
Lecture 19:

Part-of-Speech Tagging

Ling 1330/2330 Intro to Computational Linguistics

Na-Rae Han, 11/2/2023

Outline

11/2/2023 2

 Ex9 review

 Part-of-speech tagging

 Language and Computers, Ch. 3.4 Tokenization, POS tagging

 NLTK Book Ch.5 Categorizing and tagging words

 Parts of speech

 POS ambiguity

 POS-tagged corpora

 N-gram taggers

POS tagsets

11/2/2023 3

 There are multiple POS tagsets for English in use.

 Some are larger, some are smaller.

 The Brown Corpus tagset (87 tags)
 http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM

 In NLP, the Penn Treebank tagset (45 tags) has become de facto
standard.
 http://www.surdeanu.info/mihai/teaching/ista555-

fall13/readings/PennTreebankTagset.html

 This is the default tagset for nltk.pos_tag().

 NLTK lets you load a POS-tagged corpus using "Universal" POS tagset
(only 12 tags).
 http://www.nltk.org/book/ch05.html#a-universal-part-of-speech-tagset

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankTagset.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankTagset.html
http://www.nltk.org/book/ch05.html#a-universal-part-of-speech-tagset

'so': three Parts-of-Speech

11/2/2023 4

 RB (Adverb)

 "I told you so."

 QL (Qualifier)

 "We've always been so close."

 CS (Subordinating conjunction)

 "So she couldn't choose Rev as a confidant;;"

What POS frequently
follow?

What POS frequently
precede each?

POS tags around 'so'

11/2/2023 5

 Review Exercise 9

 We will look into the Brown corpus.

 The questions are best answered through conditional frequency
distribution:

 Condition: current word and its POS ("so/RB", "so/QL"…)

 Outcome:

 Preceding POS tag

 Following POS tag

 Demo time!

 IDLE shell session posted separately

POS ambiguity in Penn Treebank

6

>>> tb_cfd = nltk.ConditionalFreqDist(treebank.tagged_words())
>>> tb_cfd['question']
 FreqDist({'NN': 12, 'VB': 1, 'VBP': 1})
>>> tb_cfd['flies']
 FreqDist({'VBZ': 1})
>>> tb_cfd['like']
 FreqDist({'IN': 44, 'VB': 8, 'VBP': 4, 'JJ': 1})
>>> nltk.help.upenn_tagset('IN')
 IN: preposition or conjunction, subordinating
 astride among uppon whether out inside pro despite on by throughout
 below within for towards near behind atop around if like until …
>>> tb_cfd['share']
 FreqDist({'NN': 116, 'VB': 3})

Some words can take on multiple parts-of-speech:
I asked him a question. / They wanted to question him.
Time flies like an arrow, and fruit flies like bananas.

 How are these represented in Penn Treebank?
 How to find different tags for a word?

Build a Conditional Frequency
Distribution where
condition: word,
sample: POS tag

Designing a POS tagger: simple but flawed

11/2/2023 7

1. Tag everything a NOUN.

 Why? Because NOUN is the most common POS.

* Problem? Poor coverage.

2. Consider the morphology.

 Ends in 'ly' → ADV

 Ends in 'ed' → VERB

*Problem? Can be wrong: "fly" is not an adverb. Not every word has an
identifiable morphological marker.

3. Maintain a dictionary of word and its POS. For each word,
simply look up its tag in the dictionary.

* Problem? Ambiguity. 'question' can be both NOUN and VERB,
depending on context!

Taking context into consideration

11/2/2023 8

1. The dictionary lists the most common POS tag for a word.

 'question' → NN (more freq. than VB)

2. Instead of just individual word, the dictionary lists the most
common tag for the preceding POS + the word.

 'MD question' → VB, 'AT question' → NN

3. Why stop at just one preceding POS? Consider two.

 'BEZ AT cold' (is a cold month) → JJ

 'HV AT cold' (have a cold) → NN

*Brown corpus tagset.
NN: singular noun, VB: verb base form,
MD: modal auxiliary, AT: determiner,
JJ: adjective, BEZ: is, HV: have

N-gram taggers

11/2/2023 9

1. The dictionary lists the most common POS tag for a
word.

 'question' → NN (more freq. than VB)

2. Instead of just individual word, the dictionary lists the
most common tag for the preceding POS + the word.

 'MD question' → VB, 'AT question' → NN

3. Why stop at just one preceding POS? Consider two.

 'BEZ AT cold' (is a cold month) → JJ

 'HV AT cold' (have a cold) → NN

➔ n-gram tagger.

➔ The statistical patterns can be extracted from annotated
corpora.

Unigram Tagger

Bigram Tagger

Trigram Tagger

The bigger the context the better?

