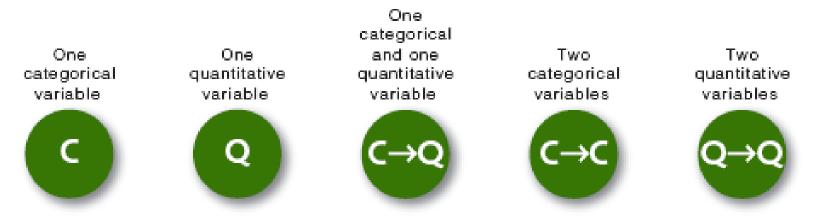
Lecture 1: Chapters 1, 2 Introduction, Sampling

Variable Types and Roles
Summarizing Variables
4 Processes of Statistics
Data Production; Sampling

Example: What Statistics Is All About

- Background: Statistics teacher has a large collection of articles and reports of a statistical nature.
- **Question:** How to classify them?
- Background: Statistics students are faced with a collection of exam problems at the end of the semester.
- Question: How to choose the right procedures to solve them?


Example: What Statistics Is All About

Response (to both questions): Statistics is all about...

Looking Ahead: Identifying what kind of variables are involved is the key to classifying statistics problems and choosing the right solution tool.

The Five Variable Situations

- When studying relationships between two variables, we often think of one as explanatory and the other as response.
- Depending on the variables' types and roles, we consider five possible situations.

Example: Identifying Types of Variables

- **Background**: Consider these headlines...
 - Dark chocolate might reduce blood pressure
 - Half of moms unaware of children having sex
 - Vampire bat saliva researched for stroke
- Question: What type of variable(s) does each article involve?

Response:

- Dark chocolate or not is ______ blood pressure is _____
- Being aware or not of children having sex is
- Bat saliva or not is ______ stroke recovery is probably _____

Example: Categorical Variable Giving Rise to Quantitative Variable

■ Background: Individual teenagers were surveyed about drug use.

Teenager	Marijuana?	Harder Drugs?	
#1	Yes	Yes	
#2	No	No	
#3	No	No	
#4	Yes	No	
• • •	•••	•••	

- **Question:** What type of variable(s) does this involve?
- **Response:**
 - marijuana or not is _
 - harder drugs or not is

Example: Categorical Variable Giving Rise to Quantitative Variable

■ Background: Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

Country	% Marijuana	% Harder Drugs
#1	22	4
#2	37	16
#2 #3 #4	7	3
#4	23	14
		•••

- **Question:** What type of variable(s) does this involve?
- **Response:**
 - percentage using marijuana is
 - percentage using harder drugs is

©2011 Brooks/Cole, Cengage Learning

Example: Categorical Variable Giving Rise to Quantitative Variable

■ Background: Percentages of teenagers using marijuana or hard drugs are recorded for a sample of countries.

Country	% Marijuana	% Harder Drugs
#1	22	4
#2	37	16
#3 #4	7	3
#4	23	14
•••	•••	•••

- **Question:** What type of variable(s) does this involve?
- **Response:** (another perspective)
 - type of drug (marijuana or harder drugs) is
 - % using the drugs is

Example: *Quantitative Variable Giving Rise to Categorical Variable*

- Background: Researchers studied effects of dental X-rays during pregnancy.
 - *First approach:* X-rays or not; baby's weight
 - Second approach: X-rays or not; classify baby's wt. as at least 6 lbs. (considered normal) or below 6 lbs.
- Question: What type of variable(s) does each approach involve?
- **Response**:
 - X-rays or not is _____; baby's weight is _____;
 - X-rays or not is _____;
 baby's wt. at least 6 lbs. or below 6 lbs. is __

Practice: 1.8 p.12

Definitions

- **Data**: recorded values of categorical or quantitative variables
- **Statistics:** science concerned with
 - gathering data about a group of individuals
 - displaying and summarizing the data
 - using info from data to draw conclusions about larger group

(All these skills are essential in both academic and professional settings.)

Summarizing Data

Categorical data:

- **Count:** number of individuals in a category
- Proportion: count in category divided by total number of individuals considered
- Percentage: proportion as decimal × 100%
- Quantitative data: mean is sum of values divided by total number of values

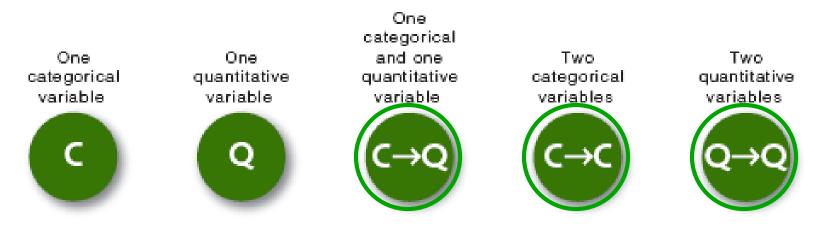
Example: *Summarizing Variables*

- Background: "…1.9% of students nationwide got special accommodations for SAT...At 20 prominent NE private schools, nearly 1 in 10 received special treatment..."
- Question: What type of variable is involved, and how is it summarized?
- Response: special accommodations for SAT is _____, summarized with

or

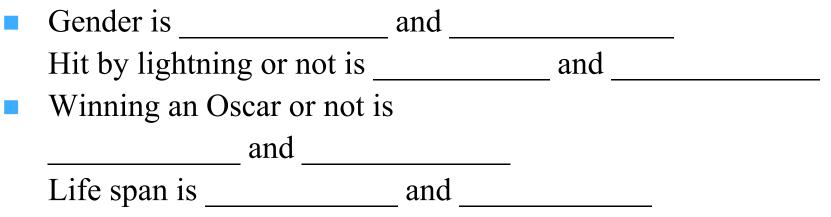
Hint: think about who or what are the individuals. What information is recorded for each of them?

