Lecture 20: Chapter 8, Section 2 Sampling Distributions: Means

Typical Inference Problem for Means
3 Approaches to Understanding Dist. of Means
Center, Spread, Shape of Dist. of Means
68-95-99.7 Rule; Checking Assumptions

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
 - □ Finding Probabilities (discussed in Lectures 13-14)
 - □ Random Variables (discussed in Lectures 15-18)
 - Sampling Distributions
 - Proportions (discussed in Lecture 19)

Means

Statistical Inference

Typical Inference Problem about Mean

The numbers 1 to 20 have mean 10.5, s.d. 5.8. If numbers picked "at random" by sample of 400 students have mean 11.6, does this suggest bias in favor of higher numbers?

Solution Method: Assume (temporarily) that population mean is 10.5, find probability of sample mean as high as 11.6. If it's too improbable, we won't believe population mean is 10.5; we'll conclude there *is* bias in favor of higher numbers.

Key to Solving Inference Problems

For a given population mean μ , standard deviation σ , and sample size *n*, need to find probability of sample mean \overline{X} in a certain range:

Need to know sampling distribution of ${\overline{X}}$.

Notation: \overline{x} denotes a single statistic. \overline{X} denotes the random variable.

Definition (Review)

Sampling distribution of sample statistic tells probability distribution of values taken by the statistic in repeated random samples of a given size.

Looking Back: We summarized probability distribution of sample proportion by reporting its center, spread, shape. Now we will do the same for sample mean.

Understanding Sample Mean

- 3 Approaches:
- 1. Intuition
- 2. Hands-on Experimentation
- 3. Theoretical Results

Looking Ahead: We'll find that our intuition is consistent with experimental results, and both are confirmed by mathematical theory.

Example: *Shape of Underlying Distribution (n=1)*

- **Background**: Population of possible dicerolls X are equally likely values $\{1,2,3,4,5,6\}$.

Looking Ahead: The shape of the underlying distribution will play a role in the shape of \overline{X} for various sample sizes.

Practice: 8.25a p.368

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

L20.8

Example: Sample Mean as Random Variable

Background: Population mean roll of dice is 3.5.

Questions:

- Is the underlying variable (dice roll) categorical or quantitative?
- Consider the behavior of sample mean \overline{X} for repeated rolls of a given number of dice. What type of variable is sample mean dice roll?
- What 3 aspects of the distribution of sample mean should we report to summarize its behavior?

Responses:

- Underlying variable (number rolled) is _____
- It's _____

Summarize with ______, ______, ______

Example: Center, Spread, Shape of Sample Mean

- **Background**: Dice rolls X uniform with $\mu = 3.5$, $\sigma = 1.7$.
- **Question:** What are features of \overline{X} for repeated rolls of 2 dice?
- **Response:**

Some \bar{X} 's more than _____, others less; they

- Center: should balance out so mean of \bar{X} 's is $\mu = _$
- Spread of \overline{X} 's: (*n*=2 dice) easily range from _____ to ____.

Shape:

Example: Sample Mean for Larger n

- **Background**: Dice rolls X uniform with $\mu = 3.5$, $\sigma = 1.7$.
- **Question:** What are features of \overline{X} for repeated rolls of 8 dice?
- **Response:**
 - **Center:** Mean of \overline{X} 's is _____ (for any n).
 - Spread: (*n*=8 dice)

spread than for n=2.

Shape: bulges more near 3.5, tapers at extremes 1 and 6→ shape close to _____

Looking Ahead: Sample size does *not* affect center but plays an important role in spread and shape of the distribution of sample mean (as it did for sample proportion).

