Lecture 24: Vector Semantics

Ling 1330/2330 Intro to Computational Linguistics Na-Rae Han, 11/28/2023

Finally, **meaning**

Computational semantics: key areas

- Formal semantics: Logic, model-theoretic semantics
 - NLTK Book ch.10 <u>Analyzing the meaning of sentences</u>
- Word sense: lexical semantics
 - J&M Ch.23: Word senses and WordNet
 - NLTK Book 2.5 <u>WordNet</u>
- Word sense: vector semantics
 - J&M Ch.6: <u>Vector semantics and embeddings</u>
- Predicate-argument semantics, semantic roles
 - J&M Ch.24: <u>Semantic role labeling</u>
 - NLTK how to, <u>PropBank</u>

Vast landscape, so little time...

Vector semantics

- J&M Ch.6: <u>Vector semantics and embeddings</u>
 - This topic is very dense and gets technical READ this chapter!

Today's slides borrow heavily from J & M's: <u>https://web.stanford.edu/~jurafsky/slp3/</u>

Relation: Similarity

Words with similar meanings. Not synonyms per se, but sharing *some* element of meaning

car, bicycle

cow, horse

Ask humans how similar 2 words are

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex-999 dataset (Hill et al., 2015)

But how to capture word similarity through *corpus data*?

What does ongchoi mean?

Suppose you see these sentences:

- Ongchoi is delicious sautéed with garlic.
- Ongchoi is superb over rice
- Ongchoi leaves with salty sauces
- And you've also seen these:
 - ...spinach sautéed with garlic over rice
 - Chard stems and *leaves* are *delicious*
 - Collard greens and other salty leafy greens
- Conclusion:
 - Ongchoi is a leafy green like spinach, chard, or collard greens

Ongchoi: Ipomoea aquatica "Water Spinach"

Radically rethinking word meaning

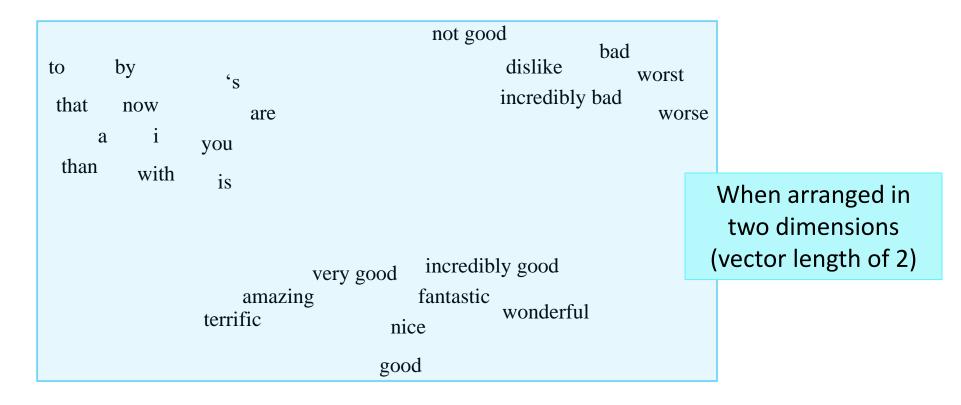
- If A and B have almost identical environments we say that they are synonyms."
 - Zellig Harris (1954)
- "The meaning of a word is its use in the language"
 - <u>Ludwig Wittgenstein</u>, Philosophical Investigations (1945)
- "You shall know a word by the company it keeps"
 - John Firth (1957)
- These form the philosophical foundation of distributional semantics.
 - Words are defined by their environments (the words around them)

We'll build a new model of meaning

focusing on similarity

- Each word = a vector
 - Not just chair.n.01, Like(x,y) or agree.01
- Similar words are "nearby in space":

vector: a list of numbers with a particular length n



We define a word as a vector

- Called an "embedding" because it's embedded into a multidimensional space (dimension # is vector length)
- Has quickly become the de-facto standard way to represent meaning in NLP
- Fine-grained model of meaning for similarity
 - NLP tasks like sentiment analysis
 - With words, requires **same** word type to be in training and test
 - With embeddings: ok if **similar** words occurred!!!
 - Question answering, conversational agents, etc

Two kinds of embeddings

► Tf-idf

- "Term frequency inverse document frequency"
- A common baseline model, long been popular in information retrieval (<u>Karen Spärck Jones</u>, 1972)
- Sparse vectors
- Words are represented by a simple function of the counts of nearby (= in the same document) words

