Lecture 20: Advanced POS Taggers, Trees

Ling 1330/2330 Intro to Computational Linguistics Na-Rae Han, 11/7/2023

Overview

- Building POS taggers:
 - N-gram tagger
 - Hidden Markov Model (HMM) tagger
 - For discussions on HMM, see Jurafsky & Martin
- Homework 7
 - Comparison with: Hidden Markov Model (HMM) tagger
- Syntactic trees
 - ◆ NLTK Ch.7 & Ch.8
 ← In lecture20.html

Homework 7

You built a bigram tagger

- Backs off to a unigram tagger, which backs off to a "NN" default tagger
- Trained and tested on the Brown corpus
- Trained on the first 50,000 sentences = 1,039,920 words
- Tested on the last 7340 sentences = 121,272 words
- How good is it? Can we make a better tagger?
- How well does it perform on 'cold' NN-JJ ambiguity?
- What are its strengths and limitations?

Performance

Tagger	Accuracy	Improvement	
t0 ('NN' default tagger)	0.10919	n/a	
t1 (unigram tagger)	0.88978	+ 0.78059	
t2 (bigram tagger)	0.91116	+ 0.02138	

- How to make it better?
 - Obvious candidate: build a **trigram tagger** on top.

Tagger	Accuracy	Improvement
t3 (trigram tagger)	0.91180	+ 0.00063

• What do you notice about the amount of improvement?

← As the size of *n* in your *n*-gram tagger increases, you see a smaller gain in performance improvement. Performance may even drop! (overfitting)

Performance: even better?

Tagger	Accuracy	Improvement
t0 ('NN' default tagger)	0.10919	n/a
t1 (unigram tagger)	0.88978	+ 0.78059
t2 (bigram tagger)	0.91116	+ 0.02138
t3 (trigram tagger)	0.91180	+ 0.00063

- Anything else we can try?
 - Can we do even better?
 - One simple fix: replace the default tagger ('everything's NN!!') with something more intelligent: a **regular-expression tagger**.
 - ← After that, you need to rebuild your 1- 2- 3-gram taggers.

Regular expression tagger as t0

```
>>> patterns = [
       (r'.*ing$', 'VBG'), # gerunds
       (r'.*ed$', 'VBD'), # simple past
       (r'.*es$', 'VBZ'), # 3rd singular present
       (r'.*\'s$', 'NN$'),
                                   # possessive nouns
       (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'), # cardinal numbers
       (r'^[A-Z][a-z]*s$', 'NPS'),  # plural proper nouns
       (r'^[A-Z][a-z]*[^s]$', 'NP'),  # singular proper nouns
       (r'.*s$', 'NNS'),
                                   # plural nouns
       (r'.*', 'NN')
                                      # nouns (default)
>>> re tagger = nltk.RegexpTagger(patterns)
>>> re tagger.tag('Akbar and Jedis tweeted'.split())
[('Akbar', 'NP'), ('and', 'NN'), ('Jedis', 'NPS'), ('tweeted', 'VBD')]
```

More sophisticated than the 'NN' default tagger!

New tagger performance

Tagger	Accuracy	Improvement
re_tagger (regex tagger)	0.19243	+ 0.08324 from t0
t1new (unigram tagger)	0.90395	+ 0.01416 from t1
t2new (bigram tagger)	0.92563	+ 0.01447 from t2
t3new (trigram tagger)	0.92634	+ 0.01454 from t3

- 1.5% overall improved performance!
- Regex tagger does a better job of handling "unseen" words than the 'NN' default tagger: 'tweeted', 'Akbar'

How n-gram taggers work

- How do our n-gram taggers handle the 'cold' NN-JJ ambiguity?
- Mining the training data for instances of 'cold' as NN or JJ
 - cold/JJ vs. cold/NN in the training data: 110* vs. 8

→ The unigram tagger will always pick JJ for 'cold'.

