Lecture 28/Chapters 22 & 23 Hypothesis Tests

- ■Variable Types and Appropriate Tests
- Choosing the Right Test: Examples
- □Example: Reviewing Chi-Square
- ■Type I and Type II Error

Choosing the Right Test (Review)

Type of test depends on variable types:

- \square 1 categorical: z test about population proportion
- □ 1 measurement (quan) [pop sd known or sample large]:
 - z test about mean
- □ 1 measurement (quan) [pop sd unknown & sample small]: t test about mean
- \square 1 categorical (2 groups)+ 1 quan: two-sample z or t
- □ 2 categorical variables: chi-square test (done in Chapter 13)

Null and Alternative Hypotheses (Review)

For a test about a single mean,

- Null hypothesis: claim that the population mean equals a proposed value.
- Alternative hypothesis: claim that the population mean is greater, less, or not equal to a proposed value.

An alternative formulated with \neq is **two-sided**; with > or < is **one-sided**.

Testing Hypotheses About a Population

- 1. Formulate hypotheses
 - o about single proportion or mean or two means (alternative can have < or > or ≠ sign)
 - about relationship using chi-square: null hyp states two cat. variables are not related, alt states they are.
- 2. Summarize/standardize data.
- 3. Determine the P-value. (2-sided is twice 1-sided)
- 4. Make a decision about the population: believe alt if *P*-value is small; otherwise believe null. For practice, we'll consider a variety of examples. In each case we'll formulate appropriate hypotheses and state what type of test should be run.

Example: Smoking and Education (#1 p. 427)

- **Background**: Consider years of education for mothers who smoke compared with those who don't, in sample of 400 mothers, to decide if one group tends to be more educated.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- Response: _____

Example: Test about Smoking and Education

- **Background**: Consider years of education for mothers who smoke compared with those who don't, in sample of 400 mothers, to decide if one group tends to be more educated.
- □ **Question:** What hypotheses and test are appropriate?
- □ Response:

Null:	
Alt:	
Do	[large samples] test to compare
Alternative is	because no initial suspicion was expressed
about a speci	fic group being better educated.

Example: ESP? (Case Study 22.1 p. 425)

- Background: A subject in an ESP experiment chooses each time from 4 targets the one which he/she believes is being "sent" by extrasensory means. Researchers want to determine if the subject performs significantly better than one would by random guessing.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- □ Response: ____

Example: Test about ESP

- Background: A subject in an ESP experiment chooses each time from 4 targets the one which he/she believes is being "sent" by extrasensory means. Researchers want to determine if the subject performs significantly better than one would by random guessing.
- □ **Question:** What hypotheses and test are appropriate?
- **□** Response:

Null: population proportion correct _____

Alt: population proportion correct _____

Do____ test about _____

Example: Calcium for PMS (#3-4 p. 428)

- Background: We want to compare change in severity of PMS symptoms (before minus after, measured quantitatively) for 231 women taking calcium vs. 235 on placebo to see if calcium helps.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- □ Response: ____

Example: Test about Calcium for PMS

- **Background**: We want to compare change in severity of PMS symptoms (before minus after, measured quantitatively) for 231 women taking calcium vs. 235 on placebo to see if calcium helps.
- □ **Question:** What hypotheses and test are appropriate?
- **□** Response:

Null: mean symp	tom change (calc)mean s	ymptom change (placebo)
Alt: mean sympto	om change (calc)mean sy	mptom change (placebo)
Do	[large samples] test to co	ompare means
Alternative is because we hope or suspect that the calc		
group will s	how more symptom improv	ement.
As always our h	vnotheses refer to the	not the

Example: Incubators, Claustrophobia (6b p.428)

- **Background**: We want to see if placing babies in an incubator during infancy can lead to claustrophobia in adult life.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- □ Response: ____

Example: Test about Incubators, Claustrophobia

- **Background**: We want to see if placing babies in an incubator during infancy can lead to claustrophobia in adult life.
- Question: What hypotheses and test are appropriate?
- **□** Response:
- Null: there is ____relationship between incubation and claustrophobia
 Alt: there is ____relationship between incubation and claustrophobia
 Do _____test.

Alternative is general (2-sided) because _____doesn't let us specify our initial suspicions in a particular direction.

Example: Training Program, Scores (#7 p.446)

- **Background**: We want to see if a training program helps raise students' scores. For each student, researchers record the increase (or decrease) in the scores, from pre-test to post-test.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- □ Response:

Note: 2-sample design would be better, to avoid placebo effect.

Example: Test about Training Program, Scores

Background: We want to see if a training program helps raise students scores. For each student, researchers record the increase (or decrease) in the scores, from pre-test to post-test. **Question:** What hypotheses and test are appropriate?