Word2vec

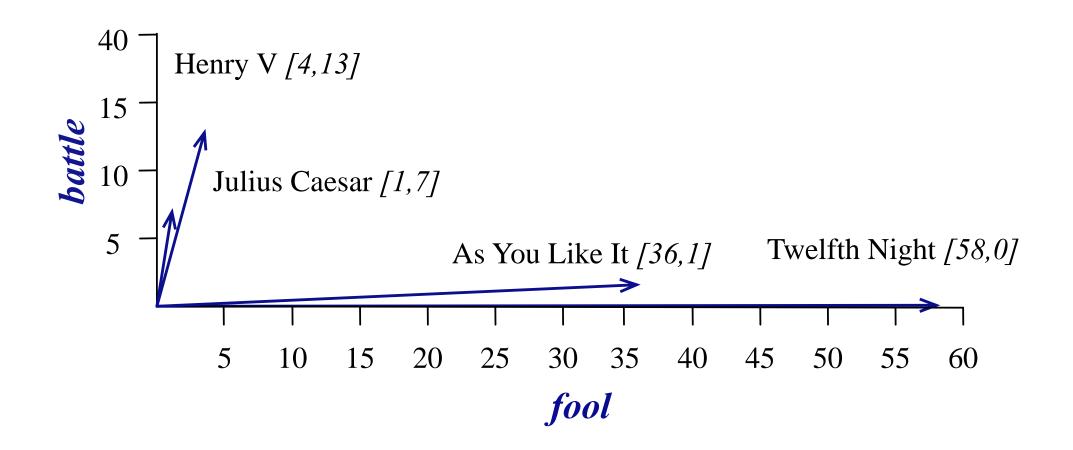
- Dense vectors
- Representation is created by training a classifier to distinguish nearby and far-away words

Term-document matrix

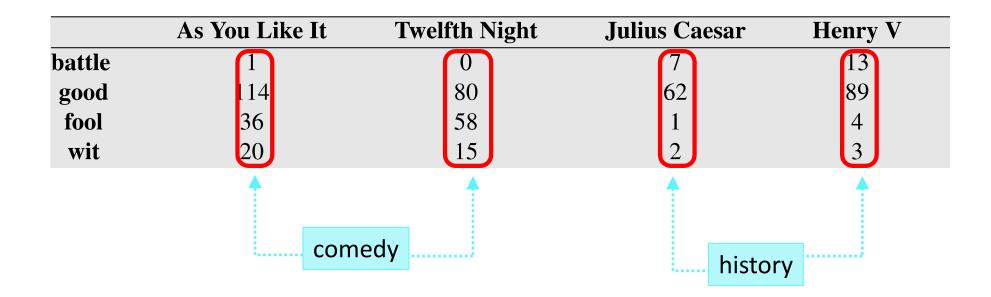
Each document is represented by a vector of word counts:

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle		0	7	13	
good fool	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

Visualizing document vectors



Vectors are the basis of information retrieval



- Vectors are similar for the two comedies, different than the history
- Comedies have more *fools* and *wit* and fewer *battles*.

Flipping: words can be vectors too!

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

- *battle* is "the kind of word that occurs in Julius Caesar and Henry V"
- fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix

(or "term-context matrix")

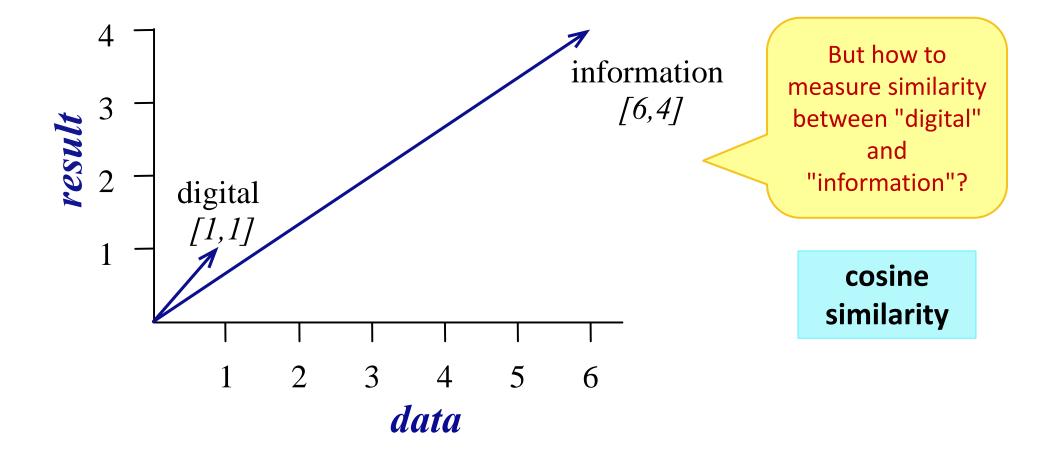
Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of
their enjoyment. Cautiously she sampled her first
well suited to programming on the digital
for the purpose of gathering data andapricot
pineapple
computer.