11/2/2023 10

 So, a trigram tagger will always outperform a bigram tagger, right?
And bigram taggers are better than unigram taggers?

 Not in isolation.

 The larger the context, the more specific it gets.

 The chance of a particular context not found in the corpus data
increases.

 This creates the sparse data problem.

>>> unigram_tagger.tag('It was a bright cold day in April .'.split())
 [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'), ('cold',
 'JJ'), ('day', 'NN'), ('in', 'IN'), ('April', 'NP'), ('.', '.')]
>>> bigram_tagger.tag('It was a bright cold day in April .'.split())
 [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'), ('cold',
 None), ('day', None), ('in', None), ('April', None), ('.', None)]

spacing before . so I
can use .split() for

tokenization

Addressing sparse data problem

11/2/2023 11

 Combine n-gram taggers as stacked back-off models:

1. Look up "POSn-2 POSn-1 word" in the 3-gram tagger.

2. If it's not found, look up "POSn-1 word" in the 2-gram tagger.

3. If it's not found, look up "word" in the 1-gram tagger.

4. If it's not found (unknown word), use the Default Tagger where
everything gets tagged NOUN.

 This is how NLTK's n-gram tagger is implemented:

 https://www.nltk.org/book/ch05.html#n-gram-tagging

https://www.nltk.org/book/ch05.html#n-gram-tagging

Building an n-gram tagger

11/2/2023 12

>>> t0 = nltk.DefaultTagger('NN')
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0)
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)

>>> april = 'It was a bright cold day in April.'
>>> t2.tag(nltk.word_tokenize(april))
 [('It', 'PPS'), ('was', 'BEDZ'), ('a', 'AT'), ('bright', 'JJ'),
 ('cold', 'JJ'), ('day', 'NN'), ('in', 'IN'), ('April', 'NP'),
 ('.', '.')]
>>> t2.evaluate(test_sents)
 0.8452476038338658

 While building each n-gram tagger, the "n-1"-gram tagger
is designated as the back-off model.

Preparing training/testing sets

11/2/2023 13

 Training data: first 90% of 'news' section of Brown

 Testing data: last 10% of the same

>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> len(brown_tagged_sents)
 4623
>>> cutoff = round(len(brown_tagged_sents) * 0.9)
>>> cutoff
 4161
>>> train_sents = brown_tagged_sents[:cutoff]
>>> test_sents = brown_tagged_sents[cutoff:]
>>> len(train_sents)
 4161
>>> len(test_sents)
 462
>>>

Now build t0, t1, t3 on
train_sents.

Tokenized SENTENCES,
not word tokens, are

units of training/testing

Evaluating a tagger

14

 Compare the output of a tagger with a human-labelled (presumed
"correct") gold standard

>>> len(test_sents)
 462
>>> t2.evaluate(test_sents)
 0.8452476038338658
>>> test_sents[341]
 [('None', 'PN'), ('of', 'IN'), ('these', 'DTS'), ('countries', 'NNS'),
 ('is', 'BEZ'), ('happy', 'JJ'), ('with', 'IN'), ('these', 'DTS'),
 ('arrangements', 'NNS'), ('.', '.')]
>>> [wd for (wd, tag) in test_sents[341]]
 ['None', 'of', 'these', 'countries', 'is', 'happy', 'with', 'these',
 'arrangements', '.']
>>> t2.tag([wd for (wd, tag) in test_sents[341]])
 [('None', 'NN'), ('of', 'IN'), ('these', 'DTS'), ('countries', 'NNS'),
 ('is', 'BEZ'), ('happy', 'JJ'), ('with', 'IN'), ('these', 'DTS'),
 ('arrangements', 'NNS'), ('.', '.')]
>>> t2.evaluate([test_sents[341]])
 0.9

A list of one sentence

Wrapping up

11/2/2023 15

 Homework 7 out

 Build a bigram POS tagger

 Next Wed: PyLing ➔

 Over Zoom (link at MS Teams)

 Nov 16 (Thu) class will be remote, over Zoom.

 Final exam schedule announced!

 12/13 (Wed) 4-5:50pm

 At LMC's PC lab (G17 CL)

	Slide 1: Lecture 19: Part-of-Speech Tagging
	Slide 2: Outline
	Slide 3: POS tagsets
	Slide 4: 'so': three Parts-of-Speech
	Slide 5: POS tags around 'so'
	Slide 6: POS ambiguity in Penn Treebank
	Slide 7: Designing a POS tagger: simple but flawed
	Slide 8: Taking context into consideration
	Slide 9: N-gram taggers
	Slide 10: The bigger the context the better?
	Slide 11: Addressing sparse data problem
	Slide 12: Building an n-gram tagger
	Slide 13: Preparing training/testing sets
	Slide 14: Evaluating a tagger
	Slide 15: Wrapping up

