Lecture 25: more Chapter 10, Section 1 Inference for Quantitative Variable: Hypothesis Tests

- □z Test about Population Mean: 4 Steps
- ■Examples: 1-sided or 2-sided Alternative
- ■Relating Test and Confidence Interval
- □Factors in Rejecting Null Hypothesis
- □Inference Based on t vs. z

Looking Back: Review

- □ 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing (Lectures 5-12)
 - Probability (discussed in Lectures 13-20)
 - Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative: confidence intervals, hypothesis tests
 - categorical and quantitative
 - □ 2 categorical
 - □ 2 quantitative

Behavior of Sample Mean (Review)

For random sample of size n from population with mean μ and standard deviation σ , sample mean \bar{X} has

- \blacksquare mean μ
- standard deviation $\frac{\sigma}{\sqrt{n}}$
- shape approximately normal for large enough n
- \rightarrow If σ is known, standardized \bar{X} follows z (standard normal) distribution

Hypothesis Test About μ (with z)

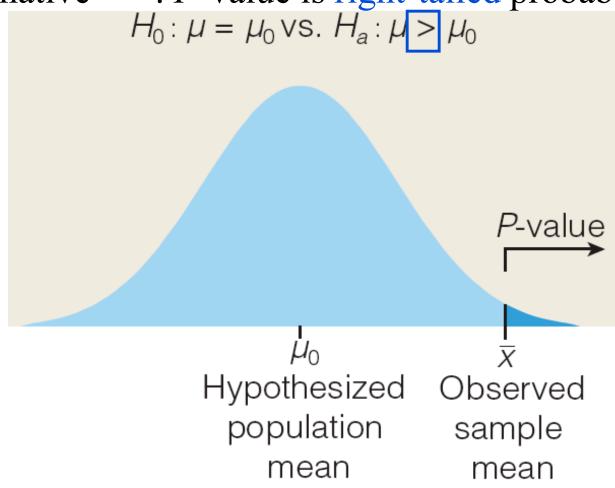
Problem Statement
$$H_0$$
: $\mu = \mu_0$ vs. H_a : $\left\{ \begin{array}{l} \mu > \mu_0 \\ \mu < \mu_0 \\ \mu \neq \mu_0 \end{array} \right\}$

- 1. Consider sampling and study design.
- Summarize with \overline{x} , standardize to $z = \frac{\overline{x} \mu_o}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"?
- 3. Find *P*-value (prob. of *Z* this far above/below/away from 0); is it "small"?
- 4. Based on size of P-value, choose H_0 or H_a .

- 1. Consider sampling and study design.
- 2. Summarize with \bar{x} , standardize to $z = \frac{x + \mu_0}{\sigma/\sqrt{n}}$ is true; is zH_0 : $\mu = \mu_0$
- Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small".
- 4. Based on size of P-value, choose H_0 or H_a .
- If sample is biased, mean of \bar{X} is not μ_O .
- If pop<10*n*, s.d. of \bar{X} is not σ/\sqrt{n} .
- If n is too small, distribution of \overline{X} is not normal, won't standardize to z: graph data, see guidelines.

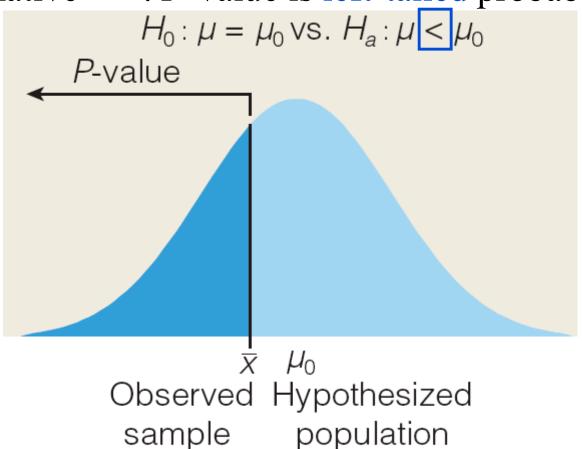
- 1. Consider sampling and study design
- 2. Summarize with \bar{x} , standardize to $z = \frac{\omega}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"?
- Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small".
- 4. Based on size of P-value, choose H_0 or H_a .
- Assess *P*-value based on form of alternative hypothesis (greater, less, or not equal)