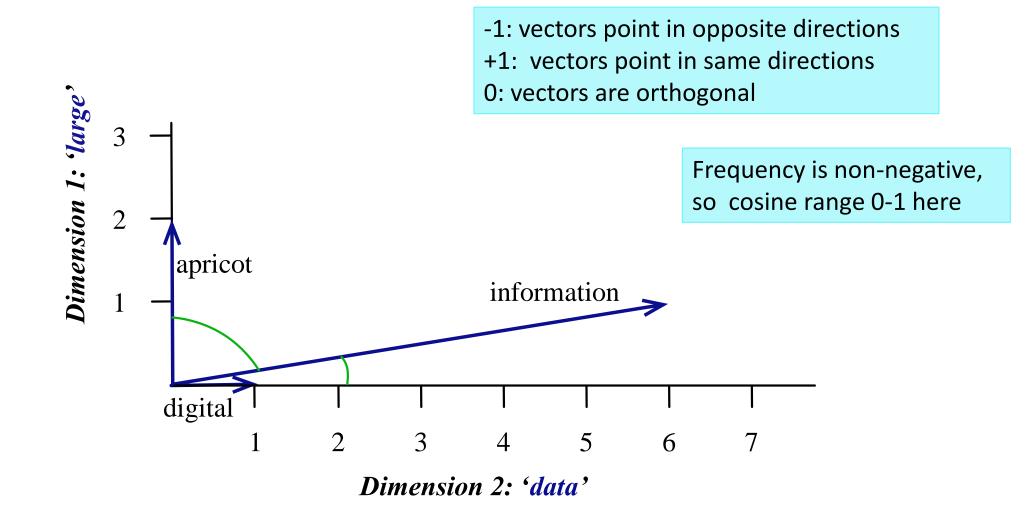
jam, a pinch each of,

and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	aardvark	digital	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
computer	0	2	1	0	1	0	
information	0	1	6	0	4	0	



Cosine as a similarity metric



But raw frequency is a bad representation

- Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context
- Need a function that resolves this frequency paradox!

Term frequency – inverse document frequency

tf: term frequency. frequency count (usually log-transformed):

 $tf_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{count}(t,d) & \text{if } \operatorname{count}(t,d) > 0\\ 0 & \text{otherwise} \end{cases}$

• Idf: inverse document frequency $idf_i = \log\left(\frac{N}{df_i}\right)$ Words like "the" or "good" have very low idf, Words like "linguistics" have higher idf
of docs that have word i

tf-idf value for word t in document d: $w_{t,d} = tf_{t,d} \times idf_t$

Tf-idf demo

Demo via Jupyter Notebook

Tf-idf representation is sparse

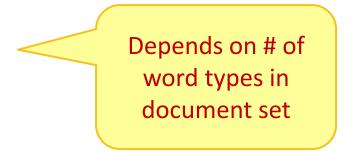
tf-idf vectors are

- Iong (length |V| = 20,000 to 50,000)
- **sparse** (most elements are zero)
- dimensions are tied to specifics of data

Alternative: dense vectors

Vectors which are:

- short (typically 50 1000 dimensions)
- dense (most elements are non-zero)
- Dimension *d* size can be arbitrary, doesn't have a clear interpretation



Sparse vs. dense vectors

Why dense vectors?

- Short vectors may be easier to use as **features** in machine learning (less weights to tune)
- Dense vectors may **generalize** better than storing explicit counts
- They may do better at capturing synonymy:
 - *car* and *automobile* are synonyms; but are distinct dimensions → a word with *car* as a neighbor and a word with *automobile* as a neighbor should be similar, but aren't
- In practice, they work better

Dense embeddings you can download!

- Word2vec (Mikolov et al.)
 - https://code.google.com/archive/p/word2vec/
- Fasttext <u>http://www.fasttext.cc/</u>

GloVe (Pennington, Socher, Manning)
 <u>https://nlp.stanford.edu/projects/glove/</u>

Word2Vec

- Introduced by Mikolov (2013)
- Popular embedding method
- Very fast to train
- Code available on the web
- Idea: predict rather than count

Word2Vec: a rough sketch

- Instead of counting how often each word w occurs near "apricot", train a classifier on a binary prediction task:
 - Is w likely to show up near "apricot"?
- We don't actually care about this task itself, but we'll take the learned classifier weights as the word embeddings
- Brilliant insight: Use running text as implicitly supervised training data!
 - A word s near apricot
 - Acts as gold 'correct answer' to the question "Is word w likely to show up near *apricot*?"
- No need for hand-labeled supervision!
- Idea comes from neural language modeling

Skip-gram algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- 2. Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

skip-gram with negative sampling
 (SGNS)
 ← one of multiple tasks provided
 by Word2Vec

Skip-Gram Training

Training sentence:

Ill lemon, a tablespoon of apricot jam a pinch ...

