Lecture 23: more Chapter 9, Section 2 Inference for Categorical Variable: More About Hypothesis Tests

-Examples of Tests with 3 Forms of Alternative口How Form of Alternative Affects Test口When P-Value is "Small": Statistical Significance -Hypothesis Tests in Long-Run \square Relating Test Results to Confidence Interval

Looking Back: Review

- 4 Stages of Statistics
- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
- 1 categorical: confidence intervals. hypothesis tests
- 1 quantitative
- categorical and quantitative
- 2 categorical
- 2 quantitative

Hypothesis Test About p (Review)

State null and alternative hypotheses H_{0} and H_{a} : Null is "status quo", alternative "rocks the boat". $H_{0}: p=p_{0} \quad$ vs. $\quad H_{a}:\left\{\begin{array}{l}p>p_{0} \\ p<p_{0} \\ p \neq p_{0}\end{array}\right\}$

1. Consider sampling and study design.
2. Summarize with \widehat{p}, standardize to z, assuming that $H_{o}: p=p_{o}$ is true; consider if z is "large".
3. Find P-value=prob.of z this far above/below/away from 0 ; consider if it is "small".
4. Based on size of P-value, choose H_{0} or H_{a}.

Checking Sample Size: C.I. vs. Test

\square Confidence Interval: Require observed counts in and out of category of interest to be at least 10.

$$
\begin{aligned}
& n \widehat{p}=X \geq 10 \\
& n(1-\widehat{p})=n-X \geq 10
\end{aligned}
$$

- Hypothesis Test: Require expected counts in and out of category of interest to be at least 10 (assume $p=p_{0}$).

$$
\begin{aligned}
& n p_{0} \geq 10 \\
& n\left(1-p_{0}\right) \geq 10
\end{aligned}
$$

Example: Checking Sample Size in Test

- Background: 30/400=0.075 students picked \#7 "at random" from 1 to 20 . Want to test $H_{0}: p=0.05$ vs. $H_{a}: p>0.05$.
- Question: Is n large enough to justify finding P-value based on normal probabilities?
\square Response:

$$
\begin{aligned}
& n p_{0}= \\
& n\left(1-p_{0)}=\right.
\end{aligned}
$$

Looking Back: For confidence interval, checked 30 and 370 both at least 10.

Example: Test with ">" Alternative (Review)

- Note: Step 1 requires 3 checks:
- Is sample unbiased? (Sample proportion has mean 0.05?)
- Is population $\geq 10 n$? (Formula for s.d. correct?)
- Are $n p o$ and $n(1-p o)$ both at least 10 ? (Find or estimate P-value based on normal probabilities?)

1. Students are "typical" humans; bias is issue at hand.
2. If $p=0.05$, sd of \hat{p} is $\sqrt{\frac{0.05(1-0.05)}{400}}$ and
$z=\frac{0.075-0.05}{\sqrt{\frac{0.05(1-0.05)}{400}}}=+2.29$
3. $\quad P$-value $=P(Z \geq 2.29)$ is small: just over 0.01
4. Reject H_{0}, conclude Ha: picks were biased for \#7.

Example: Test with "Less Than" Alternative

- Background: 111/230 of surveyed commuters at a university walked to school.
Test and CI for One Proportion
Test of $p=0.5$ vs $p<0.5$
Sample X N Sample p 95.0% Upper Bound Z-Value P-Value
$1 \begin{array}{lllllll}111 & 230 & 0.482609 & 0.536805 & -0.53 & 0.299\end{array}$
- Question: Do fewer than half of the university's commuters walk to school?
- Response: First write H_{0} : vs. H_{a} :

1. Students need to be rep. in terms of year. $115 \geq 10$
2. Output $\rightarrow \hat{p}=\quad z=\quad$ Large?
3. $\quad P$-value $=$
. Small?
4. Reject H_{0} ?

Conclude?

Example: Test with "Not Equal" Alternative

- Background: 43\% of Florida's community college students are disadvantaged.
- Question: Is \% disadvantaged at Florida Keys Community College (169/356=47.5\%) unusual?
Test and CI for One Proportion
Test of $p=0.43 \mathrm{vs} p$ not $=0.43$
Sample X N Sample p $95.0 \% \mathrm{CI} \quad$ Z-Value P-Value
$1 \quad 169 \quad 356 \quad 0.474719 \quad(0.422847 .0 .526592) \quad 1.70 \quad 0.088$
\square Response: First write H_{0} : vs. H_{a} :

1. $356(0.43), 356(1-0.43)$ both ≥ 10; pop. $\geq 10(356)$
2. $\widehat{p}=\quad, z=$
3. $\quad P$-value $=\quad$ small?
4. Reject H_{0} ? Is 47.5% unusual?

90-95-98-99 Rule to Estimate P-value

One-sided or Two-sided Alternative

- Form of alternative hypothesis impacts P-value
- P-value is the deciding factor in test
- Alternative should be based on what researchers hope/fear/suspect is true before "snooping" at the data
- If $<$ or $>$ is not obvious, use two-sided alternative (more conservative)

Example: How Form of Alternative Affects Test

- Background: 43\% of Florida's community college students are disadvantaged.
- Question: Is \% disadvantaged at Florida Keys Community College (47.5\%) unusually high?

```
Test of p = 0.43 vs p > 0.43
Sample \(\quad \mathrm{X} \quad \mathrm{N}\) Sample p \(95.0 \%\) Lower Bound Z-Value P-Value
\begin{tabular}{lllllll}
1 & 169 & 356 & 0.474719 & 0.431186 & 1.70 & 0.044
\end{tabular}
```

- Response: Now write $H_{0}: p=0.43$ vs. H_{a} :

1. Same checks of data production as before.
2. Same $\widehat{p}=0.475$ (Note: $0.475>0.43$), same $z=+1.70$.
3. $\operatorname{Now} P$-value $=$. Small?
4. Is 47.5% significantly higher than 43% ?