Practice: 8.19 p.367

Mean of Sample Mean (Theory)

For random samples of size *n* from population with mean μ , we can write sample mean as $\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$

where each X_i has mean μ . The Rules for constant multiples of means and for sums of means tell us that \bar{X} has mean

$$\mu_{\bar{X}} = \frac{1}{n}(\mu + \mu + \dots + \mu) = \frac{1}{n}(n\mu) = \mu$$

Standard Deviation of Sample Mean

For random samples of size *n* from population with mean μ , standard deviation σ , we write $\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$

where each X_i has s.d. σ . The Rules for constant multiples of s.d.s and for sums of **variances** tell us that \bar{X} has s.d.

$$\frac{1}{n}\sqrt{\sigma^2 + \dots + \sigma^2} = \frac{1}{n}\sqrt{n\sigma^2} = \frac{\sigma}{\sqrt{n}}$$

©2011 Brooks/Cole, Cengage Learning

Rule of Thumb (*Review*)

 Need population size at least 10n (formula for s.d. of X̄ approx. correct even if sampled without replacement)
 Note: For means, there is no Rule of Thumb for approximate normality that is as simple as the one for proportions [np and n(1-p) both at least 10].

Central Limit Theorem (Review)

- Approximate normality of sample statistic for repeated random samples of a large enough size is cornerstone of inference theory.
- □ Makes intuitive sense.
- □ Can be verified with experimentation.
- Proof requires higher-level mathematics; result called Central Limit Theorem.

Shape of Sample Mean

- For random samples of size *n* from population of quantitative values *X*, the shape of the distribution of sample mean \overline{X} is approximately normal if
- X itself is normal; or
- X is fairly symmetric and n is at least 15; or
- X is moderately skewed and n is at least 30

Behavior of Sample Mean: Summary

- For random sample of size *n* from population with mean μ , standard deviation σ , sample mean \bar{X} has
- \blacksquare mean μ
- standard deviation $\overline{\sqrt{n}}$
- shape approximately normal for large enough n

Center of Sample Mean (Implications)

For random sample of size n from population with mean μ , sample mean \overline{X} has

• mean μ

 $\rightarrow \overline{X}$ is *unbiased estimator* of μ (sample must be random)

Looking Ahead: We'll rely heavily on this result when we perform inference. As long as the sample is random, sample mean is our "best guess" for unknown population mean.

Spread of Sample Mean (Implications)

For random sample of size *n* from population with mean μ, s.d. σ, sample mean X has
mean μ
standard deviation σ/√n ← *n* in denominator
X has *less spread for larger samples*(population size must be at least 10*n*)

Looking Ahead: This result also impacts inference conclusions to come. Sample mean from a larger sample gives us a better estimate for the unknown population mean.

Shape of Sample Mean (Implications)

- For random sample of size *n* from population with mean μ , s.d. σ , sample mean \overline{X} has
- mean μ standard deviation $\frac{\sigma}{\sqrt{n}}$
 - shape approx. normal for large enough n \rightarrow can find probability that sample mean takes value in given interval

Looking Ahead: Finding probabilities about sample mean will enable us to solve inference problems.

Example: Behavior of Sample Mean, 2 Dice

- **Background**: Population of dice rolls has $\mu = 3.5, \sigma = 1.7$
- □ Question: For repeated random samples of n=2, how does sample mean \overline{X} behave?
- **Response:** For n=2, sample mean roll \overline{X} has
 - **Center:** mean
 - **Spread:** standard deviation
 - Shape: ______ because the population is flat, not normal, and _____

Example: Behavior of Sample Mean, 8 Dice

- **Background**: Population of dice rolls has $\mu = 3.5, \sigma = 1.7$
- □ Question: For repeated random samples of n=8, how does sample mean \overline{X} behave?
- **Response:** For n=8, sample mean roll \overline{X} has
 - **Center:** mean
 - **Spread:** standard deviation
 - Shape: ______normal than for n=2 (Central Limit Theorem)

L20.27

68-95-99.7 Rule for Normal R.V. (Review)

Sample at random from normal population; for sampled value *X* (a R.V.), probability is

- \square 68% that *X* is within 1 standard deviation of mean
- \square 95% that *X* is within 2 standard deviations of mean
- \square 99.7% that X is within 3 standard deviations of mean

L20.28

68-95-99.7 Rule for Sample Mean

For sample means \overline{X} taken at random from large population with mean μ , s.d. σ , probability is \circ 68% that \overline{X} is within $1\frac{\sigma}{\sqrt{n}}$ of μ

• 95% that
$$\bar{X}$$
 is within $2\frac{\sigma}{\sqrt{n}}$ of μ

 \square 99.7% that \overline{X} is within $3\frac{\sigma}{\sqrt{n}}$ of μ

These results hold only if n is large enough.

