Lecture 25: more Chapter 10, Section 1 Inference for Quantitative Variable: Hypothesis Tests - □z Test about Population Mean: 4 Steps - ■Examples: 1-sided or 2-sided Alternative - ■Relating Test and Confidence Interval - □Factors in Rejecting Null Hypothesis - □Inference Based on t vs. z #### Looking Back: Review - □ 4 Stages of Statistics - Data Production (discussed in Lectures 1-4) - Displaying and Summarizing (Lectures 5-12) - Probability (discussed in Lectures 13-20) - Statistical Inference - □ 1 categorical (discussed in Lectures 21-23) - □ 1 quantitative: confidence intervals, hypothesis tests - categorical and quantitative - □ 2 categorical - □ 2 quantitative ## Behavior of Sample Mean (Review) For random sample of size n from population with mean μ and standard deviation σ , sample mean \bar{X} has - \blacksquare mean μ - standard deviation $\frac{\sigma}{\sqrt{n}}$ - shape approximately normal for large enough n - \rightarrow If σ is known, standardized \bar{X} follows z (standard normal) distribution #### Hypothesis Test About μ (with z) Problem Statement $$H_0$$: $\mu = \mu_0$ vs. H_a : $\left\{ \begin{array}{l} \mu > \mu_0 \\ \mu < \mu_0 \\ \mu \neq \mu_0 \end{array} \right\}$ - 1. Consider sampling and study design. - Summarize with \overline{x} , standardize to $z = \frac{\overline{x} \mu_o}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"? - 3. Find *P*-value (prob. of *Z* this far above/below/away from 0); is it "small"? - 4. Based on size of P-value, choose H_0 or H_a . - 1. Consider sampling and study design. - 2. Summarize with \bar{x} , standardize to $z = \frac{x + \mu_0}{\sigma/\sqrt{n}}$ is true; is zH_0 : $\mu = \mu_0$ - Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small". - 4. Based on size of P-value, choose H_0 or H_a . - If sample is biased, mean of \bar{X} is not μ_O . - If pop<10*n*, s.d. of \bar{X} is not σ/\sqrt{n} . - If n is too small, distribution of \overline{X} is not normal, won't standardize to z: graph data, see guidelines. - 1. Consider sampling and study design - 2. Summarize with \bar{x} , standardize to $z = \frac{\omega}{\sigma/\sqrt{n}}$ assuming $H_o: \mu = \mu_o$ is true; is z "large"? - Find prob. of z this far above/below/away from 0 (P-value); consider if it is "small". - 4. Based on size of P-value, choose H_0 or H_a . - Assess *P*-value based on form of alternative hypothesis (greater, less, or not equal) Alternative ">": *P*-value is right-tailed probability mean Alternative "<": *P*-value is left-tailed probability Elementary Statistics: Looking at the Big Picture mean Alternative " \neq ": P-value is two-tailed probability Observed sample mean \bar{x} is either of these ### Example: Assumptions for z Test - Background: Earnings of 446 surveyed university students had mean \$3,776. The mean of earnings for the population of students is unknown. Assume we know population standard deviation is \$6,500. - **Question:** What aspect of the situation is unrealistic? - Response: **Looking Ahead:** In real-life problems, we rarely know the value of the population standard deviation. Eventually, we'll learn how to proceed when all we know is the sample standard deviation s. ### **Example:** Test with One-Sided Alternative - **Background**: Earnings of 446 surveyed university students had mean \$3,776. Assume population s.d. \$6,500. - **Question:** Are we convinced that μ is less than \$5,000? - **Response:** State H_o : vs. H_a : One-Sample Z: Earned Test of mu = 5 vs mu < 5 The assumed sigma = 6.5 Variable N Mean StDev SE Mean Earned 446 3.776 6.503 0.308 Variable 95.0% Upper Bound Z P Earned 4.282 -3.98 0.000 - 1. Data production issues were discussed for confidence interval. - Output shows sample mean and z =. Large? - P-value = _____. Small? _____ - 4. Conclude? ### Example: Notation - **Background**: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5. - **Question:** How do we denote the numbers given? - **□** Response: - 11.0 is proposed value of population mean _____ - 11.222 is sample mean _____ - 9 is sample size _____ - 1.5 is population standard deviation _____ ### Example: Intuition Before Formal Test - **Background**: Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5. - Question: What conclusion do we anticipate, by "eye-balling" the data? - **□** Response: Sample mean (11.222) seems close to proposed μ_o =11.0? ____ Sample size (9) small \rightarrow _____ S.d. (1.5) not very small \rightarrow _____ Anticipate standardized sample mean z large? _____ - $\rightarrow P$ -value small? - →conclude population mean may be 11.0? ____ ### **Example:** Test with Two-Sided Alternative - **Background:** Want to test if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assume pop. s.d. 1.5. - □ **Question:** What do we conclude from the output? - Response: z = 0.44. Large? _____ P-value (two-tailed) = 0.657. Small? ____ Conclude population mean may be 11.0? ____ ``` Test of mu = 11 vs mu not = 11 The assumed sigma = 1.5 Variable StDev SE Mean N Mean Shoe 11,222 1.698 0.500 95.0% CI Variable Z 10.242, 12.202) 0.44 0.657 Shoe ``` One-Sample Z: Shoe ### P-value as Nonstandard Normal Probability P-value is probability of sample mean as far from 11.0 (in either direction) as 11.222. H_0 : mu = 11.0 vs. H_a : mu \neq 11.0 ### P-value as Standard Normal Probability P-value as probability of standardized sample mean z as far from 0 (in either direction) as 0.44. ## Comparing P-value Based on \bar{x} vs. z Same area under curve, just different scales on horizontal axis due to standardizing (below). #### **Example:** Test Results and Confidence Interval - **Background:** Tested if mean of all male shoe sizes could be 11.0, based on a sample mean 11.222 from 9 male students. Assumed pop. s.d. 1.5. *P*-value was 0.657; didn't reject null. - **Question:** Would we expect 11.0 to be contained in a confidence interval for μ ? - Response: Test showed 11.0 to be plausible for $\mu \rightarrow$ _____ (In fact, 11.0 is _____ contained in the confidence interval.) ``` One-Sample Z: Shoe Test of mu = 11 vs mu not = 11 The assumed sigma = 1.5 Variable StDev SE Mean N Mean Shoe 11.222 1.698 0.500 95.0% CI Variable 7. 