Lecture 8: Chapter 4, Section 4 Quantitative Variables (Normal)

-68-95-99.7 Rule
-Normal Curve
םz-Scores

Looking Back: Review

- 4 Stages of Statistics
- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
- Single variables: 1 cat. (Lecture 5), 1 quantitative
- Relationships between 2 variables
- Probability
- Statistical Inference

Quantitative Variable Summaries (Review)

- Shape: tells which values tend to be more or less common
- Center: measure of what is typical in the distribution of a quantitative variable
\square Spread: measure of how much the distribution's values vary
\square Mean (center): arithmetic average of values
\square Standard deviation (spread): typical distance of values from their mean

68-95-99.7 Rule (Review)

If we know the shape is normal, then values have
ㅁ 68% within 1 standard deviation of mean
95% within 2 standard deviations of mean

- 99.7% within 3 standard deviations of mean

68-95-99.7 Rule for Normal Distributions

From Histogram to Smooth Curve (Review)

- Infinitely many values over continuous range of possibilities modeled with normal curve.

Quantitative Samples vs. Populations

- Summaries for sample of values
- Mean \bar{x}
- Standard deviation S
\square Summaries for population of values
- Mean μ (called "mu")
- Standard deviation σ (called "sigma")

Notation: Mean and Standard Deviation

\square Distinguish between sample (on the left) and population (on the right).

Example: Notation for Sample or Population

- Background: Adult male foot lengths are normal with mean 11, standard deviation 1.5. A sample of 9 male foot lengths had mean 11.2, standard deviation 1.7.
- Questions:
- What notation applies to sample?
- What notation applies to population?
- Responses:
- If summarizing sample:
- If summarizing population:

Example: Picturing a Normal Curve

- Background: Adult male foot length normal with mean 11, standard deviation 1.5 (inches)
\square Question: How can we display all such foot lengths?
- Response: Apply Rule to normal curve:

Normal curve for all adult male foot lengths

Example: When Rule Does Not Apply

\square Background: Ages of all undergrads at a university have mean 20.5, standard deviation 2.9 (years).
\square Question: How could we display the ages?
\square Response:

Standardizing Normal Values

We count distance from the mean, in standard deviations, through a process called standardizing.

Example: Standardizing a Normal Value

- Background: Ages of mothers when giving birth is approximately normal with mean 27 , standard deviation 6 (years).
- Question: Are these mothers unusually old to be giving birth? (a) Age 35 (b) Age 43
\square Response:
(a) Age 35 is sds above mean:

Unusually old?
(b) Age 43 is \square sds above mean:
Unusually old?

Definition

- z-score, or standardized value, tells how many standard deviations below or above the mean the original value x is:

$$
z=\frac{\text { value-mean }}{\text { standard deviation }}
$$

- Notation:
- Sample: $z=\frac{x-\bar{x}}{s}$
- Population: $z=\frac{x-\mu}{\sigma}$
\square Unstandardizing z-scores:
Original value x can be computed from z-score.
Take the mean and add z standard deviations:

$$
x=\mu+z \sigma
$$

Example: 68-95-99.7 Rule for \boldsymbol{z}

- Background: The 68-95-99.7 Rule applies to any normal distribution.
- Question: What does the Rule tell us about the distribution of standardized normal scores \boldsymbol{z} ?
- Response: Sketch a curve with mean standard deviation

68-95-99.7 Rule for z-scores

For distribution of standardized normal values z,
ㅁ 68% are between -1 and +1

- 95% are between -2 and +2
- 99.7% are between -3 and +3

Example: What z-scores Tell Us

- Background: On an exam (normal), two students' z-scores are -0.4 and +1.5 .
$\square \quad$ Question: How should they interpret these?
\square Response:
- -0.4:
- +1.5 :

Interpreting z-scores

This table classifies ranges of z-scores informally, in terms of being unusual or not.

Size of z	Unusual?
$\|z\|$ greater than 3	extremely unusual
$\|z\|$ between 2 and 3	very unusual
$\|\|z\|$ between 1.75 and 2	unusual
$\|\|z\|$ between 1.5 and 1.75	maybe unusual (depends on circumstances)
$\|z\|$ between 1 and 1.5	somewhat low/high, but not unusual
$\|z\|$ less than 1	quite common

Example: Calculating and Interpreting z

- Background: Adult heights are normal:
- Females: mean 65, standard deviation 3
- Males: mean 70, standard deviation 3
$\square \quad$ Question: Calculate your own z score; do standardized heights conform well to the 68-95-99.7 Rule for females and for males in the class?
- Response: Females and then males should calculate their z-score; acknowledge if it's
- between -1 and +1 ?
- between -2 and +2 ? beyond -2 or +2 ?
- between -3 and +3 ? beyond -3 or +3 ?

Example: z Score in Life-or-Death Decision

- Background: IQs are normal; mean $=100, \mathrm{sd}=15$. In 2002, Supreme Court ruled that execution of mentally retarded is cruel and unusual punishment, violating Constitution's 8th Amendment.
- Questions: A convicted criminal's IQ is 59. Is he borderline or well below the cut-off for mental retardation? Is the death penalty appropriate?
- Response: His z-score is

Example: From z-score to Original Value

- Background: IQ's have mean 100, sd. 15.
- Question: What is a student's IQ, if $z=+1.2$?
- Response:

Example: Negative z-score

- Background: Exams have mean 79, standard deviation 5. A student's z score on the exam is -0.4 .
\square Question: What is the student's score?
\square Response:
If z is negative, then the value x is below average.

Example: Unstandardizing a z-score

\square Background: Adult heights are normal:

- Females: mean 65, standard deviation 3
- Males: mean 70, standard deviation 3
\square Question: Have a student report his or her z-score; what is his/her actual height value?
\square Response:
- Females: take $65+z(3)=$
- Males: take $70+z(3)=$

Example: When Rule Does Not Apply

- Background: Students' computer times had mean 97.9 and standard deviation 109.7.
\square Question: How do we know the distribution of times is not normal?
\square Response:

Lecture Summary (Normal Distributions)

- Notation: sample vs. population
- Standardizing: $z=($ value-mean)/sd
- 68-95-99.7 Rule: applied to standard scores z
\square Interpreting Standard Score z
- Unstandardizing: $x=$ mean $+z(\mathrm{sd})$

