Lecture 29: Chapter 11, Section 2 Categorical & Quantitative Variable Inference in Two-Sample Design

Sampling Distribution of Difference between Means
 2-sample *t* Statistic for Hypothesis Test
 Test with Software or by Hand
 2-sample Confidence Interval
 Pooled 2-sample *t* Procedures

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative (discussed in Lectures 24-27)
 - □ cat and quan: paired, 2-sample, several-sample
 - □ 2 categorical
 - □ 2 quantitative

Inference Methods for $C \rightarrow Q$ (*Review*)

- Paired: reduces to 1-sample *t* (already covered)
 - □ Focused on mean of differences
- Two-Sample: 2-sample *t* (similar to 1-sample *t*)
 - □ Focus on difference between means
- Several-Sample: need new distribution (*F*)

Display & Summary, 2-Sample Design (Review)

Display: Side-by-side boxplots:

- One boxplot for each categorical group
- Both share same quantitative scale
- **Summarize:** Compare
 - Five Number Summaries (looking at boxplots)
 - Means and Standard Deviations

Looking Ahead: Inference for population relationship will focus on means and standard deviations.

Notation

- \square Sample Sizes n_1 , n_2
- □ Sample
 - Means \bar{x}_1 , \bar{x}_2
 - Standard deviations s_1, s_2
- **Population**
 - Means μ_1 , μ_2
 - Standard deviations σ_1 , σ_2

Two-Sample Inference

Inference about $\mu_1 - \mu_2$

- Test: Is it zero? (Suggests categorical explanatory variable does *not* impact quantitative response)
- C.I.: If diff $\neq 0$, how different are pop means? Estimate $\mu_1 - \mu_2$ with $\bar{x}_1 - \bar{x}_2 \dots$

(Probability background) As R.V., $\overline{X}_1 - \overline{X}_2$ has

- Center: mean (if samples are unbiased) $\mu_1 \mu_2$
- Spread: s.d. (if independent) $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \approx \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- Shape: (if sample means are normal) normal

Two-Sample Inference

Note: claiming that the difference between population means is zero (or not)

$$H_o: \mu_1 - \mu_2 = 0$$
 vs. $H_a: \mu_1 - \mu_2 \neq 0$

is equivalent to claiming the population means are equal (or not).

 $H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2$

Two-Sample t Statistic

Standardize difference between sample means

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

(assuming Ho true)

• Mean 0 if $H_o: \mu_1 - \mu_2 = 0$ is true

- s.d. > 1 but close to 1 if samples are large
- Shape: bell-shaped, symmetric about 0

(but not quite the same as 1-sample t)

Shape of Two-Sample *t* Distribution

- *t* follows "two-sample *t*" dist *only if sample means are normal*
- 2-sample *t* like 1-sample *t*; df somewhere between smaller $n_i 1$ and $n_1 + n_2 2$
- like *z* if sample sizes are large enough

Shape of Two-Sample t Distribution

What Makes Two-Sample *t* Large

Two-sample *t* statistic

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

large in absolute value if...

- \bar{x}_1 far from \bar{x}_2
- Sample sizes n_1 , n_2 large
- Standard deviations s_1 , s_2 small

Example: Sample Means' Effect on P-Value

Background: A two-sample t statistic has been computed to test $H_o: \mu_1 - \mu_2 = 0$ vs. $H_a: \mu_1 - \mu_2 > 0$.

- Question: How does the size of the difference between sample means affect the *P*-value, in terms of area under the two-sample *t* curve?
- **Response:** If the difference isn't large, the *P*-value

As the difference becomes large, the *P*-value

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 11.14a p.540

Example: Sample S.D.s' Effect on P-Value

Background: Boxplots with $\bar{x}_1 = 3, \bar{x}_2 = 4$ could appear as on left or right, depending on s.d.s.

- **Question:** For which scenario does the difference between means appear more significant?
- Response: Difference between means appears more significant on

Example: Sample S.D.s' Effect on P-Value

Background: Boxplots with $\bar{x}_1 = 3, \bar{x}_2 = 4$ could appear as on left or right, depending on s.d.s.

Context: sample *mean monthly pay* (in \$1000s) for *females (\$3000)* vs. males (\$4000).

L29.19

Question: For which scenario are we more likely to reject $H_o: \mu_1 - \mu_2 = 0$?

