Lecture 29: Chapter 11, Section 2 Categorical \& Quantitative Variable Inference in Two-Sample Design

םSampling Distribution of Difference between Means $\square 2$-sample t Statistic for Hypothesis Test
\square Test with Software or by Hand
ם2-sample Confidence Interval
\square Pooled 2-sample t Procedures

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample
- 2 categorical
- 2 quantitative

Inference Methods for $\mathrm{C} \rightarrow \mathrm{Q}$ (Review)

- Paired: reduces to 1 -sample t (already covered)
- Focused on mean of differences
- Two-Sample: 2-sample t (similar to 1-sample t)
- Focus on difference between means
- Several-Sample: need new distribution (F)

Display \& Summary, 2-Sample Design (Review)

\square Display: Side-by-side boxplots:

- One boxplot for each categorical group
- Both share same quantitative scale
- Summarize: Compare
- Five Number Summaries (looking at boxplots)
- Means and Standard Deviations

Looking Ahead: Inference for population relationship will focus on means and standard deviations.

Notation

\square Sample Sizes n_{1}, n_{2}

\square Sample

- Means \bar{x}_{1}, \bar{x}_{2}
- Standard deviations s_{1}, s_{2}
\square Population
- Means μ_{1}, μ_{2}
- Standard deviations σ_{1}, σ_{2}

Two-Sample Inference

Inference about $\mu_{1}-\mu_{2}$

- Test: Is it zero? (Suggests categorical explanatory variable does not impact quantitative response)
- C.I.: If diff $\neq 0$, how different are pop means?

Estimate $\mu_{1}-\mu_{2}$ with $\bar{x}_{1}-\bar{x}_{2} \ldots$
(Probability background) As R.V., $\bar{X}_{1}-\bar{X}_{2}$ has

- Center: mean (if samples are unbiased) $\mu_{1}-\mu_{2}$
- Spread: s.d. (if independent) $\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \approx \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
- Shape: (if sample means are normal) normal

Two-Sample Inference

Note: claiming that the difference between population means is zero (or not)

$$
H_{o}: \mu_{1}-\mu_{2}=0 \text { vs. } H_{a}: \mu_{1}-\mu_{2} \neq 0
$$

is equivalent to claiming the population means are equal (or not).

$$
H_{0}: \mu_{1}=\mu_{2} \text { vs. } H_{a}: \mu_{1} \neq \mu_{2}
$$

Two-Sample t Statistic

Standardize difference between sample means

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

(assuming Ho true)

- Mean 0 if $H_{o}: \mu_{1}-\mu_{2}=0$ is true
- s.d. >1 but close to 1 if samples are large
- Shape: bell-shaped, symmetric about 0 (but not quite the same as 1 -sample t)

Shape of Two-Sample t Distribution

- \boldsymbol{t} follows "two-sample t " dist only if sample means are normal
- 2-sample t like 1 -sample t; df somewhere between smaller $n_{i}-1$ and $n_{1}+n_{2}-2$
- like z if sample sizes are large enough

Shape of Two-Sample t Distribution

two-sample t with equal standard deviations and $n 1=n 2=4$ same as t with $6 d f$

What Makes Two-Sample t Large

Two-sample t statistic

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

large in absolute value if...

- \bar{x}_{1} far from \bar{x}_{2}
- Sample sizes n_{1}, n_{2} large
- Standard deviations s_{1}, s_{2} small

Example: Sample Means'Effect on P-Value

- Background: A two-sample t statistic has been computed to test $H_{o}: \mu_{1}-\mu_{2}=0$ vs. $H_{a}: \mu_{1}-\mu_{2}>0$.

Small difference between sample means

Large difference between sample means

\square Question: How does the size of the difference between sample means affect the P-value, in terms of area under the two-sample t curve?
$\square \quad$ Response: If the difference isn't large, the P-value
As the difference becomes large, the P-value

Example: Sample S.D.s' Effect on P-Value

- Background: Boxplots with $\bar{x}_{1}=3, \bar{x}_{2}=4$ could appear as on left or right, depending on s.d.s.


```
Context: sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000).
```

- Question: For which scenario does the difference between means appear more significant?
- Response: Difference between means appears more significant on

Example: Sample S.D.s' Effect on P-Value

$\square \quad$ Background: Boxplots with $\bar{x}_{1}=3, \bar{x}_{2}=4$ could appear as on left or right, depending on s.d.s.

