b}

 VN  (a set of non-terminal alphabet)  = {S}

 S    (the initial symbol : a member of VN)

 R    (a set of rules) =  S → aSa  S → a

     S → bSb  S → b

       S → e



Classes of grammar

12/7/2023 30

▪ The Chomsky Hierarchy

▪ Type 0: any rules allowed
▪  Called unrestricted rewriting systems

▪ Type 1: each rule is of the form αAβ → αψβ, where ψ ≠ e
▪ Lets us specify context: αAβ → αψβ is the same as A → ψ / α__β! 

▪ Called context-sensitive grammar

▪ Languages it describes: context-sensitive languages

▪ Type 2: each rule is of the form A → ψ
▪ Called context-free grammar

▪ Languages it describes: context-free languages

▪ Type 3: each rule is of the form A → xB or A → x
▪ Called regular grammar

▪ Languages it describes: regular languages



Languages, automata, and grammar

12/7/2023 31

 The Chomsky Hierarchy fits with the complexity scale.

Language example Language class Automaton Grammar

Type 0 languages The Turing 
machine

Type 0 grammar

L7 = {x | x has form ww}

           ("copy language")

Context-sensitive 
languages

Linear 
bounded 
automaton

Type 1 grammar
(context-sensitive 
grammar)

L6 = {x | x is a

               palindrome}

Context-free 
languages

Pushdown 
automaton

Type 2 grammar
(context-free grammar)

L2 = a*b Regular 
languages

Finite-state 
automaton

Type 3 grammar
(regular grammar)

▪ Which grammar is "Phrase structure grammar"?

▪ Which grammar formalism is frequently utilized in NLP?



Phrase structure grammar

12/7/2023 32

 Rules used:
 S → NP VP

 VP → V NP

 NP → Det Adj N

 NP → N

 Det → the

 Adj → happy

 ...

S

                     VP

      NP

                           NP

Det   Adj    N      V     N

the  happy  girl   eats  candy

▪ Type 0: any rules allowed

▪ Type 1: each rule is of the form αAβ → αψβ, where ψ ≠ e  

▪ Type 2: each rule is of the form A → ψ

▪ Type 3: each rule is of the form A → xB or A → x

• α,β,ψ: arbitrary strings (consist of terminal and non-terminal alphabets; can be empty)

• A, B: a non-terminal symbol

• x: a terminal symbol

Context-Free Grammar 
(CFG)



Inclusion relations in formal languages

12/7/2023 33
* excluding {e}

Non-Turing acceptable languages

Turing-acceptable languages

Context-sensitive languages*

Context-free languages

Regular languages
L2 = a*b

L6 = {x | x is a palindrome}

L7 = {x | x has form ww}

▪ Inclusion relationship:  

 a regular language is a 
context-free language, a 
context-free language is a 
context-sensitive language, 
etc. 



Natural language morphology: regular or not?

12/7/2023 34

 Are there aspects of morphology that cannot be modelled by FSA? 

 YES: 

 long-distance dependencies (un-drink-able vs. *un-drink) 

 templatic morphology (Arabic)

 Oh no!! Abandon FST and FOMA! 

 Not so fast. 

 It's true FST in its pure implementation cannot handle the above phenomena…

 However! Foma and FST-based systems (XFST, etc.) come with additional 
devices for handling them on a limited/bounded basis:

 Flag diacritics in Foma/XFST and long-distance dependencies

 https://fomafst.github.io/morphtut.html#Advanced:_long-
distance_dependencies_and_flag_diacritics

https://fomafst.github.io/morphtut.html#Advanced:_long-distance_dependencies_and_flag_diacritics
https://fomafst.github.io/morphtut.html#Advanced:_long-distance_dependencies_and_flag_diacritics


Course Wrap Up



You learned this semester:

12/7/2023 36

 Text encoding systems, Unicode

 How spell checkers work

 Corpus linguistics: type, token, TTR, Zipf's law

 Basic text processing and stats: tokenization, frequency distribution, conditional frequency 
distribution

 n-gram language models

 Machine learning and document classification

 Evaluation of machine learning systems

 Naïve Bayes classifier

 Regular expressions and finite-state automata

 Computational morphology: FST

 Part-of-speech (POS) tagging: n-gram taggers and HMMs

 Syntactic tree representation, context-free grammar, dependency grammar, parsing

 Computational semantics: WordNet, logic-based, PropBank, vector semantics

 Core concepts in Information Theory: TF-IDF, noisy channel model

 Fundamentals of machine translation (MT) systems: classic, SMT, NMT

 Formal language theory and the Chomsky Hierarchy

 The state-of-the-art of NLP/AI, LLMs, societal impact, future prospect



What we did not cover

12/7/2023 37

 Computational phonology (did a little bit with Foma)

 Speech processing & synthesis 

 Natural language generation

 Question answering and summarization

 Dialogue systems and conversational agents

 Off-the-shelf NLP solutions

 More sophisticated machine learning algorithms: 

 Maximum entropy (ME), conditional random fields (CRF), support 
vector machine (SVM), deep learning…



Join PyLing!