Response: On s.d.s \rightarrow two-sample *t P*-value \rightarrow rejecting H_0 is more likely. \rightarrow Elementary Statistics: Looking at the Big Picture Practice: 11.14b p.540

Example: Sample Sizes' Effect on Conclusion

Background: Boxplot has $\bar{x}_1 = 3, \bar{x}_2 = 4$.

6-

5-

4-

2-

Context: sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000).

- **Question:** Which would provide more evidence to reject H_0 and conclude population means differ: if the sample sizes were each 5 or each 12?
- **Response:** sample size (__) provides more evidence to reject H_0 .

Example: *Two-Sample t with Software*

Background: Two-sample *t* procedure output based on survey data of students' age and sex.

Two-sample T for Age Mean StDev SE Mean Sex Ν 20.28 3.34 female 281 0.20 163 0.15 20.53 1.96 male Difference = mu (female) - mu (male) Estimate for difference: -0.25095% CI for difference: (-0.745, 0.245) T-Test of difference = 0 (vs not =): T-Value = -0.99 P-Value = 0.321 DF = 441

Questions: Does a student's sex tell us something about age?
 If so, how do ages of male & female students differ in general?

Responses:	<i>P</i> -val=0.3	21 small?	_Age and sex rela	ated?
Sample means "c	lose"?	_ Diff. betwe	en pop means=0?	
©2011 Brooks/Cole, Cengage Learning	Elementary	Statistics: Looking at the Big	Picture Practice: 11.9 p.538	L29.23

Example: *Two-Sample t by Hand*

Background: Students' age and sex summaries:

281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96

- **Question:** Are students' sex and age related?
- **Response:** Testing for relationship same as testing H_o : VS. H_a :

Standardized diff between sample mean ages is

```
Samples are large \rightarrow 2-sample t_____z distribution.
|t| is just under 1 \rightarrow P-val for 2-sided H_a is _____
```

Small? ____ Evidence that sex and age are related? ___

Two-Sample Confidence Interval

Confidence interval for diff between population means is

$$(\bar{x}_1 - \bar{x}_2) \pm \text{multiplier} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- Multiplier from two-sample *t* distribution
- Multiplier smaller for lower confidence
- Multiplier smaller for larger df

If samples are large, multiplier for 95% confidence is 2, as for *z* distribution.

Example: *Two-Sample Confidence Interval*

- **Background**: Students' age and sex summaries:
- 281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96.
- **Question:** What interval should contain the difference between population mean ages?
- **Response:** For this large a sample size, 2-sample *t* multiplier

We're 95% sure that females are between _____ years younger and _____ years older than males, on average.

Thus, ______is a plausible age difference, consistent with test not rejecting Ho.

Example: Interpreting Confidence Interval

- Background: A 95% confidence interval for difference between population mean hts, in inches, females minus males, is (-6.4, -5.3).
- **Question:** What does the interval tell us?
- Response: We're 95% sure that, on average, females are shorter by to ______ inches. We would reject the null hypothesis of equal population means.

Example: Changing Order of Subtraction

- Background: A 95% confidence interval for difference between population mean hts, in inches, females minus males, is (-6.4, -5.3).
- Question: What would the interval for the difference be, if we took males minus females?
- □ **Response:** Interval for males minus females would be _____

Pooled Two-Sample t Procedure

- If we can assume $\sigma_1 = \sigma_2$, standardized difference between sample means follows an actual *t* distribution with $df = n_1 + n_2 - 2$
- Higher df \rightarrow narrower C.I., easier to reject H_0
- Some apply Rule of Thumb: use pooled *t* if larger sample s.d. not more than twice smaller.

Example: Checking Rule for Pooled t

- **Background**: Consider use of pooled *t* procedure.
- **Question:** Does Rule of Thumb allow use of pooled t in each of the following?
 - Male and female ages have sample s.d.s 3.34 and 1.96.
 - 1-bedroom apartment rents downtown and near campus have sample s.d.s \$258 and \$89.
- Response: We check if larger s.d. is more than twice smaller in each case.
 - 3.34 > 2(1.96)? _____, so pooled *t* _____ OK.
 - 258 > 2(89)? _____, so pooled *t* _____ OK.

Lecture Summary

(Inference for Cat & Quan; Two-Sample)

- □ Inference for 2-sample design
 - Notation
 - Test
 - Confidence interval
- □ Sampling distribution of diff between means
- □ 2-sample *t* statistic (role of diff between sample means, standard deviation sizes, sample sizes)
- □ Test with software or by hand
- □ Confidence interval
- □ Pooled 2-sample *t* procedures