# Lecture 11/Review Chapter 8 Normal Practice Exercises 

$\square$ Strategies to Solve 2 Types of Problem -Examples

## Properties of Normal Curve (Review)



## Using Table 8.1 page 157

$\square$ For a given standard score $z$, the table shows the proportion or $\%$ of standard normal values below $z$.


## Standardizing Values of Normal Distribution

Put a value of a normal distribution into perspective by standardizing to its $z$-score:
observed value - mean
$z=$ standard deviation

If we know the $z$-score, we can convert back:
observed value $=$ mean $+(z \times$ standard deviation $)$

## Strategies for 2 Types of Problem

A. Given normal value, find proportion or $\%$ :
$\square$ Calculate $z=($ observed-mean)/sd [sign + or -?]
$\square$ Look up proportion in Table [adjust if asked for proportion above or between, not below]
B. Given proportion or $\%$, find normal value:
$\square$ [adjust if asked for proportion above or between] Locate proportion in Table, find $z$.
$\square$ Unstandardize: observed $=$ mean $+(z \times \mathrm{sd})$
SKETCH! We'll assume all examples today follow a normal curve...

## Example: Normal Exercise \#1A

$\square$ Background: Scores $x$ have mean 100 pts, sd 10 pts.
$\square$ Question: What \% are below 115 pts?
$\square$ Response:
Table $\rightarrow$
Answer: $\quad \%$ are below 115 pts.


## Example: Normal Exercise \#1B

$\square$ Background: Scores $x$ have mean 100 pts, sd 10 pts.
$\square$ Question: The lowest $84 \%$ are below how many pts?
$\square$ Response: Table $\rightarrow$
Unstandardize to $x=$
Answer: The lowest $84 \%$ are below pts.


## Example: Normal Exercise \#2A

$\square$ Background: Sizes $x$ have mean 6 inches, sd 1.5 inch.
$\square$ Question: What \% are below 5 inches?
$\square$ Response:
Table $\rightarrow$
Answer: $\quad \%$ are below 5 inches.


## Example: Normal Exercise \#2B

$\square$ Background: Sizes $x$ have mean 6 inches, sd 1.5 inch.
$\square$ Question:The tallest $1 \%$ are above how many inches?
$\square$ Response: 0.01 above $\leftrightarrow$
Unstandardize to
Answer: The tallest $1 \%$ are above inches.


## Example: Normal Exercise \#3A

$\square$ Background: No. of cigarettes $x$ has mean 20, sd 6 .
$\square$ Question: What \% are more than 23 cigarettes?
$\square$ Response: $z=$
Table $\rightarrow$
Answer: $\quad \%$ are more than 23 cigarettes.


## Example: Normal Exercise \#3B

$\square$ Background: No. of cigarettes $x$ has mean 20, sd 6 .
$\square$ Question: $90 \%$ are more than how many cigs?
$\square$ Response:

Answer: $90 \%$ are above
cigarettes.


## Example: Normal Exercise \#4A

$\square$ Background: Wts $x$ have mean 165 lbs , sd 12 lbs .
$\square$ Question: What \% are more than 141 lbs ?

- Response: $z=$

Table $\rightarrow$
Answer: $\quad \%$ are more than 141 lbs .


## Example: Normal Exercise \#4B

$\square$ Background:Weights $x$ have mean 165 lbs , sd 12 lbs .
$\square$ Question: The lightest 2\% are below how many lbs?
$\square$ Response:

Answer: The lightest 2\% are below $\qquad$ lbs.


## Example: Normal Exercise \#5

$\square$ Background: No. of people $x$ has mean 4, sd 1.3.
$\square$ Question: What $\%$ of the time is $x$ between 2 and 6 ?
$\square$ Response:

## Example: Normal Exercise \#6

- Background: Duration $x$ has mean 11 years, sd 2 years.
$\square$ Question: What $\%$ of the time is $x$ between 14 and 17?
$\square$ Response:


## Example: Normal Exercise \#7

- Background: Earnings $x$ have mean $\$ 30 \mathrm{~K}$, sd $\$ 8 \mathrm{~K}$.
$\square$ Question:What $\%$ of the time is $x$ bet. $\$ 20 \mathrm{~K}$ and $\$ 22 \mathrm{~K}$ ?
$\square$ Response:


## "Off the Chart"

For extreme negative $z$ values, proportion below is approx. 0 , proportion above is approx. 1 .
For extreme positive $z$ values, proportion below is approx. 1, proportion above is approx. 0 .

## Example: Normal Exercise \#8

$\square$ Background: Amts. $x$ have mean 300 ml , sd 3 ml .

- Question:What \% of the time is $x \ldots$ ?
(a) $<280 \mathrm{ml}$ (b) $>280 \mathrm{ml}$ (c) $<315 \mathrm{ml}$ (d) $>315 \mathrm{ml}$
$\square$ Response:
(a)
(b)
(c)
(d)


## Empirical Rule (Review)

For any normal curve, approximately
$\square 68 \%$ of values are within 1 sd of mean
$\square 95 \%$ of values are within 2 sds of mean
$\square 99.7 \%$ of values are within 3 sds of mean


## Example: Normal Exercise \#9

- Background: Consider Examples 1(b), 4(a).
$\square$ Question:What does Empirical Rule tell us?
$\square$ Response:
1 (b) mean $=100, \mathrm{sd}=10$.

4(a) mean $=165, s d=12$.

