Lecture 22: More on Syntax & Parsing, WordNet

Ling 1330/2330 Intro to Computational Linguistics Na-Rae Han, 11/14/2023

Overview

- Linguistic exploration of trees
- Probabilistic CFG
- Dependency grammar
 - J& M Ch.18 Dependency parsing
 - <u>https://www.nltk.org/book/ch08.html#dependencies-and-dependency-grammar</u>
- Computational semantics
 - WordNet

Linguistic exploration, probabilistic CFG

- HW8 review, probabilistic CFG
 - https://sites.pitt.edu/~naraehan/ling1330/lecture22.html
- Linguistic exploration of trees
 - https://sites.pitt.edu/~naraehan/ling1330/lecture21.html

Context-free grammar

- Phrase-structure grammar is based upon constituency.
- Each local constituent can be expressed through context-free grammar.

```
S -> NP AUX VP
NP -> N
VP -> V NP
NP -> DET N N
N -> 'Marge'
Aux -> 'will'
V -> 'make'
DET -> 'a'
N -> 'ham' | 'sandwich'
```


A paradigm shift: dependency grammar

- Phrase structure grammar is all about constituents: phrasal units that words combine into.
- Dependency grammar, on the other hand, focuses on how words relate to other words: dependency relation between the headword and its dependents.

- A sentence's head (= "root") is the main **verb**.
- Dependency grammars can be used to directly express grammatical functions as a type of dependency.
- NLTK's section:
- https://www.nltk.org/book/ch08.html#dependencies-and-dependency-grammar 11/14/2023

A comparison

Constituency grammar

VS.

Dependency grammar

through

prefer I flight the morning Denver

A constituent tree can be algorithmically converted to a dependency tree, via head rules.

P is the head of PP, V is the head of VP.

11/14/2023

Universal dependencies

- Dependency grammar and parsing have become increasingly popular.
- Dependency grammar is thought to be more suited to languages with flexible word order.
- Could it be a better candidate for a truly universal grammar formalism?
- Linguistic theory aside, does it offer an engineering-side advantage?
- Universal Dependencies working group
 - https://universaldependencies.org/introduction.html
 - A wide variety of languages represented!
 - https://universaldependencies.org/

Dependency annotation: example

https://raw.githubusercontent.com/UniversalDependencies/UD English-PUD/master/en pudud-test.conllu

# sent_id = n01001013														
# text = For those who follow social media transitions on Capitol Hill, this will be a little different.														
1	For	for	ADP	IN	_	2	case	2:case	_					
2	those	those	PRON	DT	Number=Plur Pro		nType=Dei	be=Dem		obl	4:nsubj 17:obl:for _			
3	who	who	PRON	WP	PronType=Rel		4	nsubj	2:ref	_				
4	follow	follow	VERB	VBP	Mood=Ind Tense=		Pres Ver	erbForm=Fin		2	acl:relcl 2:acl:relcl			_
5	social	social	ADJ	ככ	Degree=Pos		6	amod	6:amod	_				
6	media	media	NOUN	NN	Number=Sing		7	compound	d	7:compound _				
7	transit	ions	transit	ion	NOUN	NNS	Number=	Plur	4	obj	4:obj	_		
8	on	on	ADP	IN	_ 10		case	10:case	_					
9	Capitol	Capitol	PROPN	NNP	Number=Sing		10	compound		10:compound _				
10	Hill	Hill	PROPN	NNP	Number=Sing		7	nmod	7:nmod:	on	SpaceAfter=No			
11	و	,	PUNCT	و	_ 17 punct 17:punct		t	_						
12	this	this	PRON	DT	Number=Sing PronType=Dem			17	nsubj	17:nsub	j	_		
13	will	will	AUX	MD	VerbForm=Fin		17	aux	17:aux _					
14	be	be	AUX	VB	VerbFor	m=Inf	17	сор	17:cop	_				
15	а	а	DET	DT	Definit	e=Ind Pro	onType=A	rt	16	det	16:det	_		
16	little	little	ADJ	22	Degree=Pos		17	obl:npmod		17:obl:npmod _				
17	different		different		ADJ	33	Degree=Pos		0	root	0:root	SpaceAf	ter=No	
18	•	•	PUNCT	•	_	17	punct	17:punc	t	_				