- Considering POS_{n-1}:
 - ◆ AT cold/JJ (38) vs. cold/NN (4) → JJ wins
 - ◆ JJ cold/JJ (4) vs. cold/NN (2) → JJ wins
 - ◆ DT cold/JJ (3) vs. cold/NN (1) → JJ wins
 - , $\operatorname{cold/JJ}(3)$ vs. $\operatorname{cold/NN}(1) \rightarrow$ JJ wins
- Every POS_{n-1} in fact favors JJ for 'cold'!

→ The bigram tagger too will always tag 'cold' as JJ.

* 109 sentences in cold_JJ, but there is a sentence with two instances of cold/JJ.

8

'cold': adjective or noun?

- 1. I was very <u>cold</u>.√
- 2. January was a <u>cold</u> month√
- *3. I* had a <u>cold</u>.
- 4. I had a severe <u>cold</u>

1-4 all tagged 'JJ' by the bigram tagger (t2).

- OK, so our bigram tagger fails to treat 'cold' as a noun, ever.
- Does a trigram tagger do better?

'cold': adjective or noun?

- 1. I was very <u>cold</u>.√
- 2. January was a <u>cold</u> month√
- 3. I had a <u>cold</u>.
- 4. I had a severe <u>cold</u>.

```
1-4 all tagged 'JJ'
by the bigram
tagger (t2).
```

- OK, so our bigram tagger fails to treat 'cold' as a noun, ever.
- Does a trigram tagger do better?
 - YES! On one of them: "I had a cold".

```
>>> t3.tag('I had a cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('cold', 'NN'), ('.', '.')]
>>> t3.tag('I had a severe cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('severe', 'JJ'), ('cold',
'JJ'), ('.', '.')]
```

'cold': adjective or noun?

- 1. I was very <u>cold</u>.√
- 2. January was a <u>cold</u> month√
- 3. I had a <u>cold</u>.
- 4. I had a severe <u>cold</u>.

"HVD AT cold/NN" has a *higher* count than "HVD AT cold/JJ" in training data.

- OK, so our bigram tagger fails to treat 'cold' as a noun, ever.
- Does a trigram tagger do better?
 - YES! On one of them: "I had a cold".

```
>>> t3.tag('I had a cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('cold', 'NN'), ('.', '.')]
>>> t3.tag('I had a severe cold .'.split())
[('I', 'PPSS'), ('had', 'HVD'), ('a', 'AT'), ('severe', 'JJ'), ('cold',
'JJ'), ('.', '.')]
```

So: three POS tags

Sentence examples

I failed to do <u>so</u>. It wasn't <u>so</u>. I was happy, but <u>so</u> was my enemy.

<u>So</u>, how was the exam? They rushed <u>so</u> they can get good seats. She failed, <u>so</u> she must re-take the exam.

That was <u>so</u> incredible. Wow, <u>so</u> incredible. The prices fell <u>so</u> fast.

So: three POS tags

Sentence examples	POS	traits
I failed to do <u>so</u> . It wasn't <u>so</u> . I was happy, but <u>so</u> was my enemy.	RB (Adverb)	Modifies a verb.
<u>So</u> , how was the exam? They rushed <u>so</u> they can get good seats. She failed, <u>so</u> she must re-take the exam.	CS (Subordinating conjunction)	Clausal adverb; starts a subordinate clause.
That was <u>so</u> incredible. Wow, <u>so</u> incredible. The prices fell <u>so</u> fast.	QL (Qualifier)	Aka 'intensifier'; modifies following adjective or adverb.

Which were more frequent in Jane Austen? The Bible?

n-gram tagger: limitations?

I was very <u>cold</u> . January was a <u>cold</u> **month**. I had a <u>cold</u> .

I had a severe <u>cold</u>.

I failed to do <u>so</u> **.** She failed the exam, <u>so</u> **she** ... That was <u>so</u> **incredible**. Wow, <u>so</u> **incredible**.

- Q: Does it matter at all what comes AFTER 'cold'? 'so'?
 - NOT unless you make your tagger work the <u>opposite direction</u>.
 ← But then, it won't be able to use the left-hand side context!
- In general, an n-gram tagger makes a decision for a given word, one at a time, in a single direction.
- It commits to every decision it makes as it proceeds. It cannot go back on it after seeing more context.
- It does NOT optimize for global POS tag assignment. 11/7/2023

Global optimization of tags

- n-gram taggers do NOT optimize for global (sentence-wide) POS tag assignment.
- More sophisticated <u>probabilistic sequential taggers</u> do.

