Lecture 23: more Chapter 9, Section 2 Inference for Categorical Variable: More About Hypothesis Tests

Examples of Tests with 3 Forms of Alternative
How Form of Alternative Affects Test
When *P*-Value is "Small": Statistical Significance
Hypothesis Tests in Long-Run
Relating Test Results to Confidence Interval

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical: confidence intervals, hypothesis tests
 - □ 1 quantitative
 - □ categorical and quantitative
 - □ 2 categorical
 - □ 2 quantitative

Hypothesis Test About *p* (*Review*)

State null and alternative hypotheses H_0 and H_a : Null is "status quo", alternative "rocks the boat".

$$H_0: p = p_0 \quad \text{vs.} \quad H_a: \begin{cases} p > p_0 \\ p < p_0 \\ p \neq p_0 \end{cases}$$

1. Consider sampling and study design.

- 2. Summarize with \hat{p} , standardize to z, assuming that H_o : $p = p_o$ is true; consider if z is "large".
- 3. Find *P*-value=prob.of *z* this far above/below/away from 0; consider if it is "small".
- 4. Based on size of *P*-value, choose H_0 or H_a .

Checking Sample Size: C.I. vs. Test

- Confidence Interval: Require observed counts in and out of category of interest to be at least 10. $n\widehat{p} = X \ge 10$ $n(1 - \widehat{p}) = n - X > 10$
- □ Hypothesis Test: Require expected counts in and out of category of interest to be at least 10 (assume $p = p_0$).

$$np_0 \ge 10$$

 $n(1-p_0) \ge 10$

Example: Checking Sample Size in Test

- □ **Background**: 30/400=0.075 students picked #7 "at random" from 1 to 20. Want to test $H_0: p=0.05$ vs. $H_a: p>0.05$.
- Question: Is *n* large enough to justify finding *P*-value based on normal probabilities?
- **Response:**

 $n p_0 =$

 $n(1-p_0)=$

Looking Back: For confidence interval, checked 30 and 370 both at least 10.

Example: *Test with ">" Alternative (Review)*

- □ Note: Step 1 requires 3 checks:
 - Is sample unbiased? (Sample proportion has mean 0.05?)
 - Is population $\geq 10n$? (Formula for s.d. correct?)
 - Are npo and n(1-po) both at least 10? (Find or estimate P-value based on normal probabilities?)
- 1. Students are "typical" <u>humans; bias is</u> issue at hand.
- 2. If p=0.05, sd of \hat{p} is $\sqrt{\frac{0.05(1-0.05)}{400}}$ and $z = \frac{0.075-0.05}{\sqrt{\frac{0.05(1-0.05)}{400}}} = +2.29$
- 3. P-value = $P(Z \ge 2.29)$ is small: just over 0.01
- 4. Reject H_0 , conclude Ha: picks were biased for #7.

©2011 Brooks/Cole, Cengage Learning

Example: *Test with "Less Than" Alternative*

	Background: 111/230 of surveyed commuters at a
	university walked to school.
Test	and CI for One Proportion
Test	of $p = 0.5 vs p < 0.5$
Samp]	le X N Sample p 95.0% Upper Bound Z-Value P-Value
1	111 230 0.482609 0.536805 -0.53 0.299
	Question: Do fewer than half of the university's
	commuters walk to school?
	Response: First write H_0 : vs. H_a :
1.	Students need to be rep. in terms of year. 115≥10
2.	Output $\rightarrow \hat{p} = \underline{\qquad}, z = \underline{\qquad}$. Large?
3.	<i>P</i> -value = Small?
4.	Reject H_0 ? Conclude?
©2011 Br Cengage	Cooks/Cole, Elementary Statistics: Looking at the Big Picture Practice: 9.40 p.440 L23.11 Learning L23.11

Example: Test with "Not Equal" Alternative

- **Background**: 43% of Florida's community college students are disadvantaged.
- **Question:** Is % disadvantaged at Florida Keys П Community College (169/356=47.5%) unusual? Test and CI for One Proportion Test of p = 0.43 vs p not = 0.43 N Sample p 95.0% CI Z-Value P-Value Sample X 356 0.474719 (0.422847, 0.526592) 1.70 169 0.088 1 **Response:** First write H_0 : vs. H_a : П 356(0.43), 356(1-0.43) both ≥ 10 ; pop. $\geq 10(356)$ 1. $\hat{p} =$ 2. 3. P-value =; small? Reject H_0 ? Is 47.5% unusual? 4.

90-95-98-99 Rule to Estimate *P*-value

©2011 Brooks/Cole, Cengage Learning

L23.15

One-sided or Two-sided Alternative

- Form of alternative hypothesis impacts
 P-value
- *P*-value is *the* deciding factor in test
- Alternative should be based on what researchers hope/fear/suspect is true *before* "snooping" at the data
- If < or > is not obvious, use two-sided alternative (more conservative)

Example: How Form of Alternative Affects Test

- **Background**: 43% of Florida's community college students are disadvantaged.
- Question: Is % disadvantaged at Florida Keys Community College (47.5%) unusually high?