10.242, 12.202) 0.44 0.657 Shoe ``` #### **Example:** Test Results and Confidence Interval - **Background:** Tested if mean earnings of all students at a university could be \$5,000, based on a sample mean \$3,776 for *n*=446. Assumed pop. s.d. \$6,500. *P*-value was 0.000; rejected null hypothesis. - **Question:** Would 5,000 be contained in the confidence interval for μ ? - □ Response: ____ ## Factors That Lead to Rejecting Ho Statistically significant data produce P-value small enough to reject H_0 . z plays a role: $$z = \frac{\bar{x} - \mu_o}{\sigma / \sqrt{n}} = \frac{(\bar{x} - \mu_o)\sqrt{n}}{|\sigma|}$$ Reject H_0 if P-value small; if |z| large; if... - Sample mean far from μ_0 - Sample size *n* large - Standard deviation σ small ### Role of Sample Size *n* Large n: may reject H_0 even if sample mean is not far from proposed population mean, from a practical standpoint. Very small P-value \rightarrow strong evidence against Ho but \overline{x} not necessarily very far from μ_O . Small n: may fail to reject H_0 even though it is false. Failing to reject false Ho is 2nd type of error. ### Definition (Review) - Type I Error: reject null hypothesis even though it is true (false positive) - Type II Error: fail to reject hull hypothesis even though it's false (false negative) #### Test conclusions determine possible error: - Reject H_0 : correct or Type I - Do not reject H_0 : correct or Type II ### **Example:** Errors in a Medical Context - **Background:** A medical test is carried out for a disease (HIV). - Questions: - What does the null hypothesis claim? - What are the implications of a Type I Error? - What are the implications of a Type II Error? - Which type of error is more worrisome? #### **Responses:** | Null hypothesis: | | | |------------------|--------------------|--| | False | conclude | | | False | conclude | | | Type | is more worrisome. | | ## **Example:** Errors in a Legal Context - **Background:** A defendant is on trial. - Questions: - What does H_0 claim? - What does a Type I Error imply? - What does a Type II Error imply? - Which type is more worrisome? - H_0 : - Type I: Conclude _____ - Type II: Conclude _____ - Type is more worrisome. ### Sample Mean Standardizing to z \rightarrow If σ is known, standardized \bar{X} follows z (standard normal) distribution: $$\frac{x-\mu}{\sigma/\sqrt{n}} = z$$ If σ is unknown and n is large enough (20 or 30), then $s \approx \sigma$ and $\frac{\bar{x} - \mu}{s/\sqrt{n}} \approx z$ Can use z if σ is known or n is large. What if σ is unknown and n is small? ## Sample mean standardizing to t For σ unknown and n small, $\frac{x - \mu}{s / \sqrt{n}} = t$ - t (like z) centered at 0 since \bar{X} centered at μ - t (like z) symmetric and bell-shaped if \bar{X} normal - t more spread than z (s.d.>1) [s gives less info] t has "n-1 degrees of freedom" (spread depends on n) #### Inference About Mean Based on z or t - σ known \rightarrow standardized \bar{x} is z (may use z if σ unknown but n large) - σ unknown \rightarrow standardized \bar{x} is t ### Inference by Hand Based on z or t | | σ known | σ unknown | |---------------------------|---|------------------------------------| | small sample $(n < 30)$ | $\frac{x-\mu}{\sigma/\sqrt{n}} = z$ | $\frac{x-\mu}{s/\sqrt{n}} = t$ | | large sample $(n \ge 30)$ | $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}=z$ | $\frac{x-\mu}{s/\sqrt{n}} pprox z$ | z used if σ known or n large t used if σ unknown and n small ## z vs. t: How the Sample Mean is Standardized #### **Example:** Distribution of t (6 df) vs. z ■ **Background**: For n=7, $\frac{\overline{x}-\mu}{s/\sqrt{n}} = t$ has 6 df. A Closer Look: In fact, P(t > 2) is about 0.05; P(z > 2) is about 0.025. **Question:** How does P(t > 2) compare to P(z > 2)? Response: P(t > 2)Elementary Statistics: Looking at the Big Picture P(z > 2). L25.45 Cengage Learning Practice: 10.14 p.489 #### **Example:** Distribution of t (8 df) vs. z **Background**: According to 90-95-98-99 Rule for z, P(z > 2) is between 0.01 and 0.025 because 2 is between 1.96 and 2.576. Consider the t curve for 8 df. - **Question:** What is a range for P(t > 2) when t has 8 df? - **Response:** P(t > 2) is between _____ and ____. #### **Lecture Summary** (Inference for Means: Hypothesis Tests; t Dist.) - \Box z test about population mean: 4 steps - □ Examples: 1-sided and 2-sided alternatives - Relating test and confidence interval - Factors in rejecting null hypothesis - Sample mean far from proposed population mean - Sample size large - Standard deviation small - \square Inference based on z or t - Population sd known; standardize to z - Population sd unknown; standardize to *t* - \square Comparing z and t distributions