→ HMM taggers, CRF taggers, ...

Evaluating a tagger

- But how good is "good"? 90%? 95%? 98%...?
- We need to establish a baseline.
 - A good unigram tagger can already achieve 90-91% (!)
 - Bigram/trigram ... taggers should show a better performance.

How about a ceiling?

- ← Agreement between human annotators are said to top out at ~97%.
- Therefore, trained taggers cannot be expected to perform better than that.

Advanced POS taggers

- Rule-based taggers
- Transformation-based taggers (Brill tagger)
 NLTK book focuses on it; we will skip it
- Hidden-Markov Model (HMM) taggers
 - These use more sophisticated probabilistic techniques.

Probabilistic sequence models

- Generally, POS tagging can be viewed as a sequence labeling task.
 - input: Colorless green ideas sleep furiously
 - labels: JJ JJ NNS VBP RB

*Penn Treebank tagset.

- Probabilistic sequence models allow integrating uncertainty over multiple, interdependent classifications and collectively determine the most likely GLOBAL assignment.
- Well-known models:
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

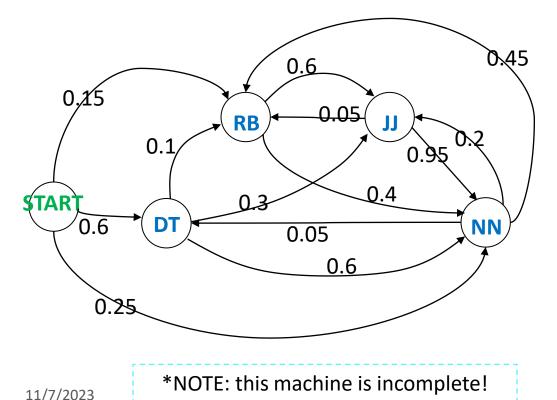
Markov model (Markov chain)

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that the next state only depends on the current state and is independent of previous history.
- Hidden Markov Model (HMM): the states (POS tags) are in fact hidden from the view; the only observable events are the sequence of emitted symbols (words).

Simple Markov Model for POS

Given DT as the current POS, what's the likelihood of POS_{n+1}:

- NN ('the <u>question</u>')
- JJ ('the <u>happy</u> girl')
- RB ('the <u>very</u> happy girl')



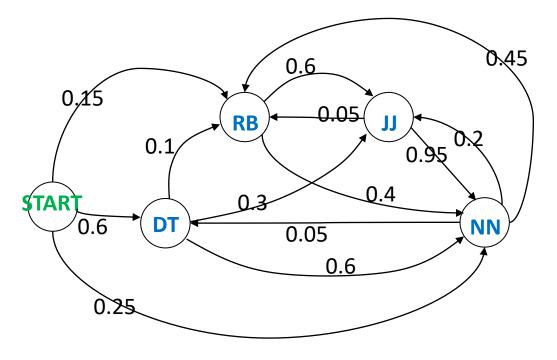
Which tag sequence is most likely:

- DT NN JJ
- NN JJ RB
- RB JJ NN
- DT JJ NN

```
*Penn Treebank tagset.
```

Simple Markov Model for POS

- Given DT as the current POS, what's the likelihood of POS_{n+1}:
 - NN ('the <u>question</u>')
 - JJ ('the <u>happy</u> girl')
 - RB ('the <u>very</u> happy girl')