Alternative ">": *P*-value is right-tailed probability



mean

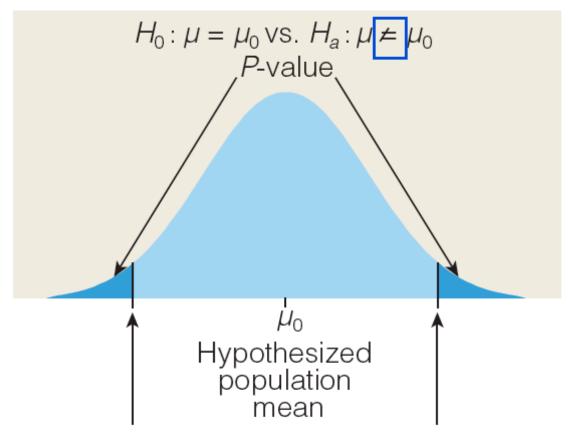
Alternative "<": *P*-value is left-tailed probability



Elementary Statistics: Looking at the Big Picture

mean

Alternative " \neq ": P-value is two-tailed probability



Observed sample mean \bar{x} is either of these

Example: Assumptions for z Test

- Background: Earnings of 446 surveyed university students had mean \$3,776. The mean of earnings for the population of students is unknown. Assume we know population standard deviation is \$6,500.
- **Question:** What aspect of the situation is unrealistic?
- Response:

Looking Ahead: In real-life problems, we rarely know the value of the population standard deviation. Eventually, we'll learn how to proceed when all we know is the sample standard deviation s.

Example: Test with One-Sided Alternative

- **Background**: Earnings of 446 surveyed university students had mean \$3,776. Assume population s.d. \$6,500.
- **Question:** Are we convinced that μ is less than \$5,000?
- **Response:** State H_o : vs. H_a :

One-Sample Z: Earned

Test of mu = 5 vs mu < 5

The assumed sigma = 6.5

 Variable
 N
 Mean
 StDev
 SE Mean

 Earned
 446
 3.776
 6.503
 0.308

 Variable
 95.0% Upper Bound
 Z
 P

 Earned
 4.282
 -3.98
 0.000

- 1. Data production issues were discussed for confidence interval.
- Output shows sample mean and z =. Large?
- P-value = _____. Small? _____
- 4. Conclude?

Example: Notation

- **Background**: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- **Question:** How do we denote the numbers given?
- **□** Response:
 - 11.0 is proposed value of population mean _____
 - 11.222 is sample mean _____
 - 9 is sample size _____
 - 1.5 is population standard deviation _____

Example: Intuition Before Formal Test

- **Background**: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- Question: What conclusion do we anticipate, by "eye-balling" the data?
- **□** Response:

Sample mean (11.222) seems close to proposed μ_o =11.0? ____ Sample size (9) small \rightarrow _____ S.d. (1.5) not very small \rightarrow _____ Anticipate standardized sample mean z large? _____

- $\rightarrow P$ -value small?
- →conclude population mean may be 11.0? ____

Example: Test with Two-Sided Alternative

- **Background:** Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5.
- □ **Question:** What do we conclude from the output?
- Response: z = 0.44. Large? _____ P-value (two-tailed) = 0.657. Small? ____ Conclude population mean may be 11.0? ____