Dependency annotation: example

https://raw.githubusercontent.com/UniversalDependencies/UD Spanish-PUD/master/es pudud-test.conllu

sent_id = n01001013
text = Para los que sigan las transiciones de las redes sociales de Capitol Hill, esto será algo diferente.
text_en = For those who follow social media transitions on Capitol Hill, this will be a little different.

1	Para	para	ADP	IN	_	4	case	_	_						
2	los	el	DET	DT	Definit	e=Def Ge	nder=Mas	c Number	=Plur Pr	onType=A	rt	3	det	_	_
3	que	que	PRON	REL	Gender=	Masc Num	ber=Plur	PronTyp	e=Rel	4	nsubj	_	_		
4	sigan	_	VERB	VBC	Mood=Su	b Number	=Plur Pe	rson=3 T	ense=Pre	s VerbFo	rm=Fin	17	xcomp	_	_
5	las	el	DET	DT	Definit	e=Def Ge	nder=Fem	Number=	Plur Pro	nType=Ar [.]	t	6	det	_	_
6	transic	iones	_	NOUN	NN	Gender=	Fem Numb	er=Plur	4	obj	_	_			
7	de	de	ADP	IN	_	9	case	_	_						
8	las	el	DET	DT	Definit	e=Def Ge	nder=Fem	Number=	Plur Pro	nType=Ar [.]	t	9	det	_	_
9	redes	_	NOUN	NN	Gender=	Fem Numb	er=Plur	6	nmod	_	_				
10	sociale	es	_	ADJ	ככ	Gender=	Fem Numb	er=Plur	9	amod	_	_			
11	de	de	ADP	IN	_	12	case	_	_						
12	Capitol	Capitol	PROPN	NNP	Number=	Sing	9	nmod	_	_					
13	Hill	hill	NOUN	NN	Number=	Sing	12	flat:na	ime	_	SpaceAf	ter=No P	roper=Tr	ue	
14	,	,	PUNCT	,	_	4	punct	_	_						
15	esto	esto	DET	DT	Gender=	Masc Num	ber=Sing	PronTyp	e=Dem	17	nsubj	_	_		
16	será	ser	AUX	VBC	Mood=In	d Number	=Sing Pe	rson=3 T	ense=Fut	VerbFor	m=Fin	17	сор	_	_
17	algo	algo	NOUN	NN	Gender=	Masc Num	ber=Sing	0	root	_	_				
18	diferer	nte	diferer	nte	ADJ	ככ	Gender=	Masc Num	ber=Sing	17	amod	_	SpaceAf	ter=No	
19			PUNCT		_	17	punct	_	_						

Finally, **meaning**

Computational semantics: key areas

- Formal semantics: Logic, model-theoretic semantics
 - NLTK Book ch.10 <u>Analyzing the meaning of sentences</u>
- Word sense: lexical semantics
 - J&M Ch.23: Word senses and WordNet
 - NLTK Book 2.5 <u>WordNet</u>

Finally, **meaning**

Computational semantics: key areas

- Formal semantics: Logic, model-theoretic semantics
 - NLTK Book ch.10 <u>Analyzing the meaning of sentences</u>
- Word sense: lexical semantics
 - J&M Ch.23: Word senses and WordNet
 - NLTK Book 2.5 <u>WordNet</u>
- Word sense: vector semantics
 - J&M Ch.6: <u>Vector semantics and embeddings</u>
- Predicate-argument semantics, semantic roles
 - J&M Ch.24: <u>Semantic role labeling</u>
 - NLTK how to, <u>PropBank</u>

Vast landscape, so little time...

