Lecture 14: Chapter 6, Section 2 Finding Probabilities: More General Rules

-General "And" Rule
םMore about Conditional Probabilities
-Two Types of Error
-Independence

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
- Finding Probabilities
- Random Variables
- Sampling Distributions
- Statistical Inference

Probability Rules (Review)

Non-Overlapping "Or" Rule: For any two non-overlapping events A and B , $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
Independent "And" Rule: For any two independent events A and B , $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$.
General "Or" Rule: For any two events A and B, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$.
Need "And" Rule that applies even if events are dependent.

Example: When Probabilities Can't Simply

be Multiplied

Possibilities for 1 st selection

$$
\text { Probability of a quarter is } 2 / 4=1 / 2
$$

Possibilities for 2nd selection

Definition and Notation

Conditional Probability of a second event, given a first event, is the probability of the second event occurring, assuming that the first event has occurred.
$\mathbf{P}(\mathbf{B}$ given $\mathbf{A})$ denotes the conditional probability of event B occurring, given that event A has occurred.

```
Looking Ahead: Conditional probabilities help us handle dependent events.
```


Example: Intuiting the General "And" Rule

\square Background: In a child's pocket are 2 quarters and 2 nickels. He randomly picks a coin, does not replace it, and picks another.
\square Question: What is the probability that the first and the second coin are quarters?
\square Response: probability of first a quarter (), times (conditional) probability that second is a quarter, given first was a quarter ():

Example: Intuiting General "And" Rule with

 Two-Way Table- Background: Surveyed students classified by sex and ears pierced or not.

	Ears Pierced	Ears Not Pierced	Total
Female	270	30	300
Male	20	180	200
Total	290	210	500

- Question: What are the following probabilities?
- Probability of being male
- Probability of having ears pierced, given a student is male
- Probability of being male and having ears pierced
\square Response:
- $\mathrm{P}(\mathrm{M})=$
- $\mathrm{P}(\mathrm{E}$ given M$)=$
- $\quad \mathrm{P}(\mathrm{M}$ and E$)=$

General "And" Rule (General Multiplication Rule)

For any two events A and B ,

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \text { given } \mathrm{A})
$$

$$
=P(B) \text { if } A \text { and } B \text { are independent }
$$

A Closer Look: In general, the word "and" in probability entails multiplication.

Example: Applying General "And" Rule

- Background: Studies suggest lie detector tests are "well below perfection", 80% of the time concluding someone is a spy when he actually is, 16% of the time concluding someone is a spy when he isn't. Assume 10 of 10,000 govt. employees are spies.
\square Question: What are the following probabilities?
- Probability of being a spy and being detected as one
- Probability of not being a spy but "detected" as one
- Overall probability of a positive lie detector test
\square Response: First "translate" to probability notation:
$\mathrm{P}(\mathrm{D}$ given S$)=$
$P(D$ given not $S)=$
$\mathrm{P}(\mathrm{S})=$
$P(\operatorname{not} S)=$
- $\mathrm{P}(\mathrm{S}$ and D$)=$
- $\mathrm{P}($ not S and D$)=$
- $\mathrm{P}(\mathrm{D})=\mathrm{P}(\mathrm{S}$ and D or not S and D$)=$

Example: "Or" Probability as Weighted Average of Conditional Probabilities

\square Background: Studies suggest lie detector tests are "well below perfection", 80% of the time concluding someone is a spy when he actually is, 16% of the time concluding someone is a spy when he isn't. Assume 10 of 10,000 govt. employees are spies.
\square Question: Should we expect the overall probability of being "detected" as a spy, $\mathrm{P}(\mathrm{D})$, to be closer to $\mathrm{P}(\mathrm{D}$ given S$)=0.80$ or to $\mathrm{P}(\mathrm{D}$ given not S$)=0.16$?
\square Response: Expect $\mathrm{P}(\mathrm{D})$ closer to
because
(In fact, $\mathrm{P}(\mathrm{D})=0.16064$.)

General "And" Rule Leads to Rule of Conditional Probability

Recall: For any two events A and B , $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}$ given A$)$
Rearrange to form Rule of Conditional Probability: $\mathrm{P}(\mathrm{B}$ given A$)=\frac{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{A})}$

Example: Applying Rule of Conditional

Probability

- Background: For the lie detector problem, we have
- Probability of being a spy: $\mathrm{P}(\mathrm{S})=0.001$
- Probability of spies being detected: $\mathrm{P}(\mathrm{D}$ given S$)=0.80$
- Probability of non-spies detected: $\mathrm{P}(\mathrm{D}$ given not S$)=0.16$
- Probability of being a spy and detected: $P(D$ and $S)=0.0008$
- Overall probability of positive lie detector: $P(D)=0.16064$
\square Question: If the lie-detector indicates an employee is a spy, what is the probability that he actually is one?
- Response: $\mathrm{P}(\mathrm{S}$ given D$)=$

Note: $P(S$ given $D)$ is verv different from $P(D$ given $S)$.

