Probability and Confidence Intervals; Hypothesis Tests

Statistics 800 Fall 2000

Dr. Nancy Pfenning

Conditions for Proportions

- 1. (a) A population has a fixed proportion falling into the category of interest; **or** (b) A repeatable situation has a long-run proportion of occurrences of a certain outcome; **and**
- 2. (a) A random sample of a given size is taken from the population; **or** (b) The situation is repeated independently a given number of times; **and**
- 3. (a) Sample size **or** (b) number of repetitions is large enough that there are at least 5 occurring both in and out of the category of interest.

Rules for Sample Proportions

If numerous samples or repetitions of the same size are taken,

- 1. (center) The mean of all sample proportions will be true proportion for the population.
- 2. (spread) Standard deviation of proportions = standard error =

$$\sqrt{\frac{\text{population proportion}(1-\text{population proportion})}{\text{sample size}}}$$

3. (shape) The frequency curve made from proportions from the various samples will be approximately bell-shaped/normal.

Probability Intervals based on Empirical Rule

- 1. Probability is 68% that sample proportion falls within 1 standard error of population proportion.
- 2. Probability is 95% that sample proportion falls within 2 standard errors of population proportion.
- 3. Probability is 99.7% that sample proportion falls within 3 standard errors of population proportion.

Confidence Interval for Proportion

A 95% confidence interval for unknown population proportion is sample proportion plus or minus 2 standard errors, which is approximately

sample proportion
$$\pm 2\sqrt{\frac{\text{sample proportion}(1 - \text{sample proportion})}{\text{sample size}}}$$

Conditions for Means

- 1. Samples must be random; and
- 2. Either (a) the population of measurements is bell-shaped; then any sample size is OK; or (b) if the population is not bell-shaped, then the sample size must be large enough

Rules for Sample Means

If numerous samples or repetitions of the same size are taken from a population of values for a measurement variable, and sample means are found,

- 1. (center) The mean of all sample means will equal population mean
- 2. (spread) Standard deviation of sample means = standard error =

$$\frac{\text{population standard deviation}}{\sqrt{\text{sample size}}}$$

3. (shape) The frequency curve made from means from the various samples will be approximately bell-shaped/normal.

Probability Intervals based on Empirical Rule

- 1. Probability is 68% that sample mean falls within 1 standard error of population mean.
- 2. Probability is 95% that sample mean falls within 2 standard errors of population mean.
- 3. Probability is 99.7% that sample mean falls within 3 standard errors of population mean.

Confidence Interval for Mean

A 95% confidence interval for unknown population mean is sample mean plus or minus 2 standard errors, which is approximately

$$sample \ mean \pm 2 \frac{sample \ standard \ deviation}{\sqrt{sample \ size}}$$

Confidence Interval for Difference in Means

- 1. Collect large samples of observations independently for two groups. Compute sample mean and standard deviation for each.
- 2. Compute each standard error of the mean $SEM = \frac{\text{sample standard deviation}}{\sqrt{\text{sample size}}}$
- 3. Compute SE of the difference = $\sqrt{(SEM_1)^2 + (SEM_2)^2}$
- 4. A 95% confidence interval for difference in two population means is

difference in sample means
$$\pm 2\sqrt{(SEM_1)^2 + (SEM_2)^2}$$

Steps for Testing Hypotheses about Proportions

1. Determine null and alternative hypotheses:

null hypothesis: population proportion = ____ alternative hypothesis: population proportion
$$\left\{\begin{array}{c}>\\<\\\neq\end{array}\right\}$$

2. Collect and summarize data, including sample size, sample proportion,

standard error =
$$\sqrt{\frac{\text{population proportion}(1 - \text{population proportion})}{\text{sample size}}}$$

test statistic $z = \frac{\text{sample proportion} - \text{population proportion}}{\text{standard error}}$

[Where population proportion is as stated in the null hypothesis.]

- 3. Determine p-value = unlikelihood of the test statistic, assuming the null hypothesis is true
- 4. Make a decision: If the p-value is "small", reject the null hypothesis and conclude the alternative is true. (Results are **statistically significant**.) If the p-value is not so small, we cannot reject the null hypothesis.

Steps for Testing Hypotheses about Means

1. Determine null and alternative hypotheses: null hypothesis: population mean = ____ alternative hypothesis: population mean $\left\{\begin{array}{c} > \\ < \\ \neq \end{array}\right\}$ _____

2. Collect and summarize data, including the test statistic

$$z = \frac{\text{sample mean - population mean}}{\text{standard error}} = \frac{\text{sample mean - population mean}}{\frac{\text{standard deviation}}{\sqrt{\text{sample size}}}}$$

[Where population mean is as stated in the null hypothesis.]

- 3. Determine p-value = unlikelihood of the test statistic, assuming the null hypothesis is true
- 4. Make a decision: If the p-value is "small", reject the null hypothesis and conclude the alternative is true. (Results are **statistically significant**.) If the p-value is not so small, we cannot reject the null hypothesis.