Lecture 33: Chapter 12, Section 2 Two Categorical Variables More About Chi-Square

םHypotheses about Variables or Parameters口Computing Chi-square Statistic
םDetails of Chi-square Test
םConfounding Variables

Looking Back: Review

- 4 Stages of Statistics
- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
- 1 categorical (discussed in Lectures (21-23)
- 1 quantitative (discussed in Lectures (24-27)
- cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
$\square \quad 2$ categorical
- 2 quantitative

H_{0} and H_{a} for 2 Cat. Variables (Review)

- In terms of variables
- H_{0} : two categorical variables are not related
- H_{a} : two categorical variables are related
- In terms of parameters
- H_{0} : population proportions in response of interest are equal for various explanatory groups
- H_{a} population proportions in response of interest are not equal for various explanatory group
Word "not" appears in Ho about variables, Ha about parameters.

Chi-Square Statistic

- Compute table of counts expected if H_{0} true: each is

$$
\text { Expected }=\frac{\text { Column total } \times \text { Row total }}{\text { Table total }}
$$

- Same as counts for which proportions in response categories are equal for various explanatory groups
- Compute chi-square test statistic χ^{2}

$$
\text { chi-square }=\text { sum of } \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

"Observed" and "Expected"

Expressions "observed" and "expected" commonly used for chi-square hypothesis tests.
More generally, "observed" is our sample statistic, "expected" is what happens on average in the population when H_{0} is true, and there is no difference from claimed value, or no relationship.

Variable(s)	Observed	Expected
1 Categorical	\hat{p}	p_{o}
1 Quantitative	\bar{x}	μ_{o}
1 Cat \& 1 Quan	$\bar{x}_{d} \bar{x}_{2}$	0
	$\bar{x}_{1}-\bar{x}_{2}$	0
2 Categorical	Observed Counts	Expected Counts

Example: 2 Categorical Variables: Data

- Background: We're interested in the relationship between gender and lenswear.

	contacts	glasses	none	All
female	121	32	129	282
	42.91%	11.35%	45.74%	100.00%
male	42	37	85	
	25.61%	22.56%	51.83%	100.00%
All				
	69	214	446	

- Question: What do data show about sample relationship?
- Response: Females wear contacts more (\qquad males wear glasses more (vs.); proportions with none are close (vs.).

Example: Table of Expected Counts

\square Background: We're interested in the relationship between gender and lenswear.

Expected	Contacts	Glasses	None	Total
Female				282 Male
Total	163	69	214	446

\square Question: What counts are expected if gender and lenswear are not related?

- Response: Calculate each expected count as

Example: "Eyeballing" Obs. and Exp. Tables

- Background: We're interested in the relationship between gender \& lenswear.

Chi-square procedure: Compare counts observed to counts expected if null hypothesis were true

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

Expected	Contacts	Glasses	None	Total
Female	103	44	135	282
Male	60	25	79	164
Total	163	69	214	446

- Question: Do observed and expected counts seem very different?
\square Response:

Example: Components for Comparison

- Background: Observed and expected tables:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

Expected	Contacts	Glasses	None	Total
Female	103	44	135	282
Male	60	25	79	164
Total	163	69	214	446

\square Question: What are the components of chi-square?

- Response: Calculate each

Example: Components for Comparison

\square Background: Components of chi-square are
$\frac{(121-103)^{2}}{103}=3.1$
$\frac{(32-44)^{2}}{44}=3.3$

$$
\frac{(129-135)^{2}}{135}=0.3
$$

$$
\frac{(42-60)^{2}}{60}=5.4
$$

$$
\frac{(37-25)^{2}}{25}=5.8
$$

$$
\frac{(85-79)^{2}}{79}=0.5
$$

- Questions: Which contribute most and least to the chi-square statistic? What is chi-square? Is it large?
\square Responses:
\square largest: most impact from smallest: least impact from

Chi-Square Distribution (Review)

chi-square $=$ sum of $\frac{(\text { observed }- \text { expected) })}{\text { expected }}^{2}$ follows predictable pattern known as chi-square distribution with $\mathrm{df}=(r-1) \times(c-1)$

- $r=$ number of rows (possible explanatory values)
- $c=$ number of columns (possible response values)

Properties of chi-square:

- Non-negative (based on squares)
- Mean=df [=1 for smallest (2×2) table]
- Spread depends on df
- Skewed right

Example: Chi-Square Degrees of Freedom

\square Background: Table for gender and lenswear:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

\square Question: How many degrees of freedom apply?

- Response: row variable (male or female) has $r=$, column variable (contacts, glasses, none) has $c=$. $\mathrm{df}=$

> A Closer Look: Degrees of freedom tell us how many unknowns can vary freely before the rest are "locked in."

Chi-Square Density Curve

For chi-square with $2 \mathrm{df}, P\left(\chi^{2} \geq 6\right)=0.05$ \rightarrow If χ^{2} is more than $6, P$-value is less than 0.05 .

Chi-square with 2 df (for 2-by-3 table)

Example: Assessing Chi-Square

- Background: In testing for relationship between gender and lenswear in 2×3 table, found $\chi^{2}=18.4$.
- Question: Is there evidence of a relationship in general between gender and lenswear (not just in the sample)?
- Response: For $\mathrm{df}=(2-1) \times(3-1)=2$, chi-square is considered "large" if greater than 6. Is 18.6 large?

Is the P-value small?
Is there statistically significant evidence of a relationship between gender and lenswear?

Example: Checking Assumptions

- Background: We produced table of expected counts below right:

Observed	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

Expected	Contacts	Glasses	None	Total
Female	103	44	135	282
Male	60	25	79	164
Total	163	69	214	446

- Question: Are samples large enough to guarantee the individual distributions to be approximately normal, so the sum of standardized components follows a χ^{2} distribution?
- Response:

Example: Chi-Square with Software

- Background: Some subjects injected under arm with Botox, others with placebo. After a month, reported if sweating had decreased Expected counts are printed below observed counts

Decreased			
BotDecreased Total			
Botox	121	40	161
	80.50	80.50	
Placebo	40	121	161
	80.50	80.50	
Total	161	161	322
Chi-Sq $=20.376+20.376+$			
	$20.376+20.376=81.503$		
DF = 1, P-Value $=0.000$			

- Question: What do we conclude?
- Response: Sample sizes large enough? Proportions with reduced sweating
\rightarrow diff significant?
Conclude Botox reduces sweating?

Guidelines for Use of Chi-Square (Review)

- Need random samples taken independently from two or more populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

Example: Confounding Variables

\square Background: Students of all years: $\chi^{2}=13.6, p=0.000$

	On Campus	Off Campus	Total	Rate On Campus
Undecided	124	81	205	$124 / 205=60 \%$
Decided	96	129	225	$96 / 225=43 \%$

Underclassmen: $\chi^{2}=0.025, p=0.873$

Underclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	117	55	172	$117 / 172=68 \%$
Decided	82	37	119	$82 / 119=69 \%$

Upperclassmen: $\chi^{2}=1.26, p=0.262$

Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	$7 / 33=21 \%$
Decided	14	92	106	$14 / 106=13 \%$

- Question: Are major (dec or not) and living situation related?
\square Response:

Lecture Summary

(Inference for Cat \rightarrow Cat; More Chi-Square)

- Hypotheses about variables or parameters
\square Computing chi-square statistic
- Observed and expected counts
- Chi-square test
- Calculations
- Degrees of freedom
- Chi-square density curve
- Checking assumptions
- Testing with software
\square Confounding variables