12/7/2023 38

 Pitt Python Linguistics Group (PyLing)
 On Discord! Invitation link on MS Teams. 

 Also: email list (let me know)

 Open to LING1330/2330 alums and all linguists/NLP folks who like 
doing things in Python

 Meet every few weeks over snacks

 Practice Python, chat about computational linguistics, guest speakers, 
other fun activities

 Studying CL at Pitt: a Guide
 https://sites.pitt.edu/~naraehan/computational_linguistics.html

https://sites.pitt.edu/~naraehan/computational_linguistics.html


Wrapping up

12/7/2023 39

 Do the OMET survey! 

 Homework 10

 On MS Teams: Share your HW10 essay, leave comments, gain extra credit

 Upload yours NOW (by Sunday night), and share comments! 

 Na-Rae's special office hours on Monday

 Monday (12/11) 1-2:45pm, in person in G17 CL and on MS Teams 

 Grades, late work forgiveness ➔

 Extra credit ➔ 

 Final exam info ➔ 



Your grade: what's ahead

12/7/2023 40

 Canvas's Grade Center is being prepped
 Your exercise score is in

 Homework 9 and 10 grades are outstanding

 Attendance & participation records (will post 2nd half attendance soon)
 1 missed class exemption → raised to 2

 Weighted running total (CAVEAT!!)

 Late work forgiveness
 Everyone gets one make-up opportunity.  Choose from:

1. Finish up an incomplete homework submission or re-do a part, no penalty. 

2. Up to 3 days of late submission penalty waived.  

3. Missed homework: 25% penalty. Upload on Canvas and email me. 

4. Missed exercise: 5/10 for satisfactory (80+%) work. Email me as attachment. 

 Deadline: 12/15 (Fri) 11:59pm. Email me and let me know of your choice! 

 If a solution has been published, feel free to look it up. It's fine as long as you don't blindly copy 
it. (Make sure to demonstrate you are not blindly copying.) There's already a late penalty, and I'd 
rather you learn. 



Extra credit, round-up

12/7/2023 41

 If you have 100% on Exercises, you are already eligible for a standard 
round-up, up to 0.4%. 

 Normally 89.6% is B+; it will be bumped up to A- (90%)

  Extra credit opportunity (1): NLP talk
 Attend Linguistics dept colloquium:
 Dec 1 (Fri) 3pm, G8 CL. Lorraine Li, "Probabilistic (Commonsense) Knowledge in 

Language"

 If you can't attend this one, find a different CL/NLP talk (CMU, Pitt, online)

 Submit a short report on Canvas, earn 0.3% extra credit

 Extra credit opportunity (2): share HW10 essays
 On MS Teams, share your HW 10 essay (by this Sunday), read 3 

classmates' essays and leave comments, earn 0.3% extra credit

Both due 12/15 
(Friday) 11:59pm

https://www.cs.pitt.edu/people/full-time-faculty/lorraine-xiang-li


Final exam

12/7/2023 42

 12/13 (Wed),  4—5:50pm

 At G17 CL (Language Media Center)

 150 total points (50% larger than midterm)

 All pen-and-pencil based.

 1 cheat sheet allowed: 

 letter-sized, front-and-back, hand-written. 

 Cumulative! 10-20% will be from first half of the semester. 

 Make sure to study book chapters and other linked materials. Post-
midterm, my slides are not as  "comprehensive". 


	Slide 1: Lecture 27:  Formal Language Theory (2)
	Slide 2: Overview
	Slide 3: Are FSA good enough? 
	Slide 4: Are all languages equally complex?
	Slide 5: Complexity scale
	Slide 6: Languages definable by a FSA/regex
	Slide 7: Can these be described by a FSA?
	Slide 8: Can these be described by a FSA?
	Slide 9: Complexity scale and automata
	Slide 10: Complexity scale and automata
	Slide 11: Pushdown automata: more powerful
	Slide 12: Complexity scale and automata
	Slide 13: Natural language as formal language
	Slide 14: Languages as sets of strings
	Slide 15: English syntax as FSA
	Slide 16: Complexity scale and automata
	Slide 17: Natural language syntax: regular or not?
	Slide 18: Nested dependencies
	Slide 19: More powerful?
	Slide 20: Beyond context-free
	Slide 21: Human language is context-sensitive
	Slide 22: But what about trees and rules?
	Slide 23: A finite device to describe an infinite set
	Slide 24: A formal definition of grammar
	Slide 25: In English, please?
	Slide 26: Too powerful
	Slide 27: Generative power of grammar
	Slide 28: Classes of grammar
	Slide 29: Example of Type 2 grammar
	Slide 30: Classes of grammar
	Slide 31: Languages, automata, and grammar
	Slide 32: Phrase structure grammar
	Slide 33: Inclusion relations in formal languages
	Slide 34: Natural language morphology: regular or not?
	Slide 35: Course Wrap Up
	Slide 36: You learned this semester:
	Slide 37: What we did not cover
	Slide 38: Join PyLing!
	Slide 39: Wrapping up
	Slide 40: Your grade: what's ahead
	Slide 41: Extra credit, round-up
	Slide 42: Final exam

