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Outline
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 Ex9 review

 Part-of-speech tagging

 Language and Computers, Ch. 3.4 Tokenization, POS tagging

 NLTK Book Ch.5 Categorizing and tagging words

 Parts of speech

 POS ambiguity

 POS-tagged corpora

 N-gram taggers



POS tagsets
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 There are multiple POS tagsets for English in use. 

 Some are larger, some are smaller. 

 The Brown Corpus tagset (87 tags)
 http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM

 In NLP, the Penn Treebank tagset (45 tags) has become de facto 
standard. 
 http://www.surdeanu.info/mihai/teaching/ista555-

fall13/readings/PennTreebankTagset.html

 This is the default tagset for nltk.pos_tag(). 

 NLTK lets you load a POS-tagged corpus using "Universal" POS tagset 
(only 12 tags).
 http://www.nltk.org/book/ch05.html#a-universal-part-of-speech-tagset

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankTagset.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankTagset.html
http://www.nltk.org/book/ch05.html#a-universal-part-of-speech-tagset


'so': three Parts-of-Speech
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 RB (Adverb)

 "I told you so."

 QL (Qualifier)

 "We've always been so close."

 CS (Subordinating conjunction)

 "So she couldn't choose Rev as a confidant;;"

What POS frequently 
follow? 

What POS frequently 
precede each?



POS tags around 'so'
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 Review Exercise 9

 We will look into the Brown corpus. 

 The questions are best answered through conditional frequency 
distribution:

 Condition: current word and its POS ("so/RB", "so/QL"…)

 Outcome: 

 Preceding POS tag

 Following POS tag

 Demo time! 

              IDLE shell session posted separately 



POS ambiguity in Penn Treebank
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>>> tb_cfd = nltk.ConditionalFreqDist(treebank.tagged_words())
>>> tb_cfd['question']
    FreqDist({'NN': 12, 'VB': 1, 'VBP': 1})
>>> tb_cfd['flies']
    FreqDist({'VBZ': 1})
>>> tb_cfd['like']
    FreqDist({'IN': 44, 'VB': 8, 'VBP': 4, 'JJ': 1})
>>> nltk.help.upenn_tagset('IN')
    IN: preposition or conjunction, subordinating
    astride among uppon whether out inside pro despite on by throughout
    below within for towards near behind atop around if like until …
>>> tb_cfd['share']
    FreqDist({'NN': 116, 'VB': 3})

Some words can take on multiple parts-of-speech:
I asked him a question. / They wanted to question him.
Time flies like an arrow, and fruit flies like bananas. 

                        How are these represented in Penn Treebank?
                                 How to find different tags for a word?

Build a Conditional Frequency 
Distribution where 
condition: word, 
sample: POS tag



Designing a POS tagger: simple but flawed
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1. Tag everything a NOUN. 

 Why? Because NOUN is the most common POS.

* Problem? Poor coverage. 

2. Consider the morphology.

 Ends in 'ly' → ADV

 Ends in 'ed' → VERB

*Problem? Can be wrong: "fly" is not an adverb. Not every word has an 
identifiable morphological marker. 

3. Maintain a dictionary of word and its POS. For each word, 
simply look up its tag in the dictionary.

* Problem? Ambiguity. 'question' can be both NOUN and VERB, 
depending on context! 



Taking context into consideration
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1. The dictionary lists the most common POS tag for a word. 

 'question' → NN (more freq. than VB)

2. Instead of just individual word, the dictionary lists the most 
common tag for the preceding POS + the word.

 'MD question' → VB, 'AT question' → NN

3. Why stop at just one preceding POS? Consider two. 

 'BEZ AT cold'  (is a cold month) → JJ

 'HV AT cold' (have a cold) → NN

*Brown corpus tagset.
NN: singular noun, VB: verb base form, 
MD: modal auxiliary, AT: determiner, 
JJ: adjective, BEZ: is, HV: have



N-gram taggers
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1. The dictionary lists the most common POS tag for a 
word. 

 'question' → NN (more freq. than VB)

2. Instead of just individual word, the dictionary lists the 
most common tag for the preceding POS + the word.

 'MD question' → VB, 'AT question' → NN

3. Why stop at just one preceding POS? Consider two. 

 'BEZ AT cold'  (is a cold month) → JJ

 'HV AT cold' (have a cold) → NN

➔ n-gram tagger. 