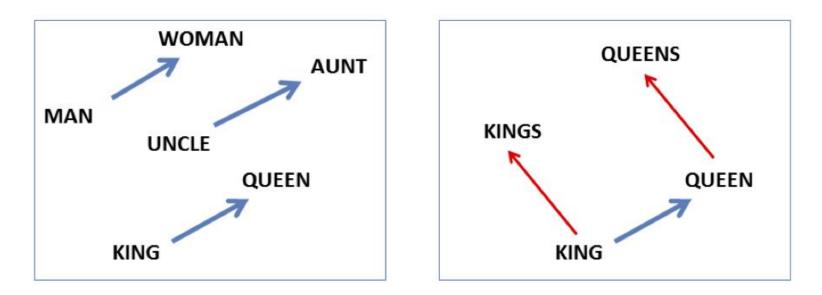
c1 c2 t c3 c4

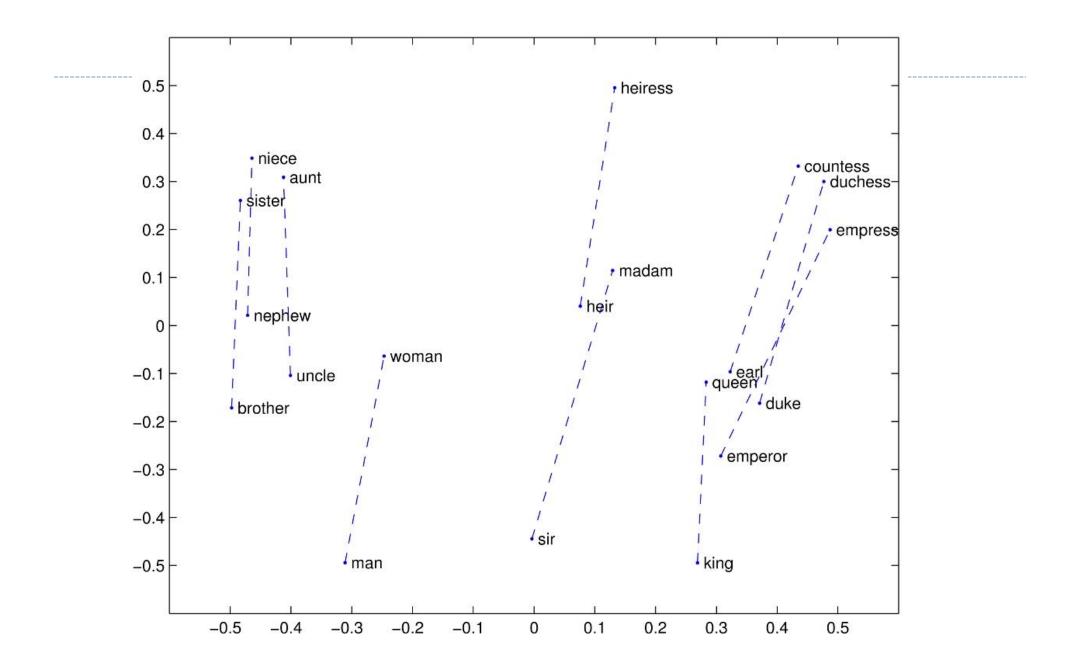
positive examples +		negative examples -			
t	c	t	c	t	С
apricot	tablespoon	apricot	aardvark	apricot	twelve
apricot	L	apricot	puddle	apricot	hello
–	preserves	apricot	where	apricot	dear
apricot	•	apricot	coaxial	apricot	forever

We will skip the details. Refer to the book chapter!

Analogy: Embeddings capture relational meaning!

```
vector('Paris') - vector('France') + vector('Italy')
≈ vector('Rome')
```





Word2Vec demo

Demo via Jupyter Notebook

Wrapping up

Next class:

- Deep Learning Language Models: guest lecture by Tianyi
- Machine Translation

Homework 9 due on Thu

- genism installation: do it TODAY
- Make sure to refresh the page! Recent changes in PART 2.

▶ Final exam →

Final exam

- ▶ 12/13 (Wed), 4—5:50pm
- At G17 CL (Language Media Center)
- 150 total points (50% larger than midterm)
- All pen-and-pencil based.
- 1 cheat sheet allowed:
 - letter-sized, front-and-back, hand-written.
- Cumulative! 10-20% will be from first half of the semester.
- Make sure to study book chapters and other linked materials. Postmidterm, my slides are not as "comprehensive".