P-value for One- or Two-Sided Alternative

- P-value for one-sided alternative is half P-value for two-sided alternative.
- P-value for two-sided alternative is twice P-value for one-sided alternative.
For this reason, two-sided alternative is more conservative (larger P-value, harder to reject Ho).

Example: Thinking About Data at Hand

- Background: 43\% of Florida's community college students are disadvantaged. At Florida Keys, the rate is 47.5%.
- Question: Is the rate at Florida Keys significantly lower?
\square Response:

Definition; How Small is a "Small" P-value?

alpha (α) : cut-off level which signifies a P-value is small enough to reject H_{0}

- Avoid blind adherence to cut-off $\alpha=0.05$
- Take into account...
- Past considerations: is H_{0} "written in stone" or easily subject to debate?
\square Future considerations: What would be the consequences of either type of error?
- Rejecting H_{0} even though it's true
- Failing to reject H_{0} even though it's false

Example: Reviewing P-values and Conclusions

- Background: Consider our prototypical examples:
- Are random number selections biased? P-value $=0.011$
- Do fewer than half of commuters walk? P-value $=0.299$
- Is $\%$ disadvantaged significantly different? P-value $=0.088$
- Is $\%$ disadvantaged significantly higher? P-value $=0.044$
- Question: What did we conclude, based on P-values?
- Response: (Consistent with 0.05 as cut-off α)
- $\quad P$-value $=0.011 \rightarrow$ Reject H_{0} ?
- $\quad P$-value $=0.299 \rightarrow$ Reject H_{0} ?
- $\quad P$-value $=0.088 \rightarrow$ Reject H_{0} ?
- P-value $=0.044 \rightarrow$ Reject H_{0} ?

Example: Cut-Offs for "Small" P-Value

- Background: Bookstore chain will open new store in a city if there's evidence that its proportion of college grads is higher than 0.26 , the national rate.
- Question: Choose cut-off ($0.10,0.05,0.01$):
- if no other info is provided
- if chain is enjoying considerable profits; owners are eager to pursue new ventures
- if chain is in financial difficulties, can't afford losses if unsuccessful due to too few grads
\square Response:

Definition

Statistically significant data: produce P-value small

 enough to reject $H_{0} . z$ plays a role:$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{\left(\hat{p}-p_{0}\right) \sqrt{n}}{\sqrt{p_{0}\left(1-p_{0}\right)}}
$$

Reject H_{0} if P-value small; if $|z|$ large; if...

- Sample proportion \hat{p} far from p_{0}
- Sample size n large
- Standard deviation small (if p_{0} is close to 0 or 1)

Role of Sample Size n

- Large \boldsymbol{n} : may reject H_{0} even though observed proportion isn't very far from p_{0}, from a practical standpoint.
Very small P-value \rightarrow strong evidence against Ho but p not necessarily very far from p.
- Small \boldsymbol{n} : may fail to reject H_{0} even though it is false.
Failing to reject false Ho is $2^{\text {nd }}$ type of error

Definition

- Type I Error: reject null hypothesis even though it is true (false positive)
- Probability is cut-off α Type II Error: fail to reject null hypothesis even though it's false (false negative)

Hypothesis Test and Long-Run Behavior

test Ho: $p=.50$ vs. Ha: p not equal .50
(reject if p-value<.05)

$\mathrm{z}=-.89, \mathrm{p}$-valùe $=.371 \longrightarrow$ do not reject Ho
$\mathrm{z}=+.89, \mathrm{p}$-value $=.371 \longrightarrow$ do not reject Ho
$\mathrm{z}=+2.24$, p -value $=.025 \longrightarrow$ reject Ho
in the long run
95\% of tests do not reject Ho
5% of tests reject Ho
$\mathrm{z}=-.89, \mathrm{p}$-value $=.371 \longrightarrow$ do not reject Ho

Confidence Interval and Hypothesis Test Results

- Confidence Interval: range of plausible values
- Hypothesis Test: decides if a value is plausible Informally,
- If $p o$ is in confidence interval, don't reject Ho: $p=p$ o

ㅁ If p o is outside confidence interval, reject Ho: $p=p \mathrm{o}$ Relationship between 95\% confidence interval and two-sided test with .05 as cut-off for p-value

Example: Test Results, Based on C.I.

\square Background: A 95\% confidence interval for proportion of all students choosing \#7 "at random" from numbers 1 to 20 is (0.055, 0.095).
\square Question: Would we expect a hypothesis test to reject the claim $p=0.05$ in favor of the claim $p>0.05$?
\square Response:

Example: C.I. Results, Based on Test

\square Background: A hypothesis test did not reject $H_{0}: p=0.5$ in favor of the alternative $H_{a^{\prime}} p<0.5$.
\square Question: Do we expect 0.5 to be contained in a confidence interval for p ?
\square Response:

Lecture Summary

(More Hypothesis Tests for Proportions)

- Examples with 3 forms of alternative hypothesis
- Form of alternative hypothesis
- Effect on test results
- When data render formal test unnecessary
- $\quad P$-value for 1 -sided vs. 2-sided alternative
- Cut-off for "small" P-value
- Statistical significance; role of n, Type I or II Error
- Hypothesis tests in long-run
\square Relating tests and confidence intervals

