Lecture 7: Chapter 4, Section 3 Quantitative Variables (Summaries, Begin Normal)

Mean vs. Median
Standard Deviation
Normally Shaped Distributions

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
 - □ Single variables: 1 categorical, 1 quantitative
 - Relationships between 2 variables
- Probability
- Statistical Inference

Ways to Measure Center and Spread

- □ Five Number Summary (already discussed)
- Mean and Standard Deviation

Definition

■ **Mean**: the arithmetic average of values. For *n* sampled values, the mean is called "x-bar":

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

□ The mean of a population, to be discussed later, is denoted " μ " and called "mu".

Example: Calculating the Mean

- Background: Credits taken by 14 "other" students:
 4 7 11 11 11 13 13 14 14 15 17 17 17 18
- □ **Question:** How do we find the mean number of credits?
- **Response:**

Example: Mean vs. Median (Skewed Left)

- Background: Credits taken by 14 "other" students:
 4 7 11 11 11 13 13 14 14 15 17 17 17 18
- **Question:** Why is the mean (13) less than the median (13.5)?
- **Response:**

Example: Mean vs. Median (Skewed Right)

Background: Output for students' computer times: 30 30 30 45 45 60 60 60 10 20 30 67 90 100 120 200 240 300 420 0 Variable Ν Mean Median TrMean StDev SE Mean 20 97.9 60.0 85.4 109.7 24.5computer **Question:** Why is the mean (97.9) more than the median (60)?

Response:

L7.11

Role of Shape in Mean vs. Median

Symmetric:

mean approximately equals median

Skewed left / low outliers:

mean less than median

Skewed right / high outliers: mean greater than median

Mean vs. Median as Summary of Center

□ Pronounced skewness / outliers→

Report median.

 $\Box \quad \text{Otherwise, in general} \rightarrow$

Report mean (contains more information).

Definition

Standard deviation: square root of "average" squared distance from mean \overline{x} . For *n* sampled values the standard deviation is

$$s = \sqrt{\frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}}$$

Looking Ahead: Ultimately, squared deviation from a sample is used as estimate for squared deviation for the population. It does a better job as an estimate if we divide by n-1 instead of n.

Interpreting Mean and Standard Deviation

- □ Mean: typical value
- Standard deviation: typical distance of values from their mean

(Having a feel for how standard deviation measures spread is much more important than being able to calculate it by hand.)

Example: Guessing Standard Deviation

- **Background:** Household size in U.S. has mean approximately 2.5 people.
- Question: Which is the standard deviation?
 (a) 0.014 (b) 0.14 (c) 1.4 (d) 14.0
- **Response:**

Sizes vary; they differ from _____ by about _____

Example: Standard Deviations from Mean

- **Background:** Household size in U.S. has mean 2.5 people, standard deviation 1.4.
- Question: About how many standard deviations above the mean is a household with 4 people?
- **Response:**

Looking Ahead: For performing inference, it will be useful to identify how many standard deviations a value is below or above the mean, a process known as "standardizing".

Example: Estimating Standard Deviation

- **Background:** Consider ages of students...
- **Question:** Guess the standard deviation of...
 - 1. Ages of all students in a high school (mean about 16)
 - 2. Ages of high school seniors (mean about 18)
 - 3. Ages of all students at a university (mean about 20.5)

Responses:

- 1. standard deviation
- 2. standard deviation _____
- 3. standard deviation

Looking Back: What distinguishes this style of question from an earlier one that asked us to choose the most reasonable standard deviation for household size? Which type of question is more challenging?

Example: Calculating a Standard Deviation

- □ **Background**: Hts (in inches) 64, 66, 67, 67, 68, 70 have mean 67.
- **Question:** What is their standard deviation?
- Response: Standard deviation s is sq. root of "average" squared deviation from mean: mean=67

deviations=

squared deviations=

"average" sq. deviation=

```
s=sq. root of "average" sq. deviation =
```

(This is the typical distance from the average height 67.)

Example: How Shape Affects Standard Deviation

- Question: Should we say students averaged \$3776, and earnings differed from this by about \$6500? If not, do these values seem too high or too low?
- **Response:**

©2011 Brooks/Cole, Cengage Learning

Focus on Particular Shape: Normal

■ **Symmetric:** just as likely for a value to occur a certain distance below as above the mean.

Note: if shape is normal, mean equals median

Bell-shaped: values closest to mean are most common; increasingly less common for values to occur farther from mean

Focus on Area of Histogram

Can adjust vertical scale of any histogram so it shows percentage by areas instead of heights. Then total area enclosed is 1 or 100%.

Histogram of Normal Data

Example: Percentages on a Normal Histogram

Background: IQs are normal with a mean of 100, as shown in this histogram.

Question: About what percentage are between 90 and 120?
 Response:

©2011 Brooks/Cole, Cengage Learning

What We Know About Normal Data

- If we know a data set is normal (shape) with given mean (center) and standard deviation (spread), then it is known what percentage of values occur in *any* interval.
- Following rule presents "tip of the iceberg", gives general feel for data values:

68-95-99.7 Rule for Normal Data

Values of a normal data set have

- □ 68% within 1 standard deviation of mean
- □ 95% within 2 standard deviations of mean
- □ 99.7% within 3 standard deviations of mean

68-95-99.7 Rule for Normal Data

If we denote mean \overline{x} and standard deviation s then values of a **normal** data set have

• 68% in
$$(\bar{x}-1s,\bar{x}+1s)$$

• 95% in
$$(\bar{x} - 2s, \bar{x} + 2s)$$

• 99.7% in
$$(\bar{x} - 3s, \bar{x} + 3s)$$

Example: Using Rule to Sketch Histogram

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** How would the histogram appear?
- **Response:**

Example: Using Rule to Summarize

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- □ **Question:** What does the 68-95-99.5 Rule tell us about those shoe sizes?
- **Response:**
 - 68% in ____
 - 95% in ____
 - 99.7% in

Example: Using Rule for Tail Percentages

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** What percentage are less than 9.5?
- **Response:**

Example: Using Rule for Tail Percentages

- **Background**: Shoe sizes for 163 adult males normal with mean 11, standard deviation 1.5.
- **Question:** The bottom 2.5% are below what size?
- **Response:**

©2011 Brooks/Cole, Cengage Learning

L7.42

From Histogram to Smooth Curve

□ Start: quantitative variable with infinite possible values over continuous range.

(Such as foot lengths, not shoe sizes.)

Imagine infinitely large data set.

(Infinitely many college males, not just a sample.)

□ Imagine values measured to utmost accuracy.

(Record lengths like 9.7333..., not just to nearest inch.)

- **Result:** histogram turns into smooth curve.
- □ If shape is normal, result is normal curve.

From Histogram to Smooth Curve

□ If shape is normal, result is normal curve.

Elementary Statistics: Looking at the Big Picture

Lecture Summary

(Quantitative Summaries, Begin Normal)

- □ **Mean:** typical value (average)
- □ Mean vs. Median: affected by shape
- Standard Deviation: typical distance of values from mean
- Mean and Standard Deviation: affected by outliers, skewness
- □ Normal Distribution: symmetric, bell-shape
- □ 68-95-99.7 Rule: key values of normal dist.
- **Sketching Normal Histogram & Curve**