Test of p = 0.43 vs p > 0.43SampleXNSample p95.0%Lower BoundZ-ValueP-Value11693560.4747190.4311861.700.044

- **Response:** Now write H_0 : p = 0.43 vs. H_a :
- 1. Same checks of data production as before.
- 2. Same $\hat{p} = 0.475$ (*Note:* 0.475>0.43), same z=+1.70.
- 3. Now *P*-value = _____. Small?
- 4. Is 47.5% significantly higher than 43%?

P-value for One- or Two-Sided Alternative

- *P*-value for one-sided alternative is half
 P-value for two-sided alternative.
- *P*-value for two-sided alternative is twice
 P-value for one-sided alternative.
- For this reason, two-sided alternative is more conservative (larger *P*-value, harder to reject Ho).

Example: Thinking About Data at Hand

- Background: 43% of Florida's community college students are disadvantaged. At Florida Keys, the rate is 47.5%.
- Question: Is the rate at Florida Keys significantly lower?
- **Response:**

Definition; How Small is a "Small" *P*-value?

alpha (α): cut-off level which signifies a *P*-value is small enough to reject H_0

- Avoid blind adherence to cut-off $\alpha = 0.05$
- Take into account...
 - □ Past considerations: is H_0 "written in stone" or easily subject to debate?
 - □ Future considerations: What would be the consequences of either type of error?
 - Rejecting H_0 even though it's true
 - Failing to reject H_0 even though it's false

Example: Reviewing P-values and Conclusions

- **Background**: Consider our prototypical examples:
 - Are random number selections biased? *P*-value=0.011
 - Do fewer than half of commuters walk? *P*-value=0.299
 - Is % disadvantaged significantly different? *P*-value=0.088
 - Is % disadvantaged significantly higher? *P*-value=0.044
- **Question:** What did we conclude, based on *P*-values?
- **Response:** (Consistent with 0.05 as cut-off α)
 - P-value=0.011 → Reject H_0 ?
 - P-value=0.299 \rightarrow Reject H_0 ?
 - P-value=0.088 \rightarrow Reject H_0 ?
 - P-value=0.044 \rightarrow Reject H_0 ?

Example: Cut-Offs for "Small" P-Value

- Background: Bookstore chain will open new store in a city if there's evidence that its proportion of college grads is higher than 0.26, the national rate.
- **Question:** Choose cut-off (0.10, 0.05, 0.01):
 - if no other info is provided
 - if chain is enjoying considerable profits; owners are eager to pursue new ventures
 - if chain is in financial difficulties, can't afford losses if unsuccessful due to too few grads
- **Response:**

L23.28

Definition

Statistically significant data: produce *P*-value small enough to reject H_0 . *z* plays a role:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{(\hat{p} - p_0)\sqrt{n}}{\sqrt{p_0(1 - p_0)}}$$

Reject H_0 if P-value small; if |z| large; if...

- Sample proportion \hat{p} far from p_0
- Sample size *n* large
- Standard deviation small (if p_0 is close to 0 or 1)

Role of Sample Size *n*

- Large n: may reject H_0 even though observed proportion isn't very far from p_0 , from a practical standpoint.
- Very small *P*-value \rightarrow strong evidence against Ho but *p* not necessarily very far from *p*0.
- Small n: may fail to reject H_0 even though it is false.

Failing to reject false Ho is 2nd type of error

Definition

- **Type I Error:** reject null hypothesis even though it is true (false positive)
 - \square Probability is cut-off α
- **Type II Error:** fail to reject null hypothesis even though it's false (false negative)

Hypothesis Test and Long-Run Behavior

Elementary Statistics: Looking at the Big Picture

Confidence Interval and Hypothesis Test Results

- Confidence Interval: range of plausible values
- Hypothesis Test: decides if a value is plausible
 Informally,
 - □ If po is in confidence interval, don't reject Ho: p=po
 - □ If po is outside confidence interval, reject Ho: p=po

Relationship between 95% confidence interval and two-sided test with .05 as cut-off for p-value

©2011 Brooks/Cole, Cengage Learning

Example: Test Results, Based on C.I.

- Background: A 95% confidence interval for proportion of all students choosing #7 "at random" from numbers 1 to 20 is (0.055, 0.095).
- □ Question: Would we expect a hypothesis test to reject the claim p=0.05 in favor of the claim p>0.05?
- **Response:**

Example: C.I. Results, Based on Test

- **Background**: A hypothesis test did not reject H_0 : p=0.5 in favor of the alternative H_a ; p<0.5.
- **Question:** Do we expect 0.5 to be contained in a confidence interval for p?
- **Response:**

Lecture Summary

(More Hypothesis Tests for Proportions)

- □ Examples with 3 forms of alternative hypothesis
- □ Form of alternative hypothesis
 - Effect on test results
 - When data render formal test unnecessary
 - P-value for 1-sided vs. 2-sided alternative
- □ Cut-off for "small" *P*-value
- □ Statistical significance; role of n, Type I or II Error
- Hypothesis tests in long-run
- Relating tests and confidence intervals