Word sense: lexical semantics

- A word sense is a discrete representation of one aspect of the meaning of a word.
- Challenge: 1 word =/= 1 sense.
 - **Polysemy**: a single word can have multiple meanings (**ambiguity**)
 - **Synonymy**: many words can share the same meaning.

Computational lexical semantics

- Goal: Develop, maintain and utilize computerized thesaurus —a database that represents word senses.
- Focuses on relations between senses

Meaning relations

- synonymy
- antonymy
- taxonomic relations: hyponym, hypernym
- meronymy (part-whole)

WordNet

- Project home: <u>https://wordnet.princeton.edu/</u>
- A hierarchical semantic database ("ontology") for English and many other languages.
- Beyond definitions, encodes *relations* between senses.

WordNet

- Project home: <u>https://wordnet.princeton.edu/</u>
- A hierarchical semantic database ("ontology") for English and many other languages.
- Beyond definitions, encodes *relations* between senses.
- Available via NLTK as nltk.corpus.wordnet
 - NLTK book <u>https://www.nltk.org/book/ch02.html#wordnet</u>
- A single unique meaning is designated as something like 'car.n.01': first noun meaning of 'car'. This is referred to as a synset: a "synonym set"
 - The idea: a *unique meaning* is represented by *a set of synonyms* that share the meaning.
 - 'car.n.01' is the most generic meaning of 'car', which can be seen through .definition()

```
'car.n.01' represents a
                                                               synset (="synonym set"),
>>> from nltk.corpus import wordnet as wn
                                                                a single unique sense.
>>> wn.synsets('motorcar')
    [Synset('car.n.01')]
>>> wn.synset('car.n.01').lemma names()
    ['car', 'auto', 'automobile', 'machine', 'motorcar']
>>> wn.synset('car.n.01').definition()
    'a motor vehicle with four wheels; usually propelled by an internal combustion
    engine'
>>> wn.synsets('car')
    [Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'),
                                                                           'car' has 5
    Synset('car.n.04'), Synset('cable_car.n.01')]
                                                                        distinct senses
>>> for syn in wn.synsets('car'):
       print(syn, syn.lemma names())
. . .
    Synset('car.n.01') ['car', 'auto', 'automobile', 'machine', 'motorcar']
    Synset('car.n.02') ['car', 'railcar', 'railway_car', 'railroad_car']
    Synset('car.n.03') ['car', 'gondola']
    Synset('car.n.04') ['car', 'elevator_car']
    Synset('cable car.n.01') ['cable car', 'car']
                                                        Each sense can be
>>>
                                                       conveyed by a set of
                                                       synonymous words
```

```
3 minutes
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar')
    [Synset('car.n.01')]
>>> wn.synset('car.n.01').lemma names()
    ['car', 'auto', 'automobile', 'machine', 'motorcar']
>>> wn.synset('car.n.01').definition()
    'a motor vehicle with four wheels; usually propelled by an internal combustion
    engine'
                                                                         Also try:
>>> wn.synsets('car')
                                                                      .examples()
    [Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'),
    Synset('car.n.04'), Synset('cable_car.n.01')]
>>> for syn in wn.synsets('car'):
       print(syn, syn.lemma names())
. . .
    Synset('car.n.01') ['car', 'auto', 'automobile', 'machine', 'motorcar']
    Synset('car.n.02') ['car', 'railcar', 'railway_car', 'railroad_car']
    Synset('car.n.03') ['car', 'gondola']
    Synset('car.n.04') ['car', 'elevator_car']
    Synset('cable car.n.01') ['cable car', 'car']
                                                        Who can find a word
>>>
                                                        with most synsets?
                                                          (= most senses)
```

Wrapping up

Wednesday: Na-Rae's office hours canceled

Thursday:

- Continue computational semantics
- Over Zoom! Link on Canvas.

Exercise 11 out

Last exercise!