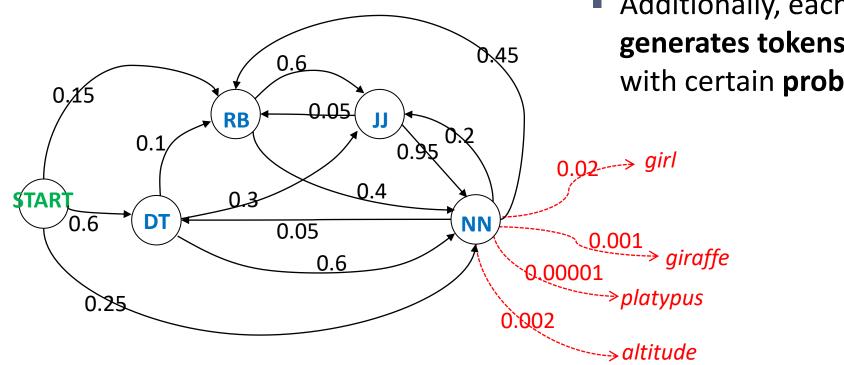


DT NN JJ = 0.6*0.6*0.2 = 0.072 NN JJ RB = 0.25*0.2*0.05 = 0.0025 RB JJ NN = 0.15*0.6*0.95 = 0.0855 DT JJ NN = 0.6*0.3*0.95 = 0.171

> Where can we get transition probability? CORPUS.

What about words?

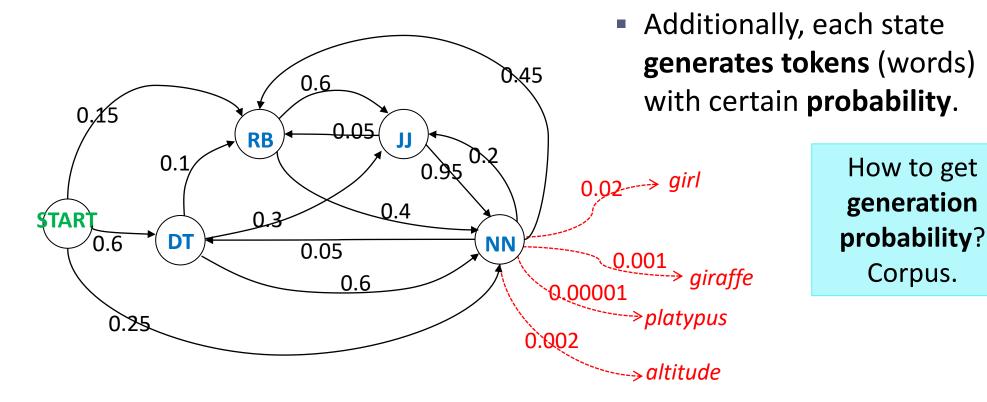
- So, DT JJ NN is a highly probable tag sequence, but ultimately the overall probability should also be about the word sequence:
 - the happy girl, the stupendous giraffe, a bright/bad cold



 Additionally, each state generates tokens (words) with certain **probability**.

HMM: transition (POS) + generation (word)

- So, DT JJ NN is a highly probable tag sequence, but ultimately the overall probability should also be about the *word sequence*:
 - the happy girl, the stupendous giraffe, a bright/bad cold



HMM: in a nutshell

POS tagging using a HMM means:

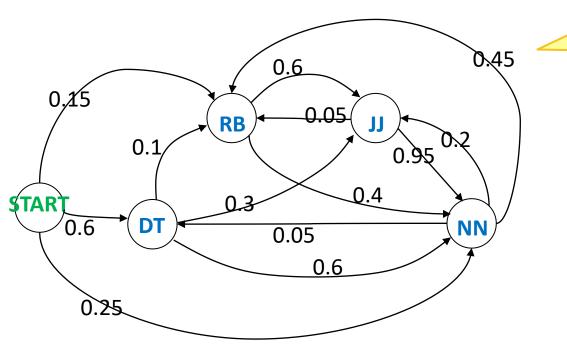
- Given the word sequence $w_1 w_2 w_3 ... w_n$
- Find the tag sequence T₁ T₂ T₃ ... T_n such that the probability of the particular word sequence occurring with the tag sequence is maximized.

•
$$\arg \max_{T_1 T_2 T_3 \dots Tn} p(T_1 T_2 T_3 \dots Tn, w_1 w_2 w_3 \dots wn)$$

 Algorithms exist that effectively compute this. (We will not get into them.)