Note: As always, our hypotheses refer **Response:** to population values. It's not enough to simply exhibit an increase in sample Null: population mean increase scores; the increase must be Alt: population mean increase (not sure if sample is large enough to use z) Call it a based on a matched-pairs design (see page 88). because the training program is supposed to Alternative is help.

Example: Terrorists' Religion: Discrimination?

- **Background**: We want to see if Catholics were discriminated against, based on a table of religion and acquittals for persons charged with terrorist offenses in Northern Ireland in 1991.
- **Question:** Which of the 5 situations applies?
 - 1. 1 categorical: z test about population proportion
 - 2. 1 measurement (quan) [pop sd known or sample large]: z test about mean
 - 3. 1 measurement (quan) [pop sd unknown & sample small]: *t* test about mean
 - 4. 1 categorical (2 groups) + 1 quan: two-sample z or t
 - 5. 2 categorical variables: chi-square test
- □ Response: ____

Chi-Square Test (Review)

We learned to use chi-square to test for a relationship between two categorical variables.

- 1. Null hypothesis: the two variables are not related alternative hypothesis: the two variables are related
- Test stat = chi-sq = sum of (observed count-expected count)² expected count
- P-value= probability of chi-square this large, assuming the two variables are not related. For a 2-by-2 table, chi-square > 3.84 ←→ P-value < 0.05.
- 4. If the P-value is small, conclude the variables are related. Otherwise, we have no convincing evidence of a relationship.

Note: Next lecture we'll do another example of a chi-square test.

Example: Chi-Square Review: Discrimination?

■ **Background**: Table for religion and trial outcome:

Observed	Acquitted	Convicted	Total
Protestant	8	7	15
Catholic	27	38	65
Total	35	45	80

- Question: What do we conclude?
- □ **Response:** First formulate hypotheses.

Null: there is ____relationship between religion and trial outcome

Alt: there is ____relationship between religion and trial outcome

Are Variables in a 2×2 Table Related?

- 1. Compute each expected count = $\frac{Column \ total \times Row \ total}{Table \ total}$
- 2. Calculate each component = $\frac{\text{(observed expected)}^2}{\text{expected}}$
- 3. Find chi-square = sum of $\frac{\text{(observed expected)}^2}{\text{expected}}$
- 4. If chi-square > 3.84, there is a statistically significant relationship. Otherwise, we don't have evidence of a relationship.

Example: Religion & Acquittal Related?

■ **Background**: Two-way table for religion and trial outcome:

Observed	Acquitted	Convicted	Total
Protestant	8	7	15
Catholic	27	38	65
Total	35	45	80

- **Question:** What counts would we expect if there were no relationship?
- □ **Response:** Expect...

	Protestants to	be acquitted	-

- Catholics to be acquitted
- Protestants to be convicted
- Catholics to be convicted

Example: Religion & Acquittal (continued)

■ **Background**: Observed and Expected Tables:

Obs	Acquitted	Convicted	Total
Prot	8	7	15
Cath	27	38	65
Total	35	45	80

Exp	Acquitted	Convicted	Total
Prot	6.56	8.44	15
Cath	28.44	36.56	65
Total	35	45	80

- □ **Question:** Find components & chi-square; conclude?
- □ **Response:** chi-square =

$$=0.32 + 0.25 + 0.07 + 0.06 = 0.70$$

The relationship is _____ We ____

have convincing evidence of a relationship (discrimination).

Example: HIV Test (Review)

- **Background**: In a certain population, the probability of HIV is 0.001. The probability of testing positive is 0.98 if you have HIV, 0.05 if you don't.
- Questions: What is the probability of having HIV and testing positive? Overall prob of testing positive? Probability of having HIV, given you test positive?
- Response: To complete the tree diagram, note that probability of not having HIV is 0.999. The probability of testing negative is 0.02 if you have HIV, 0.95 if you don't.

Example: HIV Test (Review)

Possible correct conclusions:

- positive test when someone has HIV
- □ negative test when someone does not have HIV

Possible incorrect conclusions:

- positive test when someone does not have HIV,
- negative test when someone does.

0.98

pos

Two Types of Error

Decision→ Actuality	Healthy (don't reject null hyp)	Diseased (reject null hyp)
Healthy (null hyp true)	Correct (prob= specificity=0.95)	Incorrect: false positive= Type I Error (prob=0.05)
Diseased (alt hyp true)	Incorrect: false negative= Type II Error (prob=0.02)	Correct (prob=sensitivity=0.98)

If we decide in advance to use 0.05 as our cut-off for a small *P*-value, then 0.05 will be our probability of a Type I Error. The probability of a Type II Error can be specified only if we happen to know what is true in actuality (observed in the long run?).