> A Closer Look: Bayes Theorem uses conditional probabilities to find probability of earlier event, given later event is known to occur.

Two Types of Error in Lie Detector Test

$1^{\text {st }}$ Type of Error: Conclude employee is a spy when he/she actually is not.
$\mathbf{2}^{\text {nd }}$ Type of Error: Conclude employee is not a spy when he/she actually is.

Example: Two Types of Error in Lie Detector

Test

- Background: For the lie detector problem, we have
- Probability of spies being detected: $\mathrm{P}(\mathrm{D}$ given S$)=0.80$
- Probability of non-spies detected: $\mathrm{P}(\mathrm{D}$ given not S$)=0.16$
- Questions:
- What is probability of $1^{\text {st }}$ type of error (conclude employee is spy when he/she actually is not)?
- What is probability of $2^{\text {nd }}$ type of error (conclude employee is not a spy when he/she actually is)?
\square Responses:
- $1^{\text {st }}$ type:
- $2^{\text {nd }}$ type:

Testing for Independence

The concept of independence is tied in with conditional probabilities.

```
Looking Ahead: Much of statistics concerns itself
    with whether or not two events, or two variables,
    are dependent (related).
```


Example: Intuiting Conditional Probabilities When Events Are Dependent

\square Background: Students are classified according to gender, M or F, and ears pierced or not, E or not E.

- Questions:

	Ears Pierced	Ears Not Pierced	Total
Female	270	30	300
Male	20	180	200
Total	290	210	500

- Should gender and ears pierced be dependent or independent?

If dependent, which should be less, $\mathrm{P}(\mathrm{E})$ or $\mathrm{P}(\mathrm{E}$ given M$)$?

- What are the above probabilities, and which is less?
\square Responses:
Expect $\mathrm{P}(\mathrm{E}$ given M$) \quad \mathrm{P}(\mathrm{E})$ because fewer have pierced ears.
- $\mathrm{P}($ E given M$)=$ \square

$$
P(E)=
$$

Example: Intuiting Conditional Probabilities When Events Are Independent

\square Background: Students are classified according to gender, M or F , and whether they get an A in stats.
\square Questions:

	A	Not A	Total
Female	0.15	0.45	0.60
Male	0.10	0.30	0.40
Total	0.25	0.75	1.00

- Should gender and getting an A or not be dependent or independent? How should $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{A}$ given F$)$ compare?
- What are the above probabilities, and how do they compare?
\square Responses:
Expect $\mathrm{P}(\mathrm{A}$ given F$) \quad \mathrm{P}(\mathrm{A})$ because knowing a student's gender doesn't impact probability of getting an A.
- $\mathrm{P}(\mathrm{A})=\quad ; \mathrm{P}(\mathrm{A}$ given F$)=$

Independence and Conditional Probability

Rule:

A and B independent $\rightarrow \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B}$ given A$)$
Test:
$\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B}$ given A$) \rightarrow \mathrm{A}$ and B are independent
$\mathrm{P}(\mathrm{B}) \neq \mathrm{P}(\mathrm{B}$ given A$) \rightarrow \mathrm{A}$ and B are dependent
Independent \leftrightarrow regular and conditional probabilities are equal (occurrence of A doesn't affect probability of B)

Independence and Product of Probabilities

Rule:

Independent $\rightarrow \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
Test:
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \rightarrow$ independent
$\mathrm{P}(\mathrm{A}$ and B$) \neq \mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \rightarrow$ dependent
Independent \leftrightarrows probability of both equals product of individual probabilities

Table of Counts Expected if Independent

- For A, B independent, $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$.
- This Rule dictates what counts would appear in two-way table if the variable A or not A is independent of the variable
B or not B:
- If independent, count in categorycombination A and B must equal total in A times total in B , divided by overall total in table.

Example: Counts Expected if Independent

- Background: Students are classified according to gender and ears pierced or not. A table of expected counts ($174=\frac{290 \times 300}{500}$, etc.) has been produced.

Counts expected if gender and pierced ears were independent

	E	not E	Total
not M	174	126	300
M	116	84	200
Total	290	210	500

Counts actually
observed

	E	not E	Total
not M	270	30	300
M	20	180	200
Total	290	210	500

- Question: How different are the observed and expected counts?
- Response: Observed and expected counts are very different (270 vs. 174, 20 vs. 116, etc.) because

Example: Counts Expected if Independent

- Background: Students are classified according to gender and grade (A or not). A table of expected counts ($15=\frac{25 \times 60}{100}$, etc.) has been produced.

Exp	A	not A	Total
F	15	45	60
M	10	30	40
Total	25	75	100

Obs	A	not A	Total
F	15	45	60
M	10	30	40
Total	25	75	100

- Question: How different are the observed and expected counts?
\square Response: Counts are identical because

Lecture Summary

(Finding Probabilities; More General Rules)

- General "And" Rule
- More about Conditional Probabilities
- Two Types of Error
\square Independence
- Testing for independence
- Rule for independent events
- Counts expected if independent