HMM is built on *probabilistic* FSA

- Given DT as the current tag, what's the likelihood of:
 - NN ('the <u>question</u>')
 - JJ ('the <u>happy</u> girl')
 - RB ('the <u>very</u> happy girl')



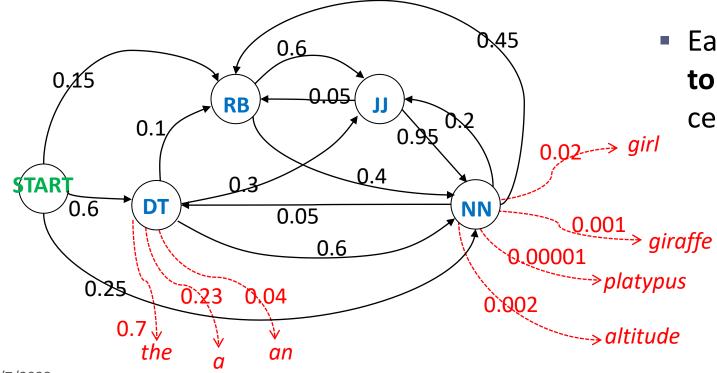
HMM's POS tag transition model is a *probabilistic* FSA! (with no arc labels)

Which tag sequence is most likely:

- DT NN JJ
- NN JJ RB
- RB JJ NN
- DT JJ NN

HMM: transition (POS) + generation (word)

► HMM combines <u>POS tag sequence probability</u> (DT → JJ → NN → ...) and the <u>probability of certain words occurring with a POS</u> (given DT tag, 'the' is 0.7 likely, and 'a' 0.23...)



 Each state generates tokens (words) with a certain probability.

Markov model (Markov chain)

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that the next state only depends on the current state and is independent of previous history.
- Hidden Markov Model (HMM): the states (POS tags) are in fact hidden from the view; the only observable events are the sequence of emitted symbols (words).

NLTK's HMM package is nltk.tag.hmm

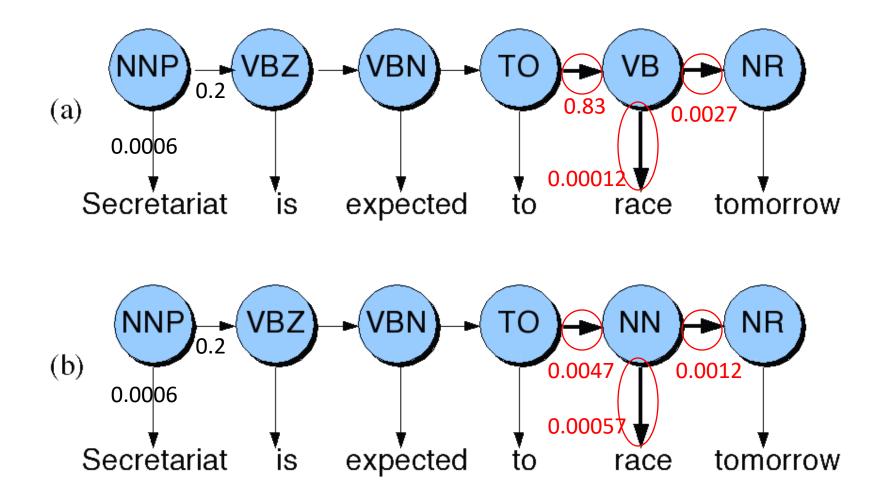
The NLTK book does not cover HMM. For details, see J&M.

Verb or noun?

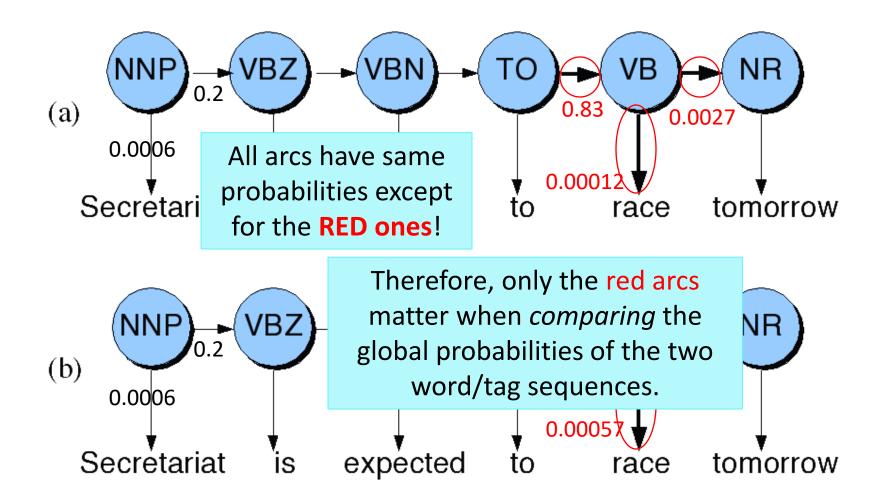
Secretariat	is	expected	to	race	tomorrow
NNP	VBZ	VBN	ТО	VB NN	NR