Example: *68-95-99.7 Rule for 8 Dice*

- Background: Population of dice rolls has μ = 3.5, σ = 1.7. For random samples of size 8, sample mean roll X̄ has mean 3.5, standard deviation 0.6, and shape fairly normal.
- **Question:** What does 68-95-99.7 Rule tell us about the behavior of \overline{X} ?
- **Response:** The probability is approximately
 - 0.68 that X̄ is within of : in (2.9, 4.1)
 0.95 that X̄ is within of : in (2.3, 4.7)
 0.997 that X̄ is within of : in (1.7, 5.3)

Typical Problem about Mean (Review)

The numbers 1 to 20 have mean 10.5, s.d. 5.8. If numbers picked "at random" by sample of 400 students has mean 11.6, does this suggest bias in favor of higher numbers?

Solution Method: Assume (temporarily) that population mean is 10.5, find probability of sample mean as high as 11.6. If it's too improbable, we won't believe population mean is 10.5; we'll conclude there *is* bias in favor of higher numbers.

Example: Establishing Behavior of \bar{X}

- Background: We asked the following: "The numbers 1 to 20 have mean 10.5, s.d. 5.8. If numbers picked 'at random' by 400 students have mean \$\overline{x} = 11.6\$, does this suggest bias in favor of higher numbers?"
- **Question:** What are the mean, standard deviation, and shape of the R.V. \overline{X} in this situation?
- **Response:** For $\mu = 10.5$, $\sigma = 5.8$, and n = 400, \overline{X} has

mean

standard deviation _____

shape _

L20.34

Example: Testing Assumption About μ

- Background: Sample mean number picked at random from 1 to 20 by 400 students should have mean 10.5, s.d. 0.3.
- **Questions:** Is 11.6 improbably high for \overline{X} ? Does a sample mean of 11.6 convince us of bias in favor of higher numbers?
- **Responses:** 11.6 is _____above ____, more than 3 s.d.s. The probability of being this high (or higher) is _____. Since this is extremely improbable, we _____believe $\mu = 10.5$. Apparently, there _____bias in favor of higher numbers.

L20.36

©2011 Brooks/Cole, Cengage Learning

Example: Behavior of Individual vs. Mean

- **Background**: IQ scores are normal with mean 100, s.d. 15.
- **Question:** Is 88 unusually low for...
 - IQ of a randomly chosen individual?
 - Mean IQ of 9 randomly chosen individuals?
- **Response:**
 - IQ X of a randomly chosen individual has mean 100, s.d. 15. For x=88, z =_____: not even 1 s.d. below the mean →
 - Mean IQ \overline{X} of 9 randomly chosen individuals has mean 100, s.d. _____. For $\overline{x}=88, z=$ _____: unusually low (happens less than _____ of the time, since).

Example: Checking Assumptions

- **Background**: Household size X in the U.S. has mean 2.5, s.d. 1.4.
- **Question:** Is 3 unusually high for...
 - Size of a randomly chosen household?
 - Mean size of 10 randomly chosen households?
 - Mean size of 100 randomly chosen households?

Response:

Lecture Summary

(Sampling Distributions; Means)

- Typical inference problem for means
- □ 3 approaches to understanding dist. of sample mean
 - Intuit
 - Hands-on
 - Theory
- □ Center, spread, shape of dist. of sample mean
- □ 68-95-99.7 Rule for sample mean
 - Revisit typical problem
 - Checking assumptions for use of Rule