Context: sample mean monthly pay (in \$1000s) for females (\$3000) vs. males (\$4000).

\square Question: For which scenario are we more likely to reject $H_{o}: \mu_{1}-\mu_{2}=0$?

Example: Sample Sizes'Effect on Conclusion

- Background: Boxplot has $\bar{x}_{1}=3, \bar{x}_{2}=4$.

\square Question: Which would provide more evidence to reject H_{0} and conclude population means differ: if the sample sizes were each 5 or each 12?
- Response:
sample size () provides more evidence to reject H_{0}.

Example: Two-Sample t with Software

- Background: Two-sample t procedure output based on survey data of students' age and sex.

Two-sample T for Age

Sex	N	Mean	StDev	SE Mean
female	281	20.28	3.34	0.20
male	163	20.53	1.96	0.15
Difference = mu (female) - mu (male)				
Estimate for difference: -0.250				
95\% CI for difference: ($-0.745,0.245$)				
T-Test of difference $=0$ (vs not =) :				
lue				

- Questions: Does a student's sex tell us something about age? If so, how do ages of male \& female students differ in general?Responses: P-val $=0.321$ small? Age and sex related?
Sample means "close"? \qquad Diff. between pop means $=0$?

Example: Two-Sample t by Hand

- Background: Students' age and sex summaries:

281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96
$\square \quad$ Question: Are students' sex and age related?

- Response: Testing for relationship same as testing

$$
H_{o}: \quad \text { vs. } H_{a}:
$$

Standardized diff between sample mean ages is

Samples are large \rightarrow 2-sample t z distribution.
$|t|$ is just under $1 \rightarrow P$-val for 2-sided H_{a} is
Small? Evidence that sex and age are related?

Two-Sample Confidence Interval

Confidence interval for diff between population means is

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \text { multiplier } \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

- Multiplier from two-sample t distribution
- Multiplier smaller for lower confidence
- Multiplier smaller for larger df

If samples are large, multiplier for 95% confidence is 2 , as for z distribution.

Example: Two-Sample Confidence Interval

- Background: Students' age and sex summaries:

281 females: mean 20.28 sd 3.34; 163 males: mean 20.53 sd 1.96.

- Question: What interval should contain the difference between population mean ages?
$\square \quad$ Response: For this large a sample size, 2-sample t multiplier

We're 95% sure that females are between years younger and years older than males, on average. Thus, is a plausible age difference, consistent with test not rejecting Ho.

Example: Interpreting Confidence Interval

- Background: A 95\% confidence interval for difference between population mean hts, in inches, females minus males, is $(-6.4,-5.3)$.
- Question: What does the interval tell us?
\square Response: We're 95% sure that, on average, females are shorter by to inches. We would reject the null hypothesis of equal population means.

Example: Changing Order of Subtraction

Background: A 95\% confidence interval for difference between population mean hts, in inches, females minus males, is (-6.4, -5.3).

- Question: What would the interval for the difference be, if we took males minus females?
- Response: Interval for males minus females would be

Pooled Two-Sample t Procedure

If we can assume $\sigma_{1}=\sigma_{2}$, standardized difference between sample means follows an actual t distribution with $d f=n_{1}+n_{2}-2$

- Higher df \rightarrow narrower C.I., easier to reject H_{0}
- Some apply Rule of Thumb: use pooled t if larger sample s.d. not more than twice smaller.

Example: Checking Rule for Pooled t

- Background: Consider use of pooled t procedure.
- Question: Does Rule of Thumb allow use of pooled t in each of the following?
- Male and female ages have sample s.d.s 3.34 and 1.96.
- 1-bedroom apartment rents downtown and near campus have sample s.d.s $\$ 258$ and $\$ 89$.
- Response: We check if larger s.d. is more than twice smaller in each case.

```
- \(3.34>2(1.96)\) ?
so pooled \(t\)
OK.
- \(\quad 258>2(89)\) ?
so pooled \(t\)
OK.
```


Lecture Summary

(Inference for Cat \& Quan; Two-Sample)

- Inference for 2-sample design
- Notation
- Test
- Confidence interval
- Sampling distribution of diff between means
- 2-sample t statistic (role of diff between sample means, standard deviation sizes, sample sizes)
- Test with software or by hand
- Confidence interval
\square Pooled 2-sample t procedures