*Penn Treebank tagset.

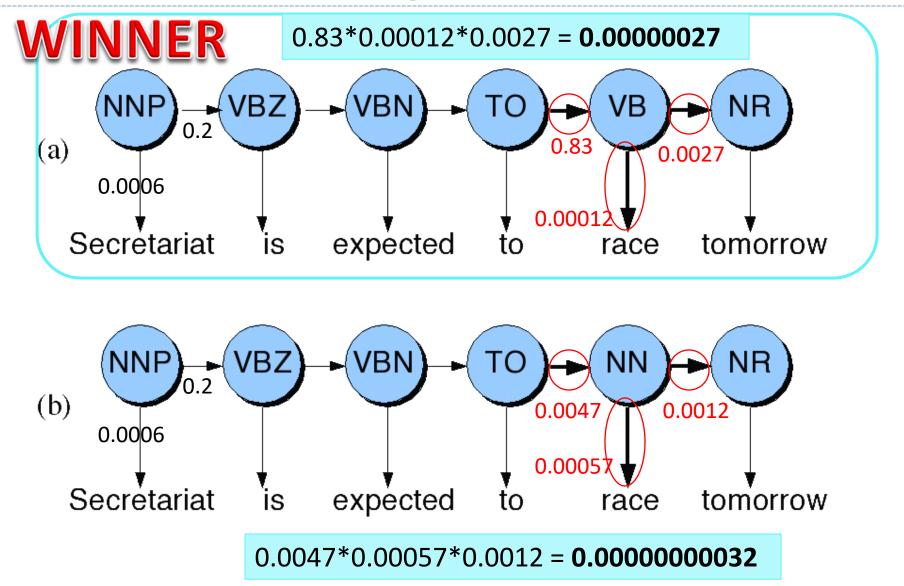
Resolving tag ambiguities in HMM



Resolving tag ambiguities in HMM



HMM optimizes for global likelihood



POS taggers: state-of-the-art

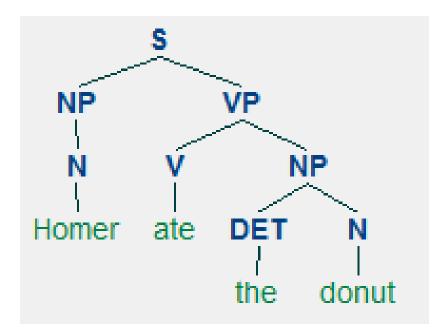
Below are some well-known POS taggers from various research groups:

- <u>The Stanford POS Tagger</u>
- <u>CLAWS POS Tagger</u>
- Brill Tagger
- <u>A list of state-of-the-art taggers</u> on ACL web; they commonly use the <u>Penn Treebank Wall Street Journal corpus</u>

Syntactic trees

Demo + lecture, in HTML document

https://sites.pitt.edu/~naraehan/ling1330/lecture20.html



Wrapping up

- Next class:
 - Continue with syntactic trees and parsing
 - NLTK book: 7.4.2 <u>Trees</u>, Ch.8 <u>Analyzing Sentence Structure</u>
- Exercise 10 out
 - Getting started with trees
- ▶ Next Wed: PyLing →
 - Over Zoom (link at MS Teams)

- Nov 16 (Thu) class will be remote, over Zoom.
- Final exam schedule announced!
 - 12/13 (Wed) 4-5:50pm
 - At LMC's PC lab (G17 CL)