➔ The statistical patterns can be extracted from annotated 
corpora. 

Unigram Tagger

Bigram Tagger

Trigram Tagger



The bigger the context the better?
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 So, a trigram tagger will always outperform a bigram tagger, right? 
And bigram taggers are better than unigram taggers? 

 Not in isolation. 

 The larger the context, the more specific it gets.

 The chance of a particular context not found in the corpus data 
increases. 

 This creates the sparse data problem. 

>>> unigram_tagger.tag('It was a bright cold day in April .'.split())
    [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'), ('cold',
    'JJ'), ('day', 'NN'), ('in', 'IN'), ('April', 'NP'), ('.', '.')] 
>>> bigram_tagger.tag('It was a bright cold day in April .'.split())
    [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'), ('cold',
    None), ('day', None), ('in', None), ('April', None), ('.', None)]

spacing before . so I 
can use .split() for 

tokenization



Addressing sparse data problem
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 Combine n-gram taggers as stacked back-off models:

1. Look up "POSn-2 POSn-1 word" in the 3-gram tagger. 

2. If it's not found, look up "POSn-1 word" in the 2-gram tagger. 

3. If it's not found, look up "word" in the 1-gram tagger.

4. If it's not found (unknown word), use the Default Tagger where 
everything gets tagged NOUN. 

 This is how NLTK's n-gram tagger is implemented:

 https://www.nltk.org/book/ch05.html#n-gram-tagging

https://www.nltk.org/book/ch05.html#n-gram-tagging


Building an n-gram tagger

11/2/2023 12

>>> t0 = nltk.DefaultTagger('NN') 
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0) 
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1) 

>>> april = 'It was a bright cold day in April.'
>>> t2.tag(nltk.word_tokenize(april))
    [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'),
    ('cold', 'JJ'), ('day', 'NN'), ('in', 'IN'), ('April', 'NP'),
    ('.', '.')]
>>> t2.evaluate(test_sents) 
    0.8452476038338658

 While building each n-gram tagger, the "n-1"-gram tagger 
is designated as the back-off model. 



Preparing training/testing sets

11/2/2023 13

 Training data: first 90% of 'news' section of Brown

 Testing data: last 10% of the same 

>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> len(brown_tagged_sents)
    4623
>>> cutoff = round(len(brown_tagged_sents) * 0.9)
>>> cutoff
    4161
>>> train_sents = brown_tagged_sents[:cutoff]
>>> test_sents = brown_tagged_sents[cutoff:]
>>> len(train_sents)
    4161
>>> len(test_sents)
    462
>>>

Now build t0, t1, t3 on 
train_sents. 

Tokenized SENTENCES, 
not word tokens, are 

units of training/testing



Evaluating a tagger
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 Compare the output of a tagger with a human-labelled (presumed 
"correct") gold standard

>>> len(test_sents)
    462
>>> t2.evaluate(test_sents) 
    0.8452476038338658 
>>> test_sents[341]
    [('None', 'PN'), ('of', 'IN'), ('these', 'DTS'), ('countries', 'NNS'),
    ('is', 'BEZ'), ('happy', 'JJ'), ('with', 'IN'), ('these', 'DTS'),
    ('arrangements', 'NNS'), ('.', '.')]
>>> [wd for (wd, tag) in test_sents[341]]
    ['None', 'of', 'these', 'countries', 'is', 'happy', 'with', 'these',
    'arrangements', '.']
>>> t2.tag([wd for (wd, tag) in test_sents[341]])
    [('None', 'NN'), ('of', 'IN'), ('these', 'DTS'), ('countries', 'NNS'),
    ('is', 'BEZ'), ('happy', 'JJ'), ('with', 'IN'), ('these', 'DTS'),
    ('arrangements', 'NNS'), ('.', '.')]
>>> t2.evaluate([test_sents[341]])
    0.9

A list of one sentence



Wrapping up
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 Homework 7 out

 Build a bigram POS tagger

 Next Wed: PyLing ➔

 Over Zoom (link at MS Teams)

 Nov 16 (Thu) class will be remote, over Zoom. 

 Final exam schedule announced! 

 12/13 (Wed) 4-5:50pm

 At LMC's PC lab (G17 CL) 
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