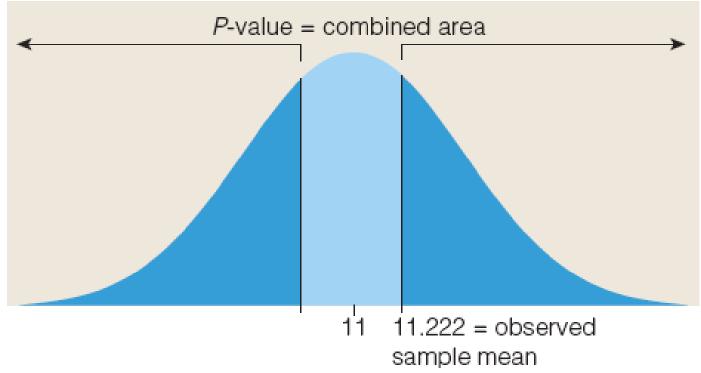
```
Test of mu = 11 vs mu not = 11
The assumed sigma = 1.5
Variable
                                 StDev
                                         SE Mean
                 N
                        Mean
Shoe
                      11,222
                                 1.698
                                           0.500
                    95.0% CI
Variable
                                        Z
                10.242, 12.202)
                                     0.44 0.657
Shoe
```

One-Sample Z: Shoe

P-value as Nonstandard Normal Probability

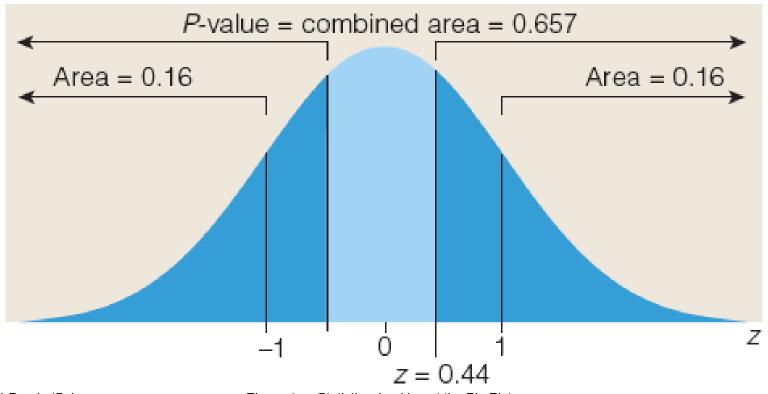
P-value is probability of sample mean as far from 11.0 (in either direction) as 11.222.

 H_0 : mu = 11.0 vs. H_a : mu \neq 11.0



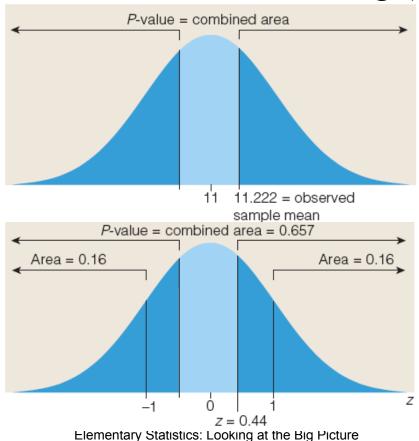
P-value as Standard Normal Probability

P-value as probability of standardized sample mean z as far from 0 (in either direction) as 0.44.



Comparing P-value Based on \bar{x} vs. z

Same area under curve, just different scales on horizontal axis due to standardizing (below).



Example: Test Results and Confidence Interval

- **Background:** Tested if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assumed pop. s.d. 1.5. *P*-value was 0.657; didn't reject null.
- **Question:** Would we expect 11.0 to be contained in a confidence interval for μ ?
- Response: Test showed 11.0 to be plausible for $\mu \rightarrow$ _____ (In fact, 11.0 is _____ contained in the confidence interval.)

```
One-Sample Z: Shoe
Test of mu = 11 vs mu not = 11
The assumed sigma = 1.5
Variable
                               StDev SE Mean
                N
                       Mean
Shoe
                     11.222
                               1.698
                                        0.500
                   95.0% CI
Variable
                                     7.
               10.242, 12.202) 0.44 0.657
Shoe
```

Example: Test Results and Confidence Interval

- **Background:** Tested if mean earnings of all students at a university could be \$5,000, based on a sample mean \$3,776 for *n*=446. Assumed pop. s.d. \$6,500. *P*-value was 0.000; rejected null hypothesis.
- **Question:** Would 5,000 be contained in the confidence interval for μ ?
- □ Response: ____

Factors That Lead to Rejecting Ho

Statistically significant data produce P-value small enough to reject H_0 . z plays a role:

$$z = \frac{\bar{x} - \mu_o}{\sigma / \sqrt{n}} = \frac{(\bar{x} - \mu_o)\sqrt{n}}{|\sigma|}$$

Reject H_0 if P-value small; if |z| large; if...

