Lecture 8: Chapter 4, Section 4 Quantitative Variables (Normal)

- □68-95-99.7 Rule
- ■Normal Curve
- □z-Scores

Looking Back: Review

- 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing
 - □ Single variables: 1 cat. (Lecture 5), 1 quantitative
 - Relationships between 2 variables
 - Probability
 - Statistical Inference

Quantitative Variable Summaries (Review)

- **Shape:** tells which values tend to be more or less common
- □ **Center**: measure of what is typical in the distribution of a quantitative variable
- **Spread:** measure of how much the distribution's values vary
- **Mean (center):** arithmetic average of values
- **Standard deviation (spread)**: typical distance of values from their mean

68-95-99.7 Rule (Review)

If we know the shape is normal, then values have

- □ 68% within 1 standard deviation of mean
- 95% within 2 standard deviations of mean
- □ 99.7% within 3 standard deviations of mean 68-95-99.7 Rule for Normal Distributions

A Closer Look: around 2 sds above or below the mean may be considered unusual.

From Histogram to Smooth Curve (Review)

□ Infinitely many values over continuous range of possibilities modeled with normal curve.

Quantitative Samples vs. Populations

- □ Summaries for sample of values
 - lacksquare Mean $ar{x}$
 - Standard deviation S
- □ Summaries for population of values
 - Mean μ (called "mu")
 - Standard deviation σ (called "sigma")

Notation: Mean and Standard Deviation

Distinguish between sample (on the left) and population (on the right).

Example: Notation for Sample or Population

■ **Background:** Adult male foot lengths are normal with mean 11, standard deviation 1.5. A sample of 9 male foot lengths had mean 11.2, standard deviation 1.7.

Questions:

- What notation applies to sample?
- What notation applies to population?

□ Responses:

- If summarizing sample:
- If summarizing population:

Example: Picturing a Normal Curve

- **Background:** Adult male foot length normal with mean 11, standard deviation 1.5 (inches)
- Question: How can we display all such foot lengths?
- Response: Apply Rule to normal curve:

 Normal curve for all adult male foot lengths

Practice: 4.54b p.121

Example: When Rule Does Not Apply

- **Background:** Ages of all undergrads at a university have mean 20.5, standard deviation 2.9 (years).
- □ **Question:** How could we display the ages?
- Response:

Standardizing Normal Values

We count distance from the mean, in standard deviations, through a process called standardizing.

Example: Standardizing a Normal Value

- **Background:** Ages of mothers when giving birth is approximately normal with mean 27, standard deviation 6 (years).
- **Question:** Are these mothers unusually old to be giving birth? (a) Age 35 (b) Age 43
- **Response:**
 - (a) Age 35 is sds above mean: Unusually old?
 - (b) Age 43 is sds above mean: Unusually old?

Definition

z-score, or standardized value, tells how many standard deviations below or above the mean the original value x is:

$$z = \frac{\text{value-mean}}{\text{standard deviation}}$$

- Notation: $z = \frac{x \bar{x}}{s}$
 - Population: $z = \frac{x-\mu}{\sigma}$
- **Unstandardizing** z-scores:

Original value x can be computed from z-score.

Take the mean and add z standard deviations:

$$x = \mu + z\sigma$$

Example: 68-95-99.7 Rule for z

- **Background:** The 68-95-99.7 Rule applies to any normal distribution.
- **Question:** What does the Rule tell us about the distribution of standardized normal scores *z*?
- □ **Response:** Sketch a curve with mean___, standard

deviation:

68-95-99.7 Rule for *z*-scores

For distribution of standardized normal values z,

- \square 68% are between -1 and +1
- \square 95% are between -2 and +2
- \square 99.7% are between -3 and +3

Example: What z-scores Tell Us

- **Background:** On an exam (normal), two students' z-scores are -0.4 and +1.5.
- **Question:** How should they interpret these?
- **Response:**
 - -0.4:
 - +1.5:

Interpreting z-scores

This table classifies ranges of z-scores informally, in terms of being unusual or not.

Size of z	Unusual?
z greater than 3	extremely unusual
z between 2 and 3	very unusual
z between 1.75 and 2	unusual
z between 1.5 and 1.75	maybe unusual (depends on circumstances)
z between 1 and 1.5	somewhat low/high, but not unusual
z less than 1	quite common

Example: Calculating and Interpreting z

- **Background:** Adult heights are normal:
 - Females: mean 65, standard deviation 3
 - Males: mean 70, standard deviation 3
- **Question:** Calculate your own z score; do standardized heights conform well to the 68-95-99.7 Rule for females and for males in the class?
- **Response:** Females and then males should calculate their z-score; acknowledge if it's
 - between -1 and +1?
 - between -2 and +2? beyond -2 or +2?
 - between -3 and +3? beyond -3 or +3?

Example: z Score in Life-or-Death Decision

- **Background:** IQs are normal; mean=100, sd=15. In 2002, Supreme Court ruled that execution of mentally retarded is cruel and unusual punishment, violating Constitution's 8th Amendment.
- Questions: A convicted criminal's IQ is 59. Is he borderline or well below the cut-off for mental retardation? Is the death penalty appropriate?
- **Response:** His z-score is

Example: From z-score to Original Value

- **Background:** IQ's have mean 100, sd. 15.
- **Question:** What is a student's IQ, if z=+1.2?
- **Response:**

Example: Negative z-score

- **Background:** Exams have mean 79, standard deviation 5. A student's z score on the exam is -0.4.
- □ **Question:** What is the student's score?
- Response:

If z is negative, then the value x is below average.

Practice: 4.55h p.121

Example: Unstandardizing a z-score

- **Background:** Adult heights are normal:
 - Females: mean 65, standard deviation 3
 - Males: mean 70, standard deviation 3
- □ **Question:** Have a student report his or her *z*-score; what is his/her actual height value?
- □ Response:
 - Females: take 65+z(3)=
 - Males: take 70+z(3)=____

Example: When Rule Does Not Apply

- Background: Students' computer times had mean 97.9 and standard deviation 109.7.
- □ **Question:** How do we know the distribution of times is not normal?
- **□** Response:

Practice: 4.61a-b p.122

Lecture Summary (Normal Distributions)

- □ Notation: sample vs. population
- \square Standardizing: z=(value-mean)/sd
- □ 68-95-99.7 Rule: applied to standard scores z
- Interpreting Standard Score z
- \square Unstandardizing: x=mean+z(sd)