Lecture 33: Chapter 12, Section 2 Two Categorical Variables More About Chi-Square

Hypotheses about Variables or Parameters
Computing Chi-square Statistic
Details of Chi-square Test
Confounding Variables

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures (21-23)
 - □ 1 quantitative (discussed in Lectures (24-27)
 - □ cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
 - □ 2 categorical
 - □ 2 quantitative

H_0 and H_a for 2 Cat. Variables (*Review*)

- □ In terms of variables
 - H_0 : two categorical variables are not related
 - H_a : two categorical variables are related
- □ In terms of parameters
 - H_0 : population proportions in response of interest are equal for various explanatory groups
 - H_a population proportions in response of interest are not equal for various explanatory group
 Word "not" appears in H₀ about variables, H_a about parameters.

Chi-Square Statistic

- Compute table of counts expected if H_0 true: each is
 - $Expected = \frac{Column total \times Row total}{Table total}$
 - □ Same as counts for which proportions in response categories are equal for various explanatory groups
- Compute **chi-square** test statistic χ^2

chi-square = sum of $\frac{(observed - expected)}{expected}^{2}$

"Observed" and "Expected"

Expressions "observed" and "expected" commonly used for chi-square hypothesis tests.

More generally, "observed" is our sample statistic, "expected" is what happens on average in the population when H_0 is true, and there is no difference from claimed value, or no relationship.

Variable(s)	Observed	Expected
1 Categorical	\widehat{p}	p_o
1 Quantitative	\overline{x}	μ_O
1 Cat & 1 Quan	$ar{x}_d$	0
	$\bar{x}_1 - \bar{x}_2$	0
2 Categorical	Observed Counts	Expected Counts

Example: 2 Categorical Variables: Data

Background: We're interested in the relationship between gender and lenswear.

	contacts	glasses	none	All
female	121	32	129	282
	42.91%	11.35%	45.74%	100.00%
male	42	37	85	164
	25.01%	22.50%	51.83%	100.00%
All	163	69	214	446

- **Question:** What do data show about sample relationship?
- Response: Females wear contacts more (_____vs. ____);
 males wear glasses more (_____vs. ____);
 proportions with none are close (_____vs. ____).

Example: Table of Expected Counts

■ **Background**: We're interested in the relationship between gender and lenswear.

Expected	Contacts	Glasses	None	Total
Female				282
Male				164
Total	163	69	214	446

- Question: What counts are expected if gender and lenswear are not related?
- **Response:** Calculate each expected count as

L33.9

Example: "Eyeballing" Obs. and Exp. Tables

Background: We're interested in the relationship between gender & lenswear.

Chi-square procedure: Compare counts observed to counts expected if null hypothesis were true

Observed	Contacts	Glasses	None	Total	Expected	Contacts	Glasses	None	Total
Female	121	32	129	282	Female	103	44	135	282
Male	42	37	85	164	Male	60	25	79	164
Total	163	69	214	446	Total	163	69	214	446

Question: Do observed and expected counts seem very different?

Response:

Example: Components for Comparison

Background: Observed and expected tables:

Observed	Contacts	Glasses	None	Total	Expected	Contacts	Glasses	None	Total
Female	121	32	129	282	Female	103	44	135	282
Male	42	37	85	164	Male	60	25	79	164
Total	163	69	214	446	Total	163	69	214	446

- **Question:** What are the components of chi-square?
- **Response:** Calculate each

Example: Components for Comparison

smallest: least impact from _____

©2011 Brooks/Cole, Cengage Learning

Chi-Square Distribution (Review)

- chi-square = sum of $\frac{(observed expected)^2}{expected}$ follows predictable pattern known as
 - **chi-square distribution** with $df = (r-1) \times (c-1)$
 - r = number of rows (possible explanatory values)
 - c = number of columns (possible response values)

Properties of chi-square:

- Non-negative (based on squares)
- Mean=df [=1 for smallest (2×2) table]
- Spread depends on df
- Skewed right

Example: Chi-Square Degrees of Freedom

Background: Table for gender and lenswear:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- **Question:** How many degrees of freedom apply?
- **Response:** row variable (male or female) has $r = _$, column variable (contacts, glasses, none) has $c = _$.

df =

A Closer Look: Degrees of freedom tell us how many unknowns can vary freely before the rest are "locked in."

Chi-Square Density Curve

For chi-square with 2 df, $P(\chi^2 \ge 6) = 0.05$ \rightarrow If χ^2 is more than 6, *P*-value is less than 0.05.

Example: Assessing Chi-Square

- **Background**: In testing for relationship between gender and lenswear in 2×3 table, found $\chi^2 = 18.4$.
- Question: Is there evidence of a relationship in general between gender and lenswear (not just in the sample)?
- Response: For df = (2-1)×(3-1) = 2, chi-square is considered "large" if greater than 6. Is 18.6 large?
 Is the *P*-value small?

Is there statistically significant evidence of a relationship between gender and lenswear?

Example: Checking Assumptions

Background: We produced table of expected counts below right:

Observed	Contacts	Glasses	None	Total	Expected	Contacts	Glasses	None	Total
Female	121	32	129	282	Female	103	44	135	282
Male	42	37	85	164	Male	60	25	79	164
Total	163	69	214	446	Total	163	69	214	446

Question: Are samples large enough to guarantee the individual distributions to be approximately normal, so the sum of standardized components follows a χ^2 distribution?

Response:

Example: Chi-Square with Software

Background: Some subjects injected under arm with Botox, others with placebo. After a month, reported if sweating had decreased. Expected counts are printed below observed counts Decreased NotDecreased Total

121 161 Botox 40 80.50 80.50 40 121 161 Placebo 80.50 80.50 161 161322 Total Chi-Sq = 20.376 + 20.376 + 20.376 + 20.376 = 81.503DF = 1, P-Value = 0.000

- **Question:** What do we conclude?
- Response: Sample sizes large enough? Proportions with reduced sweating Seem different?

Conclude Botox reduces sweating?

©2011 Brooks/Cole, Cengage Learning L33.25

Guidelines for Use of Chi-Square (Review)

- Need random samples taken independently from two or more populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

Example: Confounding Variables

Background : Students of all years: $\chi^2 = 13.6, p = 0.000$										
	On	Campus O		f Campus		otal	Rate On Campus			
Undecided 124		124	81		205		124/205=60%			
Decided 96		96	129		225		96/225=43%			
Underclass	men:	$\chi^2 = 0.$	025	5, p = 0.87	73					
Underclass	On Campus		Off Campus		Tota	I Rate On Campus				
Undecided 11		117		55	172		117/172=68%			
Decided		82		37		119	82/119=69%			
		2 1	00							

Upperclassmen: $\chi^2 = 1.26, p = 0.262$

Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	7/33=21%
Decided	14	92	106	14/106=13%

Question: Are major (dec or not) and living situation related?

Response:

©2011 Brooks/Cole, Cengage Learning

Lecture Summary

(Inference for Cat \rightarrow Cat; More Chi-Square)

- □ Hypotheses about variables or parameters
- Computing chi-square statistic
 - Observed and expected counts
- □ Chi-square test
 - Calculations
 - Degrees of freedom
 - Chi-square density curve
 - Checking assumptions
 - Testing with software
- Confounding variables