Lecture 8/Chapter 7 Part 2. Summarizing Data Ch.7: Measurement Data

SummariesDisplaying with StemplotsDisplaying with Histograms

Course Divided into Four Parts (Review)

- Finding Data in Life (completed): scrutinizing origin of data
- 2. Finding Life in Data: summarizing data yourself or assessing another's summary
- 3. Understanding Uncertainty in Life: probability theory
- 4. Making Judgments from Surveys and Experiments: statistical inference

Definitions (*Review*)

- Variable: a characteristic that varies from one individual to another
- Statistics: the science of principles and procedures for gaining and processing data (info about variables' values for a sample) and using the info to draw general conclusions
- □ **Statistics:** summaries of data (such as a sample average or sample proportion)

Definitions

- Summarize values of a quantitative (measurement) variable by telling center, spread, shape.
- □ **Center**: measure of what is typical in the distribution of a quantitative variable
- Spread: measure of how much the distribution's values vary
- Shape: tells which values tend to be more or less common

Definitions

Measures of Center

mean=average= number of values

median:

- □ *the* middle for odd number of values
- □ average of middle two for even number of values
- **mode:** most common value

Measures of Spread

- **Range:** difference between highest & lowest
- Standard deviation (discussed later)

Example: Basic Summaries

- Background: Cigarettes smoked in a day for 22 smoking students: 1 2 4 5 7 10 10 10 10 12 15 15 15 20 20 20 20 20 20 20 25 30
- **Question:** How can we summarize the data?
- **Response:**
- 1. center
 - mean (average) =
 - median = middle:
 - mode (most common) =

Example: Basic Summaries

- Background: Cigarettes smoked in a day for 22 smoking students:

 2 4 5 7 10 10 10 12 15
 1 5 20 20 20 20 20 20 20 25 30

 Question: How can we summarize the data?
- **Response:**
- 2. spread (variability): range is
- 3. shape:

Definitions for Shape

- □ Symmetric distribution: balanced on either side of center
- □ Skewed distribution: unbalanced (lopsided)
- □ Skewed left: has a few relatively low values
- **Skewed right:** has a few relatively high values
- **Outliers:** values noticeably far from the rest
- □ Unimodal: single-peaked
- □ Normal: a particular symmetric bell-shape

Displays of a Quantitative Variable

Displays help us see the shape of the distribution.

Stemplot

- Advantage: most detail
- Disadvantage: impractical for large data sets

Histogram

- Advantage: works well for any size data set
- Disadvantage: some detail lost

Boxplot

- Advantage: shows outliers, makes comparisons
- Disadvantage: much detail lost

Definition

Stemplot: vertical list of stems, each followed by horizontal list of one-digit leaves

stems 1-digit leaves

Split stems: If plot has too few stems, split into 2 (1st stem gets leaves 0-4, 2nd gets 5-9) or 5 (1st stem gets leaves 0-1, etc.) or 10.

Example: Basic Stemplot

 Background: Cigarettes smoked in a day for 22 smoking students: 1 2 4 5 7 10 10 10 10 12 15 15 15 20 20 20 20 20 20 20 25 30

 Question: Construct stemplot, describe shape?
 Response:

Example: Splitting Stems

Background: *Earnings of 29 male students:*

0	2	2	3	3	3	3	4	4	5	5	5	5	5	5
6	6	6	6	7	8	8	10	10	12	15	20	25	42	

- **Question:** Construct stemplot, describe shape?
- **Response:** start with 0 to 4 as stems:
- 0 0 2 2 etc. Almost all the values would appear in the first line, resulting in a poor display.

Example: Splitting Stems

3 3 3 3 4 4 5 5 5 5 6 6 6 7 8 8 10 10 12 15 20 25 42 **Response:** split stems in 2: Note: mean= median= th value= range to . Shape is (picture it rotated to horizontal orientation with 0 at left, 4 at right); **Outliers?**

Definition

- □ **Histogram:** to display quantitative values...
 - 1. Divide range of data into intervals of equal width.
 - 2. Find count or percent or proportion in each.
 - 3. Use horizontal axis for range of data values, vertical axis for count/percent/proportion in each.

Example: *Histogram*

Background: *Earnings of 29 male students:*

0	2	2	3	3	3	3	4	4	5	5	5	5	5	5
6	6	6	6	7	8	8	10	10	12	15	20	25	42	

Question: Make histogram with midpoints 0, 5, etc?
 Response:

Note: same shape as seen in stemplot.

Example: Another Histogram

Background: *Earnings of 47 female students:*

Question: Make histogram with cutpoints 0, 5, etc?
 Response: (Note that stemplot would be tedious.)

Center: mean=____ median=____th value=____ Spread: values range from ____to ___ Shape:

Similar to males' shape?