Example: Summarizing Variables


- Background: "…On average, a white man with a college diploma earned \$65,000 in 2001. Similarly educated white women made 40% less; black and Hispanic men earned 30% less…"
- Question: What type of variable is considered for each demographic group, and how is it summarized?
- **Response**: Earnings is

summarize with

A Closer Look: When comparing quantitative values for two or more categorical groups, we sometimes quantify the difference by reporting what percentage higher or lower one mean is compared to the other.


Roles of Variables

When studying relationships between two variables, we often think of one as explanatory and the other as response.

Example: Identifying Types and Roles

- **Background:** Consider these headlines---
 - Men twice as likely as women to be hit by lightning
 - Do Oscar winners live longer than less successful peers?
- Questions: What types of variables are involved?
 For relationships, what roles do the variables play?
- **Responses:**

Example: More Identifying Types and Roles

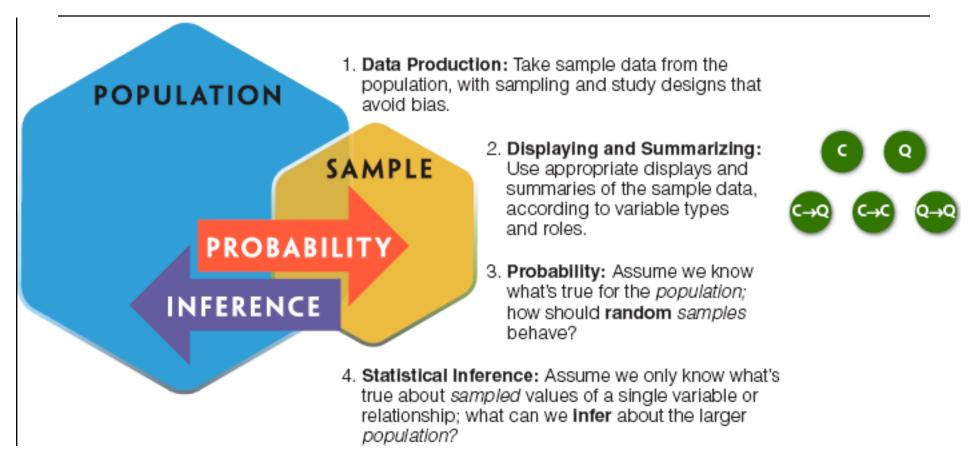
- **Background:** Consider these headlines---
 - *35% of returning troops seek mental health aid*
 - Smaller, hungrier mice
 - County's average weekly wages at \$811, better than U.S. average
- Questions: What types of variables are involved?
 For relationships, what roles do the variables play?

Responses:

- Seeking mental health aid or not is _
- Size is _____ and _____
 Appetite is _____ and _____
- Wages are ______

Definitions

- A random occurrence is one that happens by chance alone, and not according to a preference or an attempted influence.
- Probability: formal study of the chance of occurring in a random situation.
 - Statistical Inference:drawing conclusionsabout population based on sample.


Looking Ahead: Probability and Inference are linked through their roles in the 4-stage process of Statistics.

Statistics as Four-Stage Process

- **Data Production**
- **Displaying and Summarizing**
- **Probability**
- □ Statistical Inference

Looking Ahead: Besides the word "probability", a Probability statement may use the word "chance" or "likelihood" (the only synonyms available).

Four Processes of Statistics

Data Production

- Use a good sampling design to get an unbiased sample so we can ultimately generalize from sample to population (Part 4)
- Create a good study design so what we learn is unbiased summary of what's true about the variables in our sample (Part 2)

Definition

□ **Bias:** tendency of an estimate to deviate in one direction from a true value

Some sources of bias:

- selection bias: due to unrepresentative sample, rather than to flawed study design
- □ sampling frame doesn't match population
- □ self-selected (volunteer) sample
- □ haphazard sample
- □ convenience sample
- □ non-response

Example: Bias in Sampling

- **Background**: Professor seeks opinions of 6 from 80 class members about textbook...
- *1. Have students raise hand if they'd like to give an opinion*
- 2. Sample the next 6 students coming to office hours
- *3. Pick* 6 *names* "off the top of his head"
- **Questions:** Is each sampling method biased? If so, how?
- **Responses:**

1.	Practice: 1.2 p.11
2.	
3.	

Example: More Bias in Sampling

- **Background**: Professor seeks opinions of 6 from 80 class members about textbook...
- 1. Assign each student in classroom a number (1, 2, 3, ...), then use software to select 6 at random...
- 2. Take a random sample from the roster of students enrolled; mail them anonymous questionnaire...
- **Questions:** Is each sampling method biased? If so, how?
- **Responses:**

1.			
2.			

Definitions

- Probability sampling plan incorporates
 randomness in the selection process so rules
 of probability apply.
- □ Simple random sample is taken at random and without replacement.
- Stratified random sample takes separate random samples from groups of similar individuals (strata) within the population.

Definitions

- Cluster sample selects small groups (clusters) at random from within the population (all units in each cluster included).
- Multistage sample stratifies in stages, randomly sampling from groups that are successively more specific.
- Systematic sampling plan uses methodical but non-random approach (select individuals at regularly spaced intervals on a list).

Lecture Summary (Introduction, Sampling)

Variables

- Categorical or quantitative
- Explanatory or response
- **Summaries**
 - **Categorical:** count, proportion, percentage
 - **Quantitative:** mean
- □ **4 Processes:** Data Production, Displaying and Summarizing, Probability, Inference
- Data Production: need unbiased sampling and unbiased study design
- **Types of Bias**
- **Types of Samples**