- Sample mean far from μ_0
- Sample size *n* large
- Standard deviation σ small

Role of Sample Size *n*

Large n: may reject H_0 even if sample mean is not far from proposed population mean, from a practical standpoint.

Very small P-value \rightarrow strong evidence against Ho but \overline{x} not necessarily very far from μ_O .

Small n: may fail to reject H_0 even though it is false.

Failing to reject false Ho is 2nd type of error.

Definition (Review)

- Type I Error: reject null hypothesis even though it is true (false positive)
- Type II Error: fail to reject hull hypothesis even though it's false (false negative)

Test conclusions determine possible error:

- Reject H_0 : correct or Type I
- Do not reject H_0 : correct or Type II

Example: Errors in a Medical Context

- **Background:** A medical test is carried out for a disease (HIV).
- Questions:
 - What does the null hypothesis claim?
 - What are the implications of a Type I Error?
 - What are the implications of a Type II Error?
 - Which type of error is more worrisome?

Responses:

Null hypothesis:		
False	conclude	
False	conclude	
Type	is more worrisome.	

Example: Errors in a Legal Context

- **Background:** A defendant is on trial.
- Questions:
 - What does H_0 claim?
 - What does a Type I Error imply?
 - What does a Type II Error imply?
 - Which type is more worrisome?

- H_0 :
- Type I: Conclude _____
- Type II: Conclude _____
- Type is more worrisome.

Sample Mean Standardizing to z

 \rightarrow If σ is known, standardized \bar{X} follows

z (standard normal) distribution:

$$\frac{x-\mu}{\sigma/\sqrt{n}} = z$$

If σ is unknown and n is large enough (20 or 30), then $s \approx \sigma$ and $\frac{\bar{x} - \mu}{s/\sqrt{n}} \approx z$

Can use z if σ is known or n is large.

What if σ is unknown and n is small?

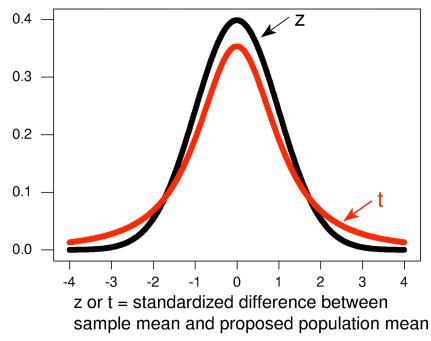
Sample mean standardizing to t

For σ unknown and n small, $\frac{x - \mu}{s / \sqrt{n}} = t$

- t (like z) centered at 0 since \bar{X} centered at μ
- t (like z) symmetric and bell-shaped if \bar{X} normal
- t more spread than z (s.d.>1) [s gives less info]
 t has "n-1 degrees of freedom" (spread depends on n)

Inference About Mean Based on z or t

- σ known \rightarrow standardized \bar{x} is z (may use z if σ unknown but n large)
- σ unknown \rightarrow standardized \bar{x} is t



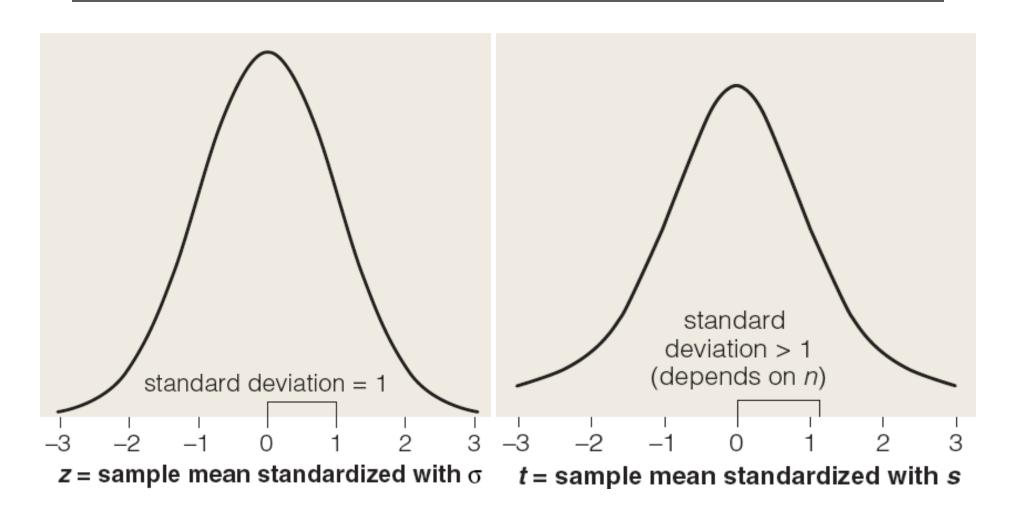
Inference by Hand Based on z or t

	σ known	σ unknown
small sample $(n < 30)$	$\frac{x-\mu}{\sigma/\sqrt{n}} = z$	$\frac{x-\mu}{s/\sqrt{n}} = t$
large sample $(n \ge 30)$	$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}=z$	$\frac{x-\mu}{s/\sqrt{n}} pprox z$

z used if σ known or n large

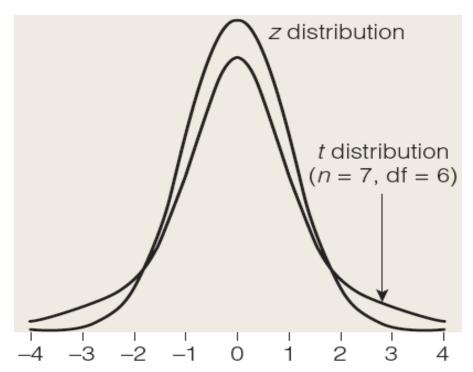
t used if σ unknown and n small

z vs. t: How the Sample Mean is Standardized



Example: Distribution of t (6 df) vs. z

■ **Background**: For n=7, $\frac{\overline{x}-\mu}{s/\sqrt{n}} = t$ has 6 df.



A Closer Look: In fact, P(t > 2) is about 0.05; P(z > 2) is about 0.025.

Question: How does P(t > 2) compare to P(z > 2)?

Response: P(t > 2)Elementary Statistics: Looking at the Big Picture P(z > 2).

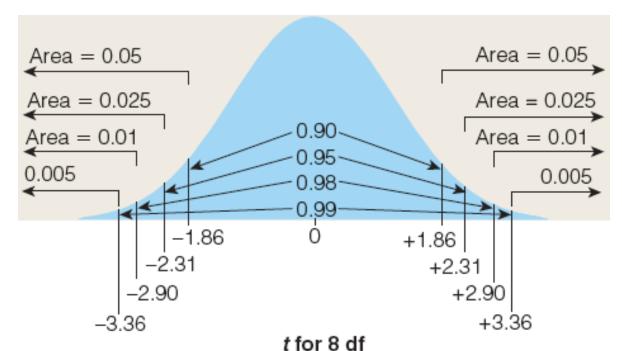
L25.45

Cengage Learning

Practice: 10.14 p.489

Example: Distribution of t (8 df) vs. z

Background: According to 90-95-98-99 Rule for z, P(z > 2) is between 0.01 and 0.025 because 2 is between 1.96 and 2.576. Consider the t curve for 8 df.



- **Question:** What is a range for P(t > 2) when t has 8 df?
- **Response:** P(t > 2) is between _____ and ____.

Lecture Summary

(Inference for Means: Hypothesis Tests; t Dist.)

- \Box z test about population mean: 4 steps
- □ Examples: 1-sided and 2-sided alternatives
- Relating test and confidence interval
- Factors in rejecting null hypothesis
 - Sample mean far from proposed population mean
 - Sample size large
 - Standard deviation small
- \square Inference based on z or t
 - Population sd known; standardize to z
 - Population sd unknown; standardize to *t*
- \